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Abstract
Purpose  To assess the performance of radiomics-based analysis of contrast-enhanced computerized tomography (CE-CT) 
images for distinguishing GS from gastric GIST.
Methods  Forty-nine patients with GS and two hundred fifty-three with GIST were enrolled in this retrospective study. CT fea-
tures were evaluated by two associate chief radiologists. Radiomics features were extracted from portal venous phase images 
using Pyradiomics software. A non-radiomics dataset (combination of clinical characteristics and radiologist-determined 
CT features) and a radiomics dataset were used to build stepwise logistic regression and least absolute shrinkage and selec-
tion operator (LASSO) logistic regression models, respectively. Model performance was evaluated according to sensitivity, 
specificity, accuracy, and receiver operating characteristic (ROC) curve, and Delong’s test was applied to compare the area 
under the curve (AUC) between different models.
Results  A total of 1223 radiomics features were extracted from portal venous phase images. After reducing dimensions by 
calculating Pearson correlation coefficients (PCCs), 20 radiomics features, 20 clinical characteristics + CT features were 
used to build the models, respectively. The AUC values for the models using radiomics features and those using clinical 
features were more than 0.900 for both the training and validation groups. There were no significant differences in predictive 
performance between the radiomic and clinical data models according to Delong’s test.
Conclusion  A radiomics-based model applied to CE-CT images showed comparable predictive performance to senior physi-
cians in the differentiation of GS from GIST.
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Abbreviations
AUC​	� Area under the curve
CE-CT	� Contrast-enhanced computed 

tomography
CTU/CTA/CTV	� The CT attenuation value in unen-

hanced phase, arterial phase, and portal 
venous phase

DEAP/DEPP	� Degree of enhancement on arterial 
phase and portal venous phase

GIST	� Gastrointestinal stromal tumor
GLCM	� Gray level co-occurrence matrix
GLDM	� Gray level dependence matrix
GLRLM	� Gray level run length matrix
GLSZM	� Gray level size zone matrix
GS	� Gastric schwannoma
ICC	� Inter-and intra-class correlation 

coefficient
LASSO	� Least absolute shrinkage and selection 

operator
LD	� Long diameter
LD/SD	� Ratio of long diameter to short diameter
LN	� Lymph node
NGTDM	� Neighboring gray tone difference matri-

ces matrix
ROI	� Region of interest
PCC	� Pearson correlation coefficient
ROC	� Receiver operating characteristics
SD	� Short diameter

Introduction

Gastric schwannoma (GS) is usually a benign, neurogenic, 
and mesenchymal neoplasm derived from the Schwann 
cells of the Auerbachs nerve plexus, with an incidence 
rate of 2–17% (Choi et al. 2012). Gastric gastrointestinal 
tumors (GISTs) originating from the interstitial cells of 
Cajal have the highest incidence rate among mesenchymal 
tumors, accounting for 60–70% of occurrences (Gao et al. 
2017; Tsuboi et al. 2021). GSs and GISTs share a similar 
affected population, clinical symptoms, and even computed 
tomography (CT) imaging characteristics, particularly in 
large (> 5 cm) tumors (Hong et al. 2008; Ji et al. 2015; Levy 
et al. 2003; Wang et al. 2019a, b). However, the treatment 
strategies and prognoses for these two tumors differ sub-
stantially. GS, which is almost always a benign tumor, has 
an excellent prognosis after surgery (Cai et al. 2016). By 
contrast, GISTs appear potentially malignant and require 
complete excision. Furthermore, high-risk GISTs should 
receive imatinib treatment as adjuvant or neoadjuvant ther-
apy (Casali et al. 2022; Li et al. 2017). It is of great clinical 

significance to accurately distinguish these two tumors 
preoperatively.

Numerous studies on the identification of GISTs and GSs 
on contrast-enhanced (CE)-CT images have been reported 
(Choi et al. 2012, 2014; He et al. 2017; Liu et al. 2017; Wang 
et al. 2021; Xu et al. 2022). We previously evaluated five 
machine learning models to identify the two tumor types on 
CT image analysis and found that logistic regression classi-
fication with six CT features provided the best differentiation 
of GSs from GISTs, with a diagnostic efficiency greater than 
traditional multivariate analysis (Wang et al. 2021). Never-
theless, although the abovementioned studies were of value 
in distinguishing the two kinds of tumors, they all focused 
on conventional image features recognized by the naked eye 
and lacked radiomics analysis, thereby relying heavily on the 
observer’s professional level.

Radiomics features of tumors, which are related to the 
histopathology and physiology of tumors, can quantita-
tively and objectively evaluate tumor heterogeneity (Liu 
et al. 2019). Compared with traditional image evaluation, 
radiomics features can more comprehensively, objectively, 
and accurately reflect the nature of a lesion, and permit the 
establishment of a radiomics database for in-depth quanti-
tative research (Gillies et al. 2016). Radiomics-based anal-
ysis has been widely applied to various diseases including 
the differentiation of benign and malignant lung nodules 
(Zhuo et al. 2021), classification of liver lesions (Wei et al. 
2020), gastric cancer staging (Wang et al. 2020; Liu et al. 
2020), determination of malignancy (Zhang et al. 2020; 
Chen et al. 2019, 2021; Wang et al. 2019a), recurrence (Ao 
et al. 2021), and Ki-67 expression prediction (Feng et al. 
2022) of GISTs.

In this study, CT radiomics features together with clinical 
data and conventional image features were used to build two 
kinds of models to distinguish GSs from GISTs: a stepwise 
logistic regression model and a least absolute shrinkage and 
selection operator (LASSO) logistic regression model.

Methods

Patients

This retrospective study received institutional review board 
and ethics committee approval from Tongde Hospital of 
Zhejiang Province (Approval No. 2021-040) and informed 
consent was waived by the ethics review boards. Patients 
from two centers (Center 1: Tongde Hospital of Zhejiang 
Province, Center 2: Sir Run Run Shaw Hospital) with either 
of the two tumor types between January 2015 and August 
2022 were identified. The inclusion criteria were: (1) opera-
tion-confirmed diagnosis of solitary GIST or schwannoma of 
the stomach; (2) available detailed clinical data and CE-CT 
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images (with unenhanced, arterial, and portal phases); (3) 
an interval time within 15 days between CT imaging and 
surgery; and (4) a lesion larger than 1 cm and smaller than 
10 cm in the long diameter. The exclusion criteria were as 
follows: (1) lack of CT scan or uncompleted CT data; (2) 
unavailable clinical data; (3) an interval time more than 
15 days between CT scan and surgery; (4) the lesion smaller 
than 1 cm or larger than 10 cm in the long diameter; and (5) 
multiple lesions. Process of the patients enrolling is shown 
in Fig. 1. The final study series consisted of 49 patients with 
GS (16 men and 33 women; mean age, 56.51 ± 10.34 years) 
and 253 patients with GIST (131 men and 122 women; 
mean age, 59.56 ± 11.64 years). From these, 211 patients 
from Center 1 were assigned to a training cohort and 91 
patients from Center 2 to a validation cohort. The data for 
each patient included non-radiomics dataset (consisting of 

clinical baseline characteristics and CT features) and radi-
omics dataset.

CT scan protocols

All patients were requested to drink 800–1000 mL of water 
on an empty stomach to attain sufficient gastric distension 
before CT examination. Two 64-slice spiral CT scanners 
(Siemens Healthineers, Forchheim, Germany; or Philips 
Medical Systems, Cleveland, OH, USA) were used for the 
abdominal CE-CT examinations. The CT parameters were: 
tube voltage, 120 kV; tube current, 150–250 mA; tube rota-
tion time, 0.5 s; detector collimation, 64 × 0.625 mm; field 
of view, 350 × 350 mm; section thickness, 5 mm; and recon-
struction interval, 1–1.5 mm. After a routine unenhanced 
scan, contrast material was injected at a dose of 1.0 mL/kg 

Fig. 1   Process of the patients enrolling
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body weight at a rate of 3–4 mL/s, and arterial and portal 
venous phase imaging were acquired at 30–40 s and 60–70 s 
after injection.

Image analysis

All CT images were independently retrospectively reviewed 
and evaluated by two associate chief radiologists (Radiologist 
1 with 13 and Radiologist 2 with 15 years of experience in 
abdominal imaging). The two physicians were blinded to the 
surgical and pathological data of each patient, and the final 
conclusions were achieved through consensus decisions. The 
evaluated CT features consisted of qualitative and quantitative 
variables. Qualitative variables included location (cardia, fun-
dus, body, or antrum), grow pattern (endophytic, exophytic, 
or mixed), contour (round, oval, or irregular), necrosis, cal-
cification, surface ulceration, lymph node (LN), hemorrhage, 
peritumoral exudation, necrosis under the tumor wall, and 
intratumoral vessel. Quantitative variables included the CT 
attenuation value on unenhanced phase (CTU), arterial phase 
(CTA), and portal venous phase (CTV) imaging, the degree of 
enhancement on arterial phase (DEAP; DEAP = CTA – CTU) 
and portal venous phase (DEPP; DEPP = CTV − CTU) imag-
ing, long diameter (LD), short diameter (SD), and the ratio of 
long diameter to short diameter (LD/SD). Lymph node was 
defined as positive when the short diameter of the lymph node 
was larger than 10 mm.

Image preprocessing

Before image segmentation and feature extraction, it is nec-
essary to preprocess images to reduce the data heterogene-
ity collected by different CT devices. First, the voxel size 
should be resampled to 1 × 1 × 1 mm3, and the anisotropic 
images should be homogenized to minimize the dependence 
of radiomics features on the image voxel size. The voxel 

intensity values were discretized using a fixed bin width of 
25 HU with the aim of reducing image noise and standardiz-
ing the intensity to achieve a stable intensity resolution in all 
images. The images were normalized and the signal intensity 
was normalized to 1 to 500 HU to reduce the difference in 
signal intensity of images acquired by different machines. Z 
score was used to standardize the image gray value to reduce 
the influence of the inconsistency of image parameters on 
the variation of radiomics features.

Image segmentation and radiomics feature 
extraction

Figure 2 depicts the workflow of this study. Open-source 
ITK-SNAP software (version 2.2.0; http://​www.​itk-​snap.​
org) was used for image segmentation. Portal venous phase 
images were used for image segmentation in this study since 
the portal venous phase had a better performance than unen-
hanced and arterial phases in identifying the lesion from the 
surrounding normal tissue. Region of interests (ROIs) were 
drawn manually along the margin of tumors in a slice-by-
slice manner by two radiologists (with 2 and 4 years of expe-
rience in abdominal imaging). The radiomics characteristics 
were then extracted using Pyradiomics (version 3.0.0; http://​
www.​radio​mics.​io/​pyrad​iomics.​html).

A total of 1223 radiomics features were extracted from 
the tumor region of interests (ROIs) drawn on the portal 
venous phase imaging: (1) 19 first-order features; (2) 26 
size- and shape-related features; (3) 24 Gy level co-occur-
rence matrix (GLCM) features; (4) 14 Gy level depend-
ence matrix (GLDM) features; (5) 16 Gy level run length 
matrix (GLRLM) features; (6) 16 Gy level size zone matrix 
(GLSZM) features; (7) 5 neighboring gray tone difference 
matrix (NGTDM) features; and (8) 1103 features after trans-
formations including square, square root, exponential, loga-
rithm, wavelet, and Laplacian of Gaussian.

Fig. 2   Flow diagram of this study. CT images were segmented on 
portal venous phase images. After preprocessing and feature selec-
tion, radiomics features, or clinical characteristics and CT features, 

were used to construct stepwise logistic regression and least absolute 
shrinkage and selection operator (LASSO) logistic regression models 
for differentiation of GSs from GISTs

http://www.itk-snap.org
http://www.itk-snap.org
http://www.radiomics.io/pyradiomics.html
http://www.radiomics.io/pyradiomics.html
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To assess inter- and intra-observer reproducibility, 40 
ROIs of 2 tumors delineated by 2 radiologists were cho-
sen at random. Inter- and intra-class correlation coefficients 
(ICCs) were used to evaluate the stability and reproducibil-
ity in radiomics feature extraction. The intra-observer ICCs 
were calculated based on the twice feature extractions by one 
radiologist. The inter-observer ICCs were evaluated based 
on the first extracted features by one radiologist and those by 
another radiologist. The feature with ICC > 0.75 was deemed 
to have a good repeatability or reproducibility. After inter- 
and intra-observer analyses, a total of 968 features with 
ICC > 0.75 were applied for subsequent feature selection.

Feature selection and model building

First, feature dimensionality reduction was performed before 
model building. The Pearson correlation coefficient (PCC) 
between two features was calculated for each pair of fea-
tures in the non-radiomics and radiomics datasets. These two 
features were considered to be highly correlated if the PCC 
larger than 0.8, and one of them was selected for deletion. 
Then we calculated the PCCs between features and response 
variables (GSs or GISTs) and selected the 20 features with 
the largest PCCs.

These 20 features selected from the clinical and radiom-
ics features were used to build 2 kinds of models: a stepwise 
logistic regression model and a LASSO-logistic regression 
model. The two models were constructed using data from 
the training dataset and were tested using the test dataset.

Stepwise logistic regression

Logistic regression models were plotted using the R package 
“glm”. Initially, all 20 variables were input into the model 
and the variables with the largest p value were eliminated 
in each cycle, with the variables with p values less than 0.1 
being continually entered into the univariate analysis until 
the variables no longer changed.

LASSO‑logistic regression

The LASSO algorithm was applied with the R package 
“glmnet”. The most useful predictive features were selected 
using the LASSO method. Briefly, the optimized hyper-
parameter λ was determined using tenfold cross-validation 
via the minimum criteria. Then the features with non-zero 
coefficients were selected based on the determined optimal 
λ.

Statistical analysis  All statistical analyses were performed 
using R software (version 3.6.3; http://​www.​Rproj​ect.​
org). Continuous variables are presented as mean ± stand-
ard deviation. Student’s t test or the Mann–Whitney U test 

was used to compare continuous variables. Categorical 
variables are expressed as frequency (percentage) and were 
analyzed using the Chi-square or Fisher’s exact test. Sen-
sitivity, specificity, and accuracy were calculated using the 
‘caret’ package in R. ROC curve analysis was performed 
with the ‘pROC’ package to evaluate the diagnostic efficacy 
of the models. Delong’s test was used to compare the AUC 
values between the different methods. A two-sided p value 
of < 0.05 was considered statistically significant.

Results

Clinical baseline characteristics and CT findings

Two hundred forty-three patients with tumors (forty-three 
GSs and two hundred GISTs) from Center 1 and fifty-nine 
patients with tumors (six GSs and fifty-threeGISTs) from 
Center 2 were included in our series. The clinical baseline 
characteristics and CT findings of the 302 patients in the 
training (n = 211) and validation (n = 91) cohorts are listed 
in Table 1. For both training and validation sets, the num-
ber of underlying diseases, lesion location, necrosis, and 
necrosis under the tumor wall were significant variables in 
the univariate analysis between the two tumor types, while 
growth pattern was significantly different in the training 
cohort. Although patients with GIST were older than those 
with GS both in training and validation cohorts, the differ-
ences were not statistically significant. There were no sig-
nificant differences in any of the clinical and CT parameters 
between the two datasets (all p > 0.05), which indicates that 
the patient allocation to the two datasets was well balanced. 
The detailed results are summarized in Table 1.

Feature selection and model building

The clinical features, CT features, and radiomics features 
were reduced in dimension by eliminating those features 
with PCC values of more than 0.8 with another feature. The 
PCC values (between features and GSs) in the 235 remaining 
radiomics features and 24 clinical characteristics and CT fea-
tures were then calculated, and the 20 features with the larg-
est PCC values were selected. The 20 features selected in the 
2 datasets are shown in Fig. 3. Among the selected radiomics 
features, wavelet-LLH_glcm_ClusterTendency had the larg-
est PCC, and wavelet-LLL_glszm_LargeAreaEmphasis the 
smallest PCC. Among the clinical features, LD/SD showed 
the largest PCC and tumor marker the lowest PCC.

Stepwise logistic regression model

Table 2 presents the five radiomics features (and their coef-
ficients) with p < 0.05 selected from the training dataset 

http://www.Rproject.org
http://www.Rproject.org
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according to the stepwise logistic regression model. These 
features included one from size- and shape-related features, 
two from GLSZM, and one from GLCM. The wavelet-LHH_
firstorder_10Percentile with the largest β (SE) value (11.9554) 
increased the likelihood of GSs diagnosis rather than GISTs. 
However, MaxAreaLD/SD with a β (SE) value of -20.6713 
provided the greatest contribution to the prediction of GIST.

Six clinical and CT features (sex, LD/SD, location, 
growth pattern, necrosis, and underlying disease) were 
selected by the stepwise logistic regression model, as shown 
in Table 3. A location in the body and antrum had the high-
est association with a diagnosis of GS, while a large LD/SD 
value was most associated with a finding of GIST.

The equation for calculating the probability of GS in the 
stepwise logistic regression model for radiomics features 
was:

where  

probability =
1

1 + e−t
t = 9.976 − 20.6713 ∗ MaxAreaLD∕SD

− 12.4327∗ wavelet

− LLH_glszm_GrayLevelNonUniformityNormalized

− 8.747 ∗ wavelet − LHL_glcm_Idm

+ 11.9554*wavelet − LHH_firstorder_10Percentile

+ 7.5111 ∗ squareroot_glszm_LargeAreaEmphasis

Table 1   Clinical baseline characteristics and CT findings in training and validation cohorts

GIST gastrointestinal stromal tumor; GS gastric schwannoma; CTU/CTA/CTV the CT attenuation value of unenhancement phase/arterial phase/
portal venous phase; DEAP the CT attenuation value of arterial phase-unenhanced phase; DEPP CT attenuation value of portal venous phase-
unenhanced phase; LD long diameter; SD short diameter
P1 valuea: comparison of GSs and GISTs in training cohort
P2 valueb: comparison of GSs and GISTs in validation cohort
P3 valuec: comparison of patients in training cohort and patients in validation cohort
P value written in bold indicates a significant difference

Training cohort(n = 211) Validation cohort (n91)

GS(n = 34) GIST(n = 177) P1 valuea GS(n = 15) GIST(n = 76) P2 valueb P3 valuec

Clinical characteristics
 Gender (male/female) (11/23) (91/86) 0.042 (5/10) (40/36) 0.259 0.900
 Age (Mean ± SD) 56.38 ± 10.05 59.70 ± 11.89 0.129 56.80 ± 11.32 59.22 ± 11.12 0.444 0.813
 Symptom (17/59) (17/118) 0.079 (6/9) (53/23) 0.039 0.968
 Tumor makers (8/46) (26/131) 0.833 (4/11) (20/56) 1.000 1.000
 Number of underling disease s(0/1/2/ ≥ 3) (28/4/2/0) (106/46/18/7) 0.002 (12/3/0/0) (43/23/8/2) 0.004 0.546

CT features
 Location (cardia/fundus/body/antrum) (0/2/20/12) (6/57/97/17) 0.000 (0/0/11/4) (3/25/42/6) 0.009 0.911
 Growth pattern (endophytic/ exophytic/

mixed)
(4/18/12) (66/67/44) 0.015 (3/7/5) (30/33/13) 0.209 0.466

 Contour (round/oval/irregular) (9/16/16) (51/46/80) 0.064 (7/6/2) (30/16/30) 0.092 0.307
 Necrosis (yes/no) (3/31) (95/82) 0.000 (1/14) (33/43) 0.000 0.802
 Calcification (yes/no) (0/34) (28/149) 0.027 (0/15) (13/63) 0.185 0.855
 Surface ulceration (yes/no) (3/31) (37/140) 0.149 (2/13) (16/60) 0.740 0.874
 LN (yes/no) (6/28) (15/162) 0.186 (2/13) (6/70) 0.614 0.834
 Hemorrhage (yes/no) (0/34) (2/175) 1.000 (0/15) (1/75) 1.000 1.000
 Peritumoral exudation (yes/no) (0/34) (5/172) 1.000 (0/15) (1/75) 1.000 0.782
 Necrosis under the tumor wall (yes/no) (2/32) (69/108) 0.000 (2/13) (29/47) 0.017 1.000

Intratumoral vessel (yes/no) (5/29) (35/142) 0.635 (2/32) (16/60) 0.740 0.874
 CTU(HU) 34.80 ± 5.00 34.40 ± 7.10 0.755 32.33 ± 4.34 35.43 ± 8.70 0.183 0.619
 CTA(HU) 56.47 ± 12.85 58.51 ± 17.31 0.514 55.71 ± 13.94 57.37 ± 13.10 0.672 0.270
 CTV(HU) 71.20 ± 15.63 71.90 ± 18.10 0.826 68.45 ± 17.85 75.04 ± 13.31 0.179 0.307
 DEAP(HU) 21.67 ± 10.80 24.11 ± 16.61 0.278 20.28 ± 12.48 25.05 ± 12.05 0.178 0.158
 DEPP(HU) 36.38 ± 14.39 37.51 ± 18.41 0.735 33.03 ± 17.57 42.71 ± 11.37 0.054 0.221
 LD (mm) 28.79 ± 13.74 44.83 ± 34.94 0.000 24.40 ± 10.83 50.87 ± 40.60 0.000 0.346
 SD (mm) 28.50 ± 12.23 35.26 ± 24.42 0.000 25.67 ± 13.32 37.80 ± 28.41 0.015 0.594
 LD/SD 1.02 ± 0.21 1.26 ± 0.25 0.000 1.00 ± 0.18 1.28 ± 0.24 0.000 0.813
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For the non-radiomics dataset, the equation for calculat-
ing the probability of GS was

probability =
1

1 + e - t

Where

LASSO‑logistic regression model

The results of the LASSO-logistic regression using features 
from non-radiomics dataset or radiomics dataset are sum-
marized in Tables 4 and 5 and Fig. 4. The LASSO method 
selected nine radiomics features and eight clinical and 
CT features for input into the regression algorithm. High 
MaxAreaLD/SD and LD/SD yielded the largest coefficients 
supporting the identification of GISTs in the two datasets. 
Supplemental Table S1 presents the five selected radiomics 
features with p < 0.05 and compares them between GSs and 
GISTs in the training dataset.

The probability of GS according to the radiomics datasets 
was equal to

t = −1.5608 − 1.1934 ∗ Sex − 8.3933 ∗
LD

SD

+ 5.1244 ∗ Location + 2.1954 ∗ Growthpattern

− 2.7189 ∗ Necrosis − 5.1407 ∗ Underlyingdisease

Fig. 3   Feature selection by calculation of the Pearson correlation coefficients (PCCs) before model building. The 20 features with the largest 
PCC were selected as input indexes to build models using features from non-radiomics dataset (A) and radiomics dataset (B)

Table 2   The selected features 
and relevant coefficients of the 
stepwise logistic regression 
model in radiomics dataset

P value written in bold indicates a significant difference

Variate β (SE) β(SE)[0.025 0.975] P value

Constant 9.976 3.728 16.224 0.002
MaxAreaLD/SD − 20.6713 − 28.626 − 12.717 0.000
Wavelet-LLH_glszm_
GrayLevelNonUniformityNormalized

− 12.4327 − 19.886 − 4.979 0.001

wavelet-LHL_glcm_Idm − 8.747 − 14.74 − 2.754 0.004
wavelet-LHH_firstorder_10Percentile 11.9554 6.996 16.915 0.000
squareroot_glszm_LargeAreaEmphasis 7.5111 3.151 11.871 0.001

Table 3   The selected features and relevant coefficients of the Step-
wise Logistic Regression model in non-radiomic dataset

LD: long diameter; SD: short diameter
P value written in bold indicates a significant difference

Variate β (SE) β(SE)[0.025 0.975] P value

Constant − 1.5608 − 4.398 1.276 0.281
Sex − 1.1934 − 2.343 − 0.044 0.042
LD/SD − 8.3933 − 14.564 − 2.223 0.008
Location 5.1244 1.993 8.256 0.001
Growth pattern 2.1954 0.704 3.687 0.004
Necrosis − 2.7189 − 4.11 − 1.328 0.000
Underlying disease − 5.1407 − 8.399 − 1.883 0.002
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where

probability =
1

1 + e−t

t = 8.5564 − 17.0994 ∗ MaxAreaLD/SD

−0.8538 ∗ wavelet-LHL_glcm_ClusterTendency

−3.8902 ∗ wavelet-LHL_glcm_Idm

+5.6835 ∗ wavelet-LHH_firstorder_10Percentile

−3.2946 ∗ square_glcm_Imc1

+3.886 ∗ squareroot_glszm_LargeAreaEmphasis

−1.238 ∗ logarithm_firstorder_RobustMeanAbsoluteDeviation

−2.8064*logarithm_glrlm_ShortRunLowGrayLevelEmphasis

+1.4232 ∗ logarithm_glszm_LargeAreaLowGrayLevelEmphasis

For the non-radiomics dataset, the equation for the prob-
ability of GS was

Diagnostic performance analysis

The diagnostic efficacy of the two radiomics feature models 
in the training and validation sets is summarized in Table 6. 
The stepwise logistic regression model applied to the train-
ing dataset yielded sensitivity, specificity, accuracy, and AUC 
of 94.1%, 85.3%, 86.7%, and 0.955, respectively, whereas the 

probability =
1

1 + e - t

t = − 1.6349 − 1.3814 * Sex − 8.0618 * LD/SD

+ 5.2375 * Location + 2.0087 ∗ Growth pattern

− 1.9847 * Necrosis + 1.9776 * LN

− 1.5074 * Necrosis under the tumor wall

− 5.2904 * Underlying disease

Table 4   The selected features 
and relevant coefficients of 
LASSO-logistic regression 
model in radiomics dataset

P value written in bold indicates a significant difference

Variate β (SE) β(SE)[0.025 0.975] P value

Constant 8.5564 − 0.725 17.838 0.071
MaxAreaLD/SD − 17.0994 − 24.064 − 10.135 0.000
wavelet-LHL_glcm_ClusterTendency − 0.8538 − 6.172 4.465 0.753
wavelet-LHL_glcm_Idm − 3.8902 − 12.601 4.82 0.381
wavelet-LHH_firstorder_10Percentile 5.6835 2.267 9.1 0.001
square_glcm_Imc1 − 3.2946 − 10.537 3.948 0.373
squareroot_glszm_LargeAreaEmphasis 3.886 0.014 7.758 0.049
logarithm_firstorder_RobustMeanAbsoluteDeviation − 1.238 − 7.659 5.183 0.706
logarithm_glrlm_ShortRunLowGrayLevel Emphasis − 2.8064 − 9.113 3.5 0.383
logarithm_glszm_LargeAreaLowGrayLevelEmphasis 1.4232 − 3.513 6.359 0.572

Table 5   The selected features and relevant coefficients of LASSO-
logistic regression in non-radiomics dataset

LD/SD: the ratio of long diameter to short diameter; LN: lymph node
P value written in bold indicates a significant difference

Variate β (SE) β(SE)[0.025 0.975] P value

Constant − 1.6349 − 4.569 1.299 0.275
Sex − 1.3814 − 2.613 − 0.149 0.028
LD/SD − 8.0618 − 14.016 − 2.108 0.008
Location 5.2375 2.028 8.447 0.001
Growth pattern 2.0087 0.489 3.529 0.010
Necrosis − 1.9847 − 3.893 − 0.077 0.041
LN 1.9776 − 0.094 4.049 0.061
Necrosis under the 

tumor wall
− 1.5074 − 3.805 0.79 0.199

Underlying disease − 5.2904 − 8.755 − 1.826 0.003
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LASSO-logistic regression model yielded sensitivity, specific-
ity, accuracy, and AUC of 91.2%, 84.7%, 85.8%, and 0.941. 
Supplemental Table S2 shows the diagnostic performance 

results for the features from non-radiomics dataset. The ROC 
curves of the two models applied to the training and validation 
datasets are plotted in Fig. 5. We found that the AUC values 

Fig. 4   Feature selection via LASSO-logistic regression. Radiomics 
feature selection (A, B). Selection of the tuning parameter (λ) using 
tenfold cross-validation and a minimum criterion. A λ value of 0.011 
with log (λ) =  − 4.50 was selected. A coefficient profile is plotted 
against the log (λ) sequence using tenfold cross-validation. A verti-

cal line is drawn at the value selected, which resulted in ten non-zero 
coefficients. Clinical and CT features selection (C, D). The optimal λ 
value of 0.037 with log (λ) =  − 3.31 was retained using tenfold cross-
validation. Eight non-zero coefficients were selected finally
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Table 6   The diagnostic 
performance analysis in 
radiomics dataset

AUC: area under the curve

Cohort Model Sensitivity (%) Specificity (%) Accuracy (%) AUC​

Training(n = 211) Stepwise logistic regression 94.1 85.3 86.7 0.955
LASSO-logistic regression 91.2 84.7 85.8 0.941

Validation(n = 91) Stepwise logistic regression 93.0 71.1 75.8 0.901
LASSO-logistic regression 95.6 71.1 72.8 0.917

Fig. 5   Receiver operating characteristic (ROC) curves of two models for differentiating GS and GIST. All the AUCs of the two models using 
features from radiomics dataset (A, B) and non-radiomics dataset (C, D) were above 0.900
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of the two kinds of models were larger than 0.900 for both 
datasets.

Delong’s test analysis

Delong’s test was independently implemented in the train-
ing and validation datasets. We compared the diagnostic 
efficiency differences between the two data sets within the 
same model (stepwise logistic regression or LASSO-logis-
tic regression). Table 7 presents the Delong’s test analysis 
results. There were no significant differences in predic-
tive performance between features from non-radiomics and 
radiomics datasets, regardless of which model was used 
(all p > 0.05).

Supplemental Tables S3 and S4 separately summarize 
the Delong’s test results between the stepwise logistic 
regression model and LASSO-logistic regression model 
in the two datasets.

Discussion

While a number of studies have investigated the differentia-
tion of GSs from gastric stromal tumors using CT images, 
we believe this study is the first attempt to apply radiomics 
to this problem. In our study, 211 patients with either GISTs 
or GSs from Center 1 were assigned to training cohort and 
91 patients from Center 2 to validation cohort. Univariate 
analysis showed that the clinical and CT parameters were 
well balanced between the two cohorts.

In our study, 1223 extracted radiomics features and 24 
clinical and CT characteristics were used to build stepwise 
logistic regression and LASSO-logistic regression models. 
A total of eight models using two kinds of algorithms were 
developed, and the AUC values attained were above 0.9 for 
both datasets with both radiomics features and clinical and 
CT features. Although a Delong’s test revealed no signifi-
cant differences in predictive performance between the non-
radiomics dataset and radiomics dataset, we still suggest that 

the radiomics-based model shows promise, with comparable 
predictive performance to senior physicians in the differen-
tiation of GS from GIST.

Five radiomics features were selected by the stepwise 
logistic regression model as useful parameters to differenti-
ate GS from GIST, and three of these features were picked 
in the LASSO-logistic regression.

MaxAreaLD/SD is a shape-based feature, equal to the 
ratio of the major axis length to the least axis length, which 
is similar to the LD/SD feature manually extracted from the 
CT imaging. In this study, the MaxAreaLD/SD and LD/SD 
values were higher for GISTs than for GSs. High MaxAre-
aLD/SD from the radiomics features and LD/SD clinical val-
ues were of greater benefit to identification of GISTs rather 
than GSs, which reveals that GISTs, as a potentially malig-
nant entity, tended to grow at different rates in all directions 
and had a more irregular shape than GSs.

The features wavelet-LLH_glszm_GrayLevelNonU-
niformityNormalized, wavelet-LHL_glcm_Idm, and 
wavelet-LHH_firstorder_10Percentile are wavelet texture 
features. Wavelet features are high-order features that 
not only reflect the distribution characteristics of space 
and frequency, but also reflect the heterogeneity of the 
tumor’s microenvironment, and they are known to improve 
the diagnostic performance of radiomics models (Zhou 
et al. 2020). GrayLevelNonUniformityNormalized and 
glszm_LargeAreaEmphasis are both GLSZM character-
istics. GLSZM features are used to calculate the number 
of connections of voxels with the same gray value in the 
image. Wavelet_HHL_glszm_GrayLevelNonUniformity 
refers to the non-uniformity of the gray levels; the lower 
the value is, the more uniform the gray level and the lower 
the heterogeneity of the image. GSs showed lower wave-
let_HHL_glszm_GrayLevelNonUniformity values than 
GISTs, which indicated that GSs had more homogeneous 
parenchyma. Firstorder_10Percentile describes the dis-
tribution of voxel intensities in low-density regions. The 
lower values found in GISTs may be due to their suscepti-
bility to necrosis and cysts. GLCM features can reflect the 

Table 7   The Delong’s test 
analysis of the two models in 
different dataset

AUC: area under the curve

Cohort Model Dataset AUC​ P value

Training (n = 211) Stepwise logistic regression Radiomics dataset 0.955 0.493
Combination dataset 0.940

LASSO-logistic regression Radiomics dataset 0.941 0.902
Combination dataset 0.944

Validation (n = 91) Stepwise logistic regression Radiomics dataset 0.901 0.089
Combination dataset 0.968

LASSO-logistic regression Radiomics dataset 0.917 0.079
Combination dataset 0.976
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distribution of the gray levels of two pixels in a specific 
direction and distance, and are most widely used to evalu-
ate tumor heterogeneity. The glcm_Idm feature reflects 
local changes in the image texture. If different areas of 
the image texture are more uniform, the inverse difference 
will be larger, whereas otherwise it will be smaller. Large 
glcm_Idm values in GSs indicate a more uniform nature.

Among the clinical and CT features, sex, LD/SD, location, 
growth pattern, necrosis, and number of underlying diseases 
were found to be significant features for the differentiation 
of GSs from GISTs. GS was more predominantly found in 
female patients than GIST, which is consistent with the previ-
ous studies of Ji et al. (2015), but different to the finding of Xu 
et al. (2022). We found that GSs tended to grow in the gastric 
body and antrum, whereas gastric GISTs were often seen in 
the body and the fundus, which is similar to the findings in Xu 
et al. (2022) and our previous reports (Wang et al. 2021). An 
exophytic or mixed growth pattern found in GS in several pre-
vious studies (Choi et al. 2012; He et al. 2017; Xu et al. 2022) 
is also in agreement with our findings. Our study also revealed 
necrosis to be a significant CT feature suggesting GIST rather 
than GS, which is in line with the study of He et al. (He et al. 
2017). The lack of necrosis in schwannomas may be a result of 
the slower growth rate of GS compared with GIST (Choi et al. 
2014). To our surprise, patients with GIST tended to have more 
underlying diseases than those with GS, which has not been 
reported before. The underlying diseases included hyperten-
sion, diabetes, cardiovascular disease, cerebrovascular disease, 
chronic obstructive pulmonary disease, and chronic kidney dis-
eases. The reason for this may be related to the fact that our 
patients with GIST were older than those with GS, and the 
possibility of suffering from underlying diseases may increase 
accordingly. We also speculate that patients with underlying 
diseases may be more likely to be affected by malignant tumors 
than benign ones, although this hypothesis still requires more 
cases and studies to confirm it.

This study has several limitations. First, the sample 
size is relatively small, especially for GSs. Our series 
was collected from two hospitals and was acquired using 
two different CT scanners, which may have resulted in 
data heterogeneity. Second, the radiomics features were 
only extracted from portal venous phase images. Radi-
omics information from unenhanced and arterial phase 
images was not applied to optimize the performance of 
the models. Hence, we intend to build radiomics mod-
els using features from all three phases in future work. 
Finally, the models built from CT features assessed by 
two associate chief radiologists showed good performance, 
but we did not make a comparison with predictive per-
formance assessed by junior radiologists. It is possible 
that poorer performance may be shown assessed by junior 
radiologists, highlighting the excellence of the radiomics 
methods.

Conclusion

This preliminary study built radiomics-based models to 
explore associations between radiomics features and GSs 
and GISTs. Our study showed that a radiomics model 
applied to CE-CT images had comparable predictive per-
formance to senior radiologists in the differentiation of GSs 
from GISTs.
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