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Abstract
Objective To develop an ultrasound-driven clinical deep learning radiomics (CDLR) model for stratifying the risk of tes-
ticular masses, aiming to guide individualized treatment and minimize unnecessary procedures.
Methods We retrospectively analyzed 275 patients with confirmed testicular lesions (January 2018 to April 2023) from 
two hospitals, split into training (158 cases), validation (68 cases), and external test cohorts (49 cases). Radiomics and 
deep learning (DL) features were extracted from preoperative ultrasound images. Following feature selection, we utilized 
logistic regression (LR) to establish a deep learning radiomics (DLR) model and subsequently derived its signature. Clinical 
data underwent univariate and multivariate LR analyses, forming the "clinic signature." By integrating the DLR and clinic 
signatures using multivariable LR, we formulated the CDLR nomogram for testicular mass risk stratification. The model’s 
efficacy was gauged using the area under the receiver operating characteristic curve (AUC), while its clinical utility was 
appraised with decision curve analysis(DCA). Additionally, we compared these models with two radiologists' assessments 
(5–8 years of practice).
Results The CDLR nomogram showcased exceptional precision in distinguishing testicular tumors from non-tumorous 
lesions, registering AUCs of 0.909 (internal validation) and 0.835 (external validation). It also excelled in discerning malig-
nant from benign testicular masses, posting AUCs of 0.851 (internal validation) and 0.834 (external validation). Notably, 
CDLR surpassed the clinical model, standalone DLR, and the evaluations of the two radiologists.
Conclusion The CDLR nomogram offers a reliable tool for differentiating risks associated with testicular masses. It aug-
ments radiological diagnoses, facilitates personalized treatment approaches, and curtails unwarranted medical procedures.
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CEUS  Contrast-enhanced ultrasound
CI  Confidence interval
DLR  Deep learning radiomics
DCA  Decision curve analysis
DICOM  Digital imaging and communications in 

medicine
GLCM  Gray level co-occurrence matrix
GLDM  Gray-level dependence matrix
GLRLM  Gray-level run length matrix
GLSZM  Gray-level size zone matrix
ICC  Interclass correlation coefficient
LR  Logistic regression
LASSO  Least Absolute Shrinkage and Selection 

Operator
LYMPH  Lymphocyte count
MRI  Magnetic resonance imaging
NGTDM  Neighboring gray tone difference matrix
NLR  Neutrophil-to-lymphocyte ratio
NPV  Negative predictive value
OR  Odds ratio
PAS  Picture archiving and communication system
PLR  Platelet-to-lymphocyte ratio
PPV  Positive predictive value
ROI  Region of interest
ROC  Receiver operating characteristic

Introduction

The incidence rate of testicular tumors, which account for 
approximately 1% of all male tumors and 5% of urinary sys-
tem tumors, has increased in recent decades, particularly 
among young and middle-aged men (Park et al. 2018; Znaor 
et al. 2020; Gurney et al. 2019). The primary symptom is 
painless testicular enlargement. However, sometimes, they 
present with symptoms or imaging resembling orchitis, 
tuberculosis, or other tumor-like conditions, complicating 
clinical differential diagnosis (Belfield and Findlay-Line 
2022; Tandstad et al. 2016). For non-neoplastic testicular 
lesions, conservative treatment is typically the first approach. 
However, testicular malignancies often require radical orchi-
ectomy. Studies have shown that unilateral orchiectomy can 
result in infertility, sexual dysfunction, and reduced sexual 
function (Henriques et al. 2022; Kerie et al. 2021). Recently, 
some studies suggest that benign testicular tumors smaller 
than 2–3 cm in diameter can have a favorable prognosis with 
partial orchiectomy and adjuvant radiotherapy (Fankhauser 
et al. 2021; Paffenholz et al. 2018; Gentile et al. 2020; Sm 
et al. 2023). Thus, preoperative risk assessment of testicu-
lar masses is crucial. Accurately differentiating between 
malignant tumors, benign tumors, and non-neoplastic lesions 
before treatment ensures the best treatment plan for patients. 
This strategy prevents over-treatment and unnecessary 

complete resection, prioritizing the preservation of organ 
function. Ultrasound is essential in evaluating testicular 
lesions because of its cost-effectiveness, convenience, high 
reproducibility, and lack of radiation exposure (Minhas 
et al. 2021). It offers detailed information about a tumor’s 
location, size, shape, and blood supply (Lai et al. 2023). 
However, the varied ultrasound characteristics of testicular 
masses can challenge diagnosis (Marko et al. 2017).

Radiomics technology, a recent advancement in clini-
cal methods, is proving invaluable for diagnosing, select-
ing treatments, and assessing the prognosis of patients with 
tumors (Zhang et al. 2023). It utilizes quantitative analysis 
techniques to extract extensive lesion information from con-
ventional medical images, conducting in-depth exploration 
and analysis of medical images to reveal hidden, intricate 
details within the images (Lafata et al. 2022). Earlier studies 
have investigated its use in predicting testicular and other 
urinary system diseases (Santi et al. 2022; Fan et al. 2022; 
Xue et al. 2023; Baessler et al. 2020). Lately, deep learning 
(DL) algorithms have gained widespread recognition and 
adoption in the field of medical image analysis (Beuque et al. 
2023; Tong et al. 2022). DL employs neural networks for 
feature extraction, enabling automated image analysis post-
training—a significant advantage over radiomics. Scholars 
propose merging DL network output with radiomics features, 
potentially enhancing image-based radiomics' accuracy and 
reliability, especially with limited training datasets (Zhang 
et al. 2022). Among the DL algorithms, convolutional neural 
networks, with their inherent data-driven modeling capabili-
ties, can directly extract task-related features from medical 
images, thereby significantly enhancing model accuracy and 
diagnostic efficiency (Yu et al. 2023; Dominique et al. 2022). 
Yet, there is a current gap in research that merges DL with 
ultrasound radiomics to predict the risk stratification of tes-
ticular masses.

Hence, we introduced two clinical deep learning radi-
omics (CDLR) nomograms to evaluate their capability in 
distinguishing between tumors and non-neoplastic lesions, 
and in differentiating malignant tumors from benign lesions.

Materials and methods

Research subjects

Having received approval from the Ethics Review Commit-
tee and a waiver for patient informed consent, we undertook 
a retrospective study of 275 patients (275 lesions) diagnosed 
with testicular space-occupying lesions from January 2018 
to April 2023. These patients, representing 275 lesions, 
were treated at both the First Affiliated Hospital of Guangxi 
Medical University (Center 1) and Baise People’s Hospi-
tal (Center 2). To qualify for the study, patients needed to 
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meet certain inclusion criteria. They must have undergone 
ultrasound examinations within 1 week before surgery, had 
full ultrasound images and clinical records pre-surgery, and 
received definitive postoperative pathological diagnoses. 
Exclusions involved cases with inferior ultrasound image 
clarity, no evident lesions, concurrent primary tumors 
elsewhere, or those who underwent neoadjuvant treatment 
before their ultrasound. Of the participants, 226 from Center 
1 were randomly divided into the training (n = 158 patients) 
and validation (n = 68 patients) cohorts at a 7:3 ratio. The 
remaining 49 patients from Center 2 formed an external 
test cohort. The distribution of lesion pathology types is 
presented in Supplementary Table 1. An overview of our 
research process is depicted in Fig. 1.

Clinical data

The collated clinical information included demographics 
and health metrics such as age, body mass index (BMI), 
symptom (scrotal pain), existing medical conditions (e.g., 
hypertension, diabetes, coronary heart disease), complete 

blood count, serum alpha-fetoprotein (AFP) levels, serum 
beta-human chorionic gonadotropin (β-HCG) levels, and 
more. Radiological evaluations were conducted by experi-
enced radiologists (with 5–8 years under their belts). They 
meticulously analyzed the ultrasound imagery, gauging 
lesion blood flow distribution through the Adler grading 
system. The blood flow was then categorized as either sparse 
(grades 0–1) or abundant (grades 2–3) based on color Dop-
pler ultrasound readings (Adler et al. 1990; Ma et al. 2015). 
All clinical data was retrospectively retrieved from the hos-
pital's HIS system.

Image acquisition

The equipment differed between the two centers. Center 1 
utilized the ESAOTE-PLUS color Doppler ultrasound diag-
nostic equipment from Parkson Medical Company, boast-
ing a high-frequency linear array probe with a 12-MHz 
frequency. By contrast, Center 2 implemented the Siemens 
Acuson Sequoia 512 color Doppler ultrasound diagnostic 
device, outfitted with a 10L4 linear array probe that covered 

Fig. 1  Patient selection process for this study depicted in a flowchart
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frequencies in the range of 2.9–9.9 MHz. Skilled radiolo-
gists, each with more than 5 years of experience, captured 
the ultrasound images in both institutions. For uniformity, 
the most expansive cross-sectional lesion view was cho-
sen and saved in the digital imaging and communications 
in medicine format, accumulating 275 images in total. All 
images were obtained from the hospital's picture archiving 
and communication system (PACS) and stored in digital 
imaging and communications in medicine (DICOM) format.

Image segmentation and feature extraction

We imported all images into ITK-SNAP software (version 
3.8; http:// www. itksn ap. org). The region of interest (ROI) 
for each lesion was manually outlined along the edge of the 
lesion within the software by a radiologist with 5 years of 
experience. To ensure reliability, we evaluated the reproduc-
ibility of the outlined features using both intraclass and inter-
class correlation coefficients (ICCs). To do this, 30 images 
were selected at random. A radiologist with 8 years of expe-
rience outlined the ROI on these images and, after a week, 
repeated the process for intra-observer consistency assess-
ment. The both radiologists were blinded to the patients’ 
clinical information and pathology results.

We extracted radiomics features from these ROIs using 
the python pyradiomics (https:// pyrad iomics. readt hedocs. io/ 
en/ latest/) package. This included (1) fourteen 2D shape-
based features, (2) 306 first-order features, (3) texture fea-
tures, including features from gray level co-occurrence 
matrix (GLCM) (n = 374), gray-level dependence matrix 
(GLDM) (n = 238), gray-level run length matrix (GLRLM) 
(n = 272), gray-level size zone matrix (GLSZM) (n = 272), 
and neighboring gray tone difference matrix (NGTDM) 
(n = 85), yielding a total of 1,561 radiomics features (Sup-
plementary material Fig. 1). For the extraction of DL fea-
tures, we utilized a pre-trained ResNet 50 network on the 
ImageNet database (https:// image- net. org/). The training and 
validation sets remained consistent before training. We fine-
tuned model parameters using a 0.01 initial learning rate, 
50 epochs, and a batch size of 32, all processed with a sto-
chastic gradient descent optimizer. The output of the ResNet 
50 average pooling layer, with adjusted parameters, helped 
us obtain 2,048 DL features from the ROI of each patient’s 
ultrasound image. Figure 2 illustrates our research workflow.

Feature selection

For the training cohort, we employed a sequential approach 
to feature screening and dimensionality reduction: First, we 
retained radiomics features with an ICC exceeding 0.75 and 
integrated them with the DL features. Then, all selected fea-
tures were regularized. Second, we applied the minimum 
redundancy maximum correlation algorithm to further refine 

feature selection. Finally, using the Least Absolute Shrink-
age and Selection Operator (LASSO) regression model 
along with a tenfold cross-validation process, we identified 
and retained features with non-zero values. LASSO’s inher-
ent ability for powerful shrinkage and addressing multicol-
linearity significantly bolstered the accuracy of the model 
(Liu et al. 2023).

Establishment of DLR and clinical models

We used LR to construct our models. After the steps of fea-
ture screening and dimensionality reduction, we utilized the 
remaining features to create a DLR model, leading to the 
generation of a DLR signature. Additionally, single-factor 
LR analysis was conducted on the clinical characteristics of 
the training cohort for each variable. If a variable met the 
significance threshold of p < 0.05, it was chosen for multi-
factor LR analysis. This process enabled us to pinpoint criti-
cal predictive variables, facilitating the construction of a 
clinical model. From this, we derived the odds ratio (OR) 
and their 95% confidence intervals, resulting in a clinical 
signature.

Establishment of CDLR

Aiming to fuse clinical and imaging data to develop a pre-
cise, objective, and reliable decision-support model, we 
combined both the clinical and DLR signatures. Using mul-
tivariable LR analysis, a combined dimensional CDLR was 
formulated. For validation, two seasoned radiologists—with 
5 and 8 years of ultrasound diagnostic experience—reviewed 
patient ultrasound images from the validation and test 
cohorts without knowledge of the pathology. They developed 
two separate ultrasound feature models, termed Model A and 
Model B. To gauge the efficacy of these models, receiver 
operating characteristic (ROC) curves were generated for 
the training, validation, and test cohorts. From these curves, 
we determined metrics including AUC, accuracy, sensitivity, 
specificity, positive predictive value, and negative predic-
tive value. The Delong test was used to discern differences 
in AUC between models, with a significance level set at 
p < 0.05. This meticulous evaluation ensures the robustness 
of our CDLR as a decision-support tool.

Statistical analysis

For our statistical assessments, we leveraged several software 
tools, including SPSS software (version 26.0), R software (ver-
sion 3.6.3; https:// www.r- proje ct. org), and Python software 
(version 3.5.6; http:// www. python. org). Descriptive statistics 
were conveyed as mean ± standard deviation. Differences 
between cohorts were identified using independent sample 
t-tests. When data displayed a skewed distribution (Q1, Q3), 

http://www.itksnap.org
https://pyradiomics.readthedocs.io/en/latest/
https://pyradiomics.readthedocs.io/en/latest/
https://image-net.org/
https://www.r-project.org
http://www.python.org
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the Mann–Whitney U test was applied. Ratios for categorical 
variables were derived from the chi-square or Fisher’s exact 
test, while skewed count data were subjected to rank sum tests. 

Both univariate and multivariate LR analyses were performed, 
with a statistical significance threshold of p < 0.05.

Fig. 2  Study workflow of the clinical, DLR, and CDLR models for the risk stratification of testicular masses. DLR deep learning radiomics; 
CDLR clinical deep learning radiomics
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Results

Clinical characteristics

Our results can be found in Supplementary Table 2. The 
results indicated no significant differences among the 
training, validation, and external test cohorts (p < 0.05). 
In our study, the training, validation, and test cohorts 
consisted of 158, 68, and 49 patients, respectively. In 
Supplementary Table 3, within the training cohort, sig-
nificant differences were observed in several parameters 
such as age, lymphocyte count (LYMPH), neutrophil-
to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio 

(PLR), symptom, serum β-HCG, and AFP when compar-
ing patients with testicular neoplastic lesions to those with 
non-neoplastic lesions (p < 0.05). Additionally, in Supple-
mentary Table 4, there were distinct differences between 
benign and malignant testicular lesions in terms of symp-
tom, serum AFP, β-HCG levels, and color Doppler blood 
flow signals (p < 0.05).

Construction and validation of DLR

To differentiate testicular tumors from non-tumor lesions, 
we used 7 radiomics features and 19 DL features to con-
struct the DLR model, from which we derived the DLR 
signature (Fig. 3a and c, Fig. 4a, Supplementary Table 5). 

Fig. 3  LASSO, paired with ten-fold cross-validation, was employed 
to screen both radiomics features and DL features for predicting tes-
ticular tumors and malignancies. a, b Show the coefficients of radi-
omics and DL features obtained from LASSO with ten-fold cross-

validation, while c, d depict the mean squared error (MSE) from the 
tenfold cross-validation. LASSO Least Absolute Shrinkage and Selec-
tion Operator; DL deep learning; MSE mean squared error
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The DLR model’s AUC values for the training, validation, 
and test cohorts were 0.954, 0.850, and 0.803, respec-
tively (Fig. 5a, b and c). To distinguish between benign 
and malignant testicular lesions, we employed the same 
feature selection method, identifying 4 radiomics features 

and 20 DL features (Fig. 3b and d, Fig. 4b, Supplemen-
tary Table 5). This DLR model yielded AUCs of 0.894, 
0.823, and 0.799 for the training, validation, and test 
cohorts, respectively (Fig. 5d, e and f).

Fig. 4  a, b Coefficients of the filtered radiomics features and DL features. DL deep learning
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Development and validation of clinical model 
and CDLR

Within the training cohort, three independent predictors for 
testicular neoplastic lesions were identified: the absence of 
symptom, serum AFP levels ≥ 10 ng/mL, and β-HCG lev-
els ≥ 5 mIU/mL (Supplementary Table 6). From this data, 
we developed a clinical model, leading to the creation of the 
clinic signature. By integrating the clinic signature with the 
DLR signature using multivariable LR, the CDLR show-
cased enhanced diagnostic prowess (Fig. 5a, b and c, Fig. 6a, 
Table 1). Specifically, its performance was notably superior 
to the clinical model (AUC: 0.909 vs. 0.831, p = 0.045), DLR 
(AUC: 0.909 vs. 0.850, p = 0.211), radiologist A (AUC: 0.909 
vs. 0.735, p = 0.041), and radiologist B (AUC: 0.909 vs. 0.775, 
p = 0.065) in the validation cohort. In the test cohort, CDLR 
achieved an AUC of 0.835, which exceeded the performances 
of the clinical model (AUC = 0.768), DLR (AUC = 0.803), 
and both radiologists (AUC = 0.738 and 0.777, respectively). 
The absence of symptom, serum AFP ≥ 10 ng/mL, β-HCG ≥ 5 
mIU/mL, and color Doppler flow signals (categorized as Adler 
classification: 2–3) were determined to be independent indi-
cators of testicular malignancy (Supplementary Table 7). 
In the realm of predicting testicular malignancy (Fig. 5d, e 

and f, Fig. 6b, Table 2), the CDLR outperformed the clinical 
model (AUC: 0.851 vs. 0.735, p = 0.014), DLR (AUC: 0.851 
vs. 0.823, p = 0.372), radiologist A (AUC: 0.851 vs. 0.744, 
p = 0.122), and radiologist B (AUC: 0.851 vs. 0.755, p = 0.182) 
in the validation cohort. Additionally, in the test cohort, CDLR 
achieved an AUC of 0.834, which outperformed the clinical 
model (AUC = 0.720), DLR (AUC = 0.799), and radiologist 
A (AUC = 0.730) and radiologist B (AUC = 0.754). Further-
more, the DCA further indicated that the CDLR delivered 
more net benefits than the clinical model and DLR in predic-
tions concerning testicular tumors and malignancies (Fig. 6b 
and d). This superiority in prediction accuracy was further 
corroborated by the results from the confusion matrix (Fig. 7). 
Figure 8 displays the activation maps of a convolutional neural 
network utilized for the identification of testicular non-neo-
plastic lesions, benign tumors, and malignant tumors.

Discussion

Our study indicates that the CDLR surpasses the clinical 
model, DLR, and radiologists with 5–8 years of experience 
in diagnosing testicular tumors and malignancies. CDLR can 
be a pivotal tool to support radiologists in imaging diagnosis 

Fig. 5  ROC curves comparing different models. a–c ROC curves 
comparing the clinical, DLR, and CDLR models for predicting tes-
ticular tumors across the training, validation, and test cohorts. d–f 
ROC curves comparing the clinical, DLR, and CDLR models for 

predicting testicular carcinoma in the training, validation, and test 
cohorts. ROC receiver operating characteristic; DLR deep learning 
radiomics; CDLR clinical deep learning radiomics
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Fig. 6  Nomograms and DCA curves; a CDLR nomogram for predict-
ing testicular tumors; b DCA curve comparison between the clinical, 
DLR, and CDLR models for predicting testicular tumors. c CDLR 
nomogram for predicting testicular carcinoma; d DCA curves com-

paring clinical, DLR, and CDLR models for predicting testicular car-
cinoma. DCA decision curve analysis; DLR deep learning radiomics; 
CDLR clinical deep learning radiomics

Table 1  Comparison of diagnostic performances of different models for discriminating testicular neoplasm from non-neoplasm in the training, 
validation, and test cohorts

CI confidence interval; DLR deep learning radiomics model; CDLR clinical deep learning radiomics nomogram; PPV positive predictive value; 
NPV negative predictive value
*p value of AUCs difer between the model and CDLR in the training cohort
# p value of AUCs difer between the model and CDLR in the validation cohor
^ p value of AUCs difer between the model and CDLR in the test cohort

Model Cohort AUC (95% Cl) Accuracy Sensitivity Specificity PPV NPV p value

Clinic Training 0.830 (0.768, 0.892) 0.804 0.817 0.750 0.928 0.511  < 0.001*
Validation 0.831 (0.742, 0.920) 0.794 0.824 0.706 0.894 0.571 0.045#

Test 0.768 (0.644, 0.893) 0.735 0.750 0.692 0.871 0.500 0.168^

DLR Training 0.954 (0.918, 0.990) 0.886 0.873 0.938 0.982 0.652 0.044*
Validation 0.850 (0.732, 0.968) 0.750 0.686 0.941 0.972 0.500 0.211#

Test 0.803 (0.660, 0.946) 0.816 0.806 0.845 0.935 0.806 0.404^

CDLR Training 0.972 (0.950, 0.995) 0.937 0.937 0.938 0.983 0.789
Validation 0.909 (0.837, 0.981) 0.882 0.922 0.765 0.922 0.765
Test 0.835 (0.703, 0.968) 0.857 0.917 0.692 0.892 0.917

Radiologist A Validation 0.735 (0.607, 0.864) 0.809 0.882 0.588 0.865 0.625 0.041#

Test 0.738 (0.589, 0.887) 0.796 0.861 0.615 0.861 0.615 0.309^

Radiologist B Validatin 0.775 (0.650, 0.899) 0.838 0.902 0.647 0.885 0.687 0.065#

Test 0.777 (0.634, 0.919) 0.816 0.861 0.692 0.886 0.643 0.505^
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Table 2  Comparison of diagnostic performances of different models or discriminating testicular malignant tumor from benign lesions in the 
training, validation, and test cohorts

CI confidence interval; DLR deep learning radiomics model; CDLR clinical deep learning radiomics nomogram; PPV positive predictive value; 
NPV negative predictive value
*p value of AUCs difer between the model and CDLR in the training cohort
# p value of AUCs difer between the model and CDLR in the validation cohor
^ p value of AUCs difer between the model and CDLR in the test cohort

Model Cohort AUC (95% Cl) Accuracy Sensitivity Specificity PPV NPV p value

Clinic Training 0.824 (0.759, 0.889) 0.759 0.743 0.792 0.876 0.743  < 0.001*
Validation 0.735 (0.618, 0.851) 0.721 0.690 0.769 0.829 0.606 0.014#

Test 0.720 (0.572, 0.867) 0.735 0.923 0.522 0.686 0.857 0.046^

DLR Training 0.894 (0.843, 0.945) 0.842 0.914 0.698 0.857 0.804 0.044*
Validation 0.823 (0.726, 0.921) 0.765 0.643 0.962 0.964 0.625 0.372#

Test 0.799 (0.674, 0.914) 0.653 0.846 0.435 0.629 0.714 0.365^

CDLR Training 0.940 (0.906, 0.974) 0.854 0.848 0.868 0.927 0.742
Validation 0.851 (0.761, 0.941) 0.794 0.690 0.962 0.967 0.658
Test 0.834 (0.721, 0.948) 0.755 0.808 0.696 0.750 0.762

Radiologist A Validation 0.744 (0.634, 0.853) 0.765 0.833 0.654 0.795 0.708 0.122#

Test 0.730 (0.604, 0.856) 0.735 0.808 0.652 0.724 0.750 0.240^

Radiologist B Validatin 0.755 (0.648, 0.863) 0.779 0.857 0.654 0.800 0.739 0.182#

Test 0.754 (0.631, 0.878) 0.755 0.769 0.739 0.769 0.739 0.373^

Fig. 7  Confusion matrix of different models; a–c confusion matrix of 
the clinical, DLR, and CDLR models in the validation cohort for pre-
dicting testicular tumors; d–f confusion matrix of the clinical, DLR, 

and CDLR models in the validation cohort for predicting testicular 
carcinoma. DLR deep learning radiomics; CDLR clinical deep learn-
ing radiomics
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and help clinicians in making tailored decisions, ultimately 
cutting down on unnecessary medical procedures.

Correctly diagnosing testicular masses is vital, as treat-
ments range from conservative measures to radical surgery. 
Overlooking a testicular malignancy diagnosis can cause 
treatment delays and poorer outcomes. For patients with 
benign testicular tumors, partial orchiectomy can conserve 
testicular function (Fankhauser et al. 2021; Paffenholz et al. 
2018; Gentile et  al. 2020; Sm et al. 2023). Conversely, 
unneeded surgical resections for those with non-neoplastic 
testicular lesions can adversely affect androgen levels, sex-
ual function, fertility, among others (Henriques et al. 2022; 
Kerie et al. 2021). Hence, it’s paramount to study and ascer-
tain the nature of testicular masses to minimize unnecessary 
surgeries and reduce missed diagnoses of malignancies. To 
our understanding, we are the first research team to devise 
and authenticate CDLR nomograms to predict testicular 
mass risk stratification, targeting the identification of neo-
plastic lesions and malignancies.

Radiomics is a burgeoning non-invasive diagnostic 
method in medical imaging, which focuses on extracting a 
plethora of quantitative traits from comprehensive medical 
image data and leveraging this for diagnosis and forecasting. 
This approach is renowned for its objectivity, non-invasive-
ness, and data-mining capabilities, marking its potential in 
tumor diagnosis and treatment (Lambin et al. 2012; Guiot 
et al. 2022). DL is a formidable method in image analysis, 
facilitating the derivation of profound insights from image 
datasets. In our research, we employed deep transfer learn-
ing to draw DL attributes and merged them with radiomics 
traits to determine the nature of the masses. When predicting 
neoplastic lesions and malignant tumors, DL features stood 
out in terms of volume and significance among the chosen 
attributes. This observation underscores that DL technology 

can adeptly pinpoint key quantitative data mirroring the 
nature of the masses, thus becoming an indispensable tool 
for precise diagnoses.

Prior research has identified a link between pain and non-
neoplastic lesions, with angiogenesis detected via color Dop-
pler ultrasound emerging as a vital independent risk factor 
for malignancy (Liu et al. 2023). Tumor markers like AFP 
and β-HCG are instrumental in pinpointing testicular tumors 
(Esen et al. 2018). Our results concur with these findings; 
we recognized asymptomatic scrotal conditions and elevated 
serum AFP or β-HCG levels as standalone predictors of tes-
ticular tumors. Moreover, we identified asymptomatic scro-
tal conditions, increased serum AFP or β-HCG levels, and 
distinct blood flow signals via color Doppler ultrasound as 
independent predictors of testicular malignancy. Neverthe-
less, the accuracy of conventional ultrasound diagnosis for 
testicular tumors needs enhancement, currently hovering 
around 76.9% (Lung et al. 2020; Andipa et al. 2004). While 
contrast-enhanced ultrasound (CEUS) is a newer imaging 
modality, standard ultrasonography remains the go-to for 
diagnosing testicular masses (Schröder et al. 2016). The con-
straints of CEUS—such as the need for specialized exper-
tise, higher costs, limited access, and potential contraindica-
tions linked to ultrasound contrast agents—have curbed its 
broad clinical adoption (Liu et al. 2017). In our research, 
the CDLR attained a commendable accuracy of 88.2%. Past 
studies emphasized the difficulty in differentiating benign 
from malignant testicular masses using only conventional 
ultrasound (Andiap et al. 2004). Fan et al. leveraged mag-
netic resonance imaging (MRI) volumetric apparent diffu-
sion coefficient histogram analysis, attaining an AUC of 
0.822 (Fan et al. 2020). They then integrated MRI imaging 
with machine learning, producing a prediction model for 
testicular masses with an AUC of 0.868 (Fan et al. 2022). 

Fig. 8  Convolutional neu-
ral network activation maps 
used for identifying testicular 
non-neoplastic lesions, benign 
tumors, and malignant tumors. 
The red regions on these maps 
highlight areas that correlate 
with the nature of the mass
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The enhanced performance in these studies might stem from 
the extraction of richer features in the radiomics model. Yet, 
MRI comes with challenges: it’s less sensitive to calcifi-
cations, has patient contraindications, is costlier, and has 
extended examination durations. Our CDLR, showcasing an 
AUC of 0.851 and an accuracy rate of 79.4%, underlines its 
significant advantages and potential in this arena.

In this study, the standalone DLR showcased superior 
performance compared to the clinical model, highlighting 
the importance of using deep image information from radi-
omics and DL to discern the features of testicular masses. 
When combined with clinical data, the CDLR displayed 
better predictive capabilities, surpassing even radiologists 
with 5–8 years of experience. This breakthrough can assist 
radiologists in precisely identifying testicular tumors and 
malignancies.

However, this study has some limitations. Firstly, as a ret-
rospective study, selection bias and errors are unavoidable. 
For instance, if ultrasound examinations are conducted by 
different doctors, subjective errors might arise when select-
ing the maximum diameter section of the tumor. Secondly, 
while our study combines clinical characteristics, imag-
ing, and modeling of radiomics and DL features, it doesn’t 
include other imaging techniques such as contrast-enhanced 
ultrasound and elastography for comparison or multi-modal 
fusion. Lastly, defining the ROI boundary might introduce 
researcher subjectivity. We anticipate using DL technology 
for automatic identification and delineation of ROI in the 
future, and we plan on conducting prospective, multicenter 
studies to further validate our proposed model.

Conclusion

The clinical-deep learning ultrasound radiomics nomogram 
introduced in this study produced encouraging results in 
predicting testicular tumors and malignancies. It even out-
performed radiologists with between 3 and 8 years of profes-
sional experience. This is crucial for early patient diagnosis, 
treatment planning, and surgical method decision-making. 
It can help prevent unnecessary testicle removal or damage 
to testicular function from excessive medical intervention, 
providing solid backing for achieving precise tumor treat-
ment goals.
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