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Abstract
Background While an association between gut microbiota composition and thyroid cancer (TC) has been observed, the 
directionality and causality of this relationship remain unclear.
Methods We conducted a bidirectional two-sample Mendelian randomization (MR) analysis to investigate the causal effect 
between gut microbiota composition and TC. Gut microbiota data were derived from a diverse population encompassing 
various ethnicities (n = 18,340 samples), while TC data were sourced from an European population (n = 218,792 samples). 
Instrumental variables, represented by single nucleotide polymorphisms (SNPs), were employed to assess the causal relation-
ship using multiple MR methods, including inverse-variance weighting (IVW), weighted median, weighted mode, MR-Egger, 
and simple mode. F-statistics and sensitivity analyses were performed to evaluate the robustness of the findings.
Results Our investigation identified a comprehensive set of 2934 instrumental variables significantly linked to gut micro-
biota composition (p < 1 ×  10-5). The analysis illuminated notable candidates within the phylum Euryarchaeota, including 
families Christensenellaceae and Victivallaceae, and genera Methanobrevibacter, Ruminococcus2, and Subdoligranulum, 
which emerged as potential risk factors for TC. On the other hand, a protective influence against TC was attributed to class 
Betaproteobacteria, family FamilyXI, and genera Anaerofilum, Odoribacter, and Sutterella, alongside order Burkholderi-
ales. Further enhancing our insights, the integration of 7 instrumental variables from TC data (p < 1 ×  10-5) disclosed the 
regulatory potential of one family and five genera. Notably, the genus Coprobacter innocuum group (p = 0.012, OR = 0.944) 
exhibited the highest probability of regulation. Our meticulous analyses remained free from significant bias, heterogeneity, 
or horizontal pleiotropy concerns.
Conclusion Through a bidirectional two-sample Mendelian randomization approach, we elucidated a potential bidirectional 
causal relationship between gut microbiota composition and TC. Specific microbial taxa were associated with an increased 
risk or conferred protection against TC. These findings advance our understanding of the complex interplay between the 
gut microbiota and TC pathogenesis, offering new insights into the therapeutic potential of modulating the gut microbiota 
for managing TC.
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Introduction

Thyroid Cancer (TC) is the most common endocrine 
malignancy globally, with its incidence steadily rising 
over the past few decades (Siegel et al. 2023). While the 
etiology of TC is multifactorial, known risk factors include 
radiation exposure, genetics, and environmental factors. 
However, the precise mechanisms underlying TC devel-
opment and progression remain incompletely understood 
(Vaccarella and Maso 2021). In recent years, emerging 
evidence suggests a potential connection between the gut 
microbiota and TC, highlighting the role of the gut-thyroid 
axis in the pathogenesis of TC.

Thyroid development derives from primitive gut cells, 
and both gastric mucosal cells and thyroid follicular cells 
share a common embryonic origin, suggesting the poten-
tial for microbial colonization in the thyroid (Cellini et al. 
2017). Any thyroid disorder is closely associated with 
thyroid hormone levels or function, which in turn can 
impact the composition of the gut microbiota (Virili and 
Centanni 2017). Functional thyroid disorders are associ-
ated with excessive bacterial growth and distinct micro-
bial composition (Bargiel et al. 2021). Simultaneously, gut 
microbiota can exert an influence through the gut-brain 
axis, integrating immune, metabolic, and endocrine sig-
nals both peripherally and centrally (Jašarević et al. 2016). 
The gut microbiota constitutes a complex ecosystem of 
microorganisms within the gastrointestinal tract, playing 
a crucial role in various aspects of human health, includ-
ing metabolism, immune regulation, and the interactions 
between the host and microorganisms (Hou et al. 2022). 
Numerous studies have demonstrated a close relationship 
between gut microbiota and the occurrence and progres-
sion of gastrointestinal tumors (Tong et al. 2021). With 
the progression of research, researchers have progres-
sively illuminated the substantial roles that gut microbiota 
assume in the progression and management of extraintes-
tinal tumors (Bishehsari et al. 2020; Matson et al. 2021; 
Park et al. 2022). These encompass liver cancer, pancreatic 
cancer, melanoma, hematologic malignancies, and breast 
cancer. Research indicates that the contributions of the 
gut microbiota to carcinogenesis can be categorized into 
two major classes. The first class involves DNA damage 
and cell apoptosis, where organisms like Escherichia coli 
and Bacteroides fragilis might impact the stability of the 
host genome, leading to mutational events, disruption of 
host DNA, and the initiation of colorectal carcinogenesis 
(Arthur et al. 2014). The second class involves modulating 
inflammatory responses, with many microbiota communi-
ties associated with cancer activating pattern recognition 
receptors such as Toll-like receptors, subsequently trig-
gering the activation of nuclear factor Kappa B through 

signal transduction in the tumor microenvironment (Kostic 
et al. 2013). Significantly, within the realm of TC, Several 
clinical studies have noted significant variations in the gut 
microbiota composition of thyroid cancer patients when 
compared to that of healthy individuals. Feng et al. found 
that TC patients had higher Firmicutes and Proteobacte-
ria proportions, and lower Bacteroidetes levels compared 
to healthy controls (Feng et al. 2019). In another clinical 
study, Zhang found differing gut microbiota composition 
between TC patients and healthy controls, correlating gut 
microbiota with thyroid-stimulating hormone (TSH) and 
free triiodothyronine (FT3) levels in TC patients (Zhang 
et al. 2019). Nevertheless, in the realm of basic medical 
research, there remains an absence of substantiated evi-
dence to establish a connection between TC and the com-
position of gut microbiota.

Although some observational epidemiological studies 
have suggested a connection between gut microbiota and TC, 
confirming a causal link between them through observational 
research is challenging due to potential confounding factors 
and reverse causation. Establishing a bidirectional causal 
relationship between gut microbiota and TC not only aids in 
unraveling underlying mechanisms but also elucidates poten-
tial therapeutic targets. Mendelian randomization (MR) is a 
powerful analytical method that employs genetic variations as 
instrumental variables to deduce causal relationships between 
exposures and outcomes (Emdin et al. 2017). Utilizing genetic 
variations closely tied to the exposure of interest, MR analysis 
offers valuable evidence for causality, mitigating limitations 
inherent in observational studies susceptible to confound-
ing and reverse causation (Chen et al. 2022; Tin and Köttgen 
2021). In the context of the gut microbiota and TC, the appli-
cation of a bidirectional two-sample Mendelian randomization 
study can elucidate the potential causal connection between 
gut microbiota composition and TC risk.

Hence, in this study, we conducted a bidirectional two-sam-
ple Mendelian randomization analysis to investigate the causal 
relationship between gut microbiota composition and TC risk. 
Leveraging publicly available summary datasets from genome-
wide association studies (GWAS) for gut microbiota compo-
sition and TC, we identified genetic variations as instrumen-
tal variables. By employing various MR methods, including 
inverse variance-weighted (IVW), weighted median, weighted 
mode, MR Egger, and simple mode, our aim was to robustly 
assess the causal impact between gut microbiota and TC risk.

Materials and methods

Study design and the assumption of MR

The depicted flowchart succinctly illustrates the holistic pro-
cedure outlined in Fig. 1. To comprehensively investigate 
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the bidirectional causal association between gut microbiota 
composition and TC, an in-depth bidirectional two-sample 
Mendelian randomization (MR) analysis was undertaken. 
This analytical approach harnessed aggregated statistical 
data from genome-wide association studies (GWAS). The 
MR framework employs genetic variations as instrumen-
tal variables (IVs) to rigorously quantify the causal impact 
connecting the exposure and the outcome. Building upon 
the foundational principles expounded by Bowden and col-
leagues, the two-sample MR analysis rests on the follow-
ing core assumptions (Bowden et al. 2015): (1) the selected 
IVs manifest an inherent link with the exposure; (2) the IVs 
remain unaffected by any latent confounding factors that 
might skew the intricate interplay between exposure and 
outcome; and (3) the IVs singularly exert influence on the 
outcome (TC) exclusively through the exposure, bypassing 
alternative pathways.

Data sources

The data for this study was derived from two distinct 
GWAS summary datasets: one focused on gut microbiota 
composition and the other centered around TC. The first 
dataset delved into the intricacies of gut microbiota com-
position and drew upon samples from a wide spectrum 
of 24 cohorts representing various ethnicities, including 
European, Middle Eastern, East Asian, American His-
panic/Latin, and African American populations. In total, 
this compilation encompassed data from 18,340 individu-
als (Kurilshikov et al. 2021). Stringent measures were 

undertaken to eliminate any potential batch effects, and 
a comprehensive breakdown of the individual cohorts 
can be referenced in a previous publication (Kurilshikov 
et al. 2021). When investigating the composition of the gut 
microbiota, particular attention was given to several hyper-
variable regions within the 16S ribosomal RNA (rRNA) 
gene, namely V1–V2, V3–V4, and V4. Taxonomic profil-
ing was approached by leveraging the Ribosomal Database 
Project (RDP) classifier (version 2.12) to align reads with 
the SILVA reference database. Prior to this alignment, the 
samples underwent a process of rarefaction to achieve a 
standardized read count of 10,000 reads, employing a pre-
defined random seed. Consequently, a refined selection of 
211 taxa met the threshold for taxon inclusion, with the 
cut-off points determined at a posterior probability of 0.8. 
This inclusive selection comprised taxa spanning across 
nine phyla, 16 classes, 20 orders, 35 families, and 131 
genera. It is pertinent to underscore that unidentified taxa 
were meticulously excluded from the analysis, ensuring 
the precision of the results.

The genetic association data summary was sourced 
from the European population thyroid cancer dataset in the 
Genome-Wide Association Studies (GWAS) domain (https:// 
GWAS. mrcieu. ac. uk/ datas ets/ finn-b- c3_ thyro id_ gland/). 
The GWAS derived from the FinnGen study encompasses 
989 cases of thyroid cancer and 217,803 control subjects, 
constituting a dataset of 16,380,466 single nucleotide poly-
morphisms (SNPs). The FinnGen research undertook a 
comprehensive GWAS meta-analysis across 13 cohorts and 
biobanks on a nationwide scale within Finland.

Fig. 1  The workflow of MR analysis is as shown in the diagram. In 
this diagram, two distinct components are highlighted: the exami-
nation of gut microbiota exposure and the examination of thyroid 
cancer (TC) exposure, both conducted independently. The diagram 

visually represents the steps taken to investigate the causal relation-
ships between these exposures and their respective outcomes. GWAS 
Genome-Wide Association Study, IV Instrumental Variable, IVW 
Inverse-Variance Weighting, MR Mendelian Randomization

https://GWAS.mrcieu.ac.uk/datasets/finn-b-c3_thyroid_gland/
https://GWAS.mrcieu.ac.uk/datasets/finn-b-c3_thyroid_gland/
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Instrumental variable selection

To identify suitable instrumental variables (IVs) that could 
potentially indicate underlying associations between gut 
microbiota composition and TC, distinct thresholds were 
applied, tailored to the characteristics of the exposure. We 
meticulously extracted all available data from the compre-
hensive summary statistics of the gut microbiota GWAS, 
encompassing traits across various taxonomic levels includ-
ing phylum, class, order, family, and genus, with these traits 
being marked by their relative abundance (RA) metrics. 
To establish the gut microbiota as the exposure of interest, 
a strategic approach was adopted, involving the selection 
of single nucleotide polymorphisms (SNPs) that demon-
strated significant associations with TC. This selection pro-
cess adhered to the SNP association threshold previously 
validated by Sanna et al. (2019), set at a stringent value of 
1.0 ×  10–5. To effectively address the potential influence of 
linkage disequilibrium (LD) patterns, a meticulous clumping 
strategy was executed on SNPs within each distinct feature, 
utilizing the PLINK software (v1.9) (Purcell et al. 2007). 
This clumping procedure aimed to retain exclusively inde-
pendent SNPs, safeguarding the precision of subsequent 
analyses. As a mechanism to account for LD-related intri-
cacies, the LD threshold was conservatively set at r2 < 0.1, 
ensuring the robustness of the retained SNPs. Furthermore, 
the clumping window, an essential parameter in this context, 
was meticulously defined at a range of 500 kb. The estima-
tion of LD patterns was carried out with meticulous reliance 
on sequencing data sourced from the third phase of the glob-
ally recognized 1000 Genomes Project.

On the contrary, when TC was considered as the expo-
sure, the selection of instrumental variables (IVs) was 
based on significant genome-wide statistical thresholds 
(p < 1 ×  10–5). A linkage disequilibrium (LD) threshold of 
0.001 and a clumping window of 10,000 kb were employed. 
All other parameters remained consistent with those applied 
in the analysis of gut microbiota composition.

The F-statistic serves as a crucial indicator in MR assess-
ments to ascertain whether weak instrumental variables 
(IVs) are prone to confounding. The strength of the correla-
tion between the SNP locus and the exposure factor is evalu-
ated through the F-value associated with each SNP. Typi-
cally, when F > 10, the presence of bias in the instrumental 
variable is considered negligible, leading to the exclusion of 
SNP loci with F ≤ 10.

MR analysis

To detect the causal effects between gut microbiota com-
position and TC, we employed five commonly used MR 
methods: inverse-variance weighting (IVW), weighted 
median, weighted mode, MR-Egger, and simple mode. 

These methods estimate the causal effect by combining the 
ratio estimates for each SNP, weighted regression of SNP-
outcome effects on SNP-exposure effects, or unweighted 
mode of the empirical density function of causal esti-
mation (29–33). The IVW method provides a weighted 
regression estimate of the causal effect by combining SNP-
specific estimates, while the weighted median method pro-
vides unbiased estimates even if up to 50% of the informa-
tion comes from invalid IVs. The weighted mode method 
is consistent even with invalid IVs when the largest num-
ber of similar individual instrument causal effect estimates 
comes from valid instruments. MR-Egger regression pro-
vides a causal estimate and can detect small study bias, 
and the simple mode is an unweighted mode of the causal 
estimation distribution (Burgess et al. 2013; Bowden et al. 
2016; Hartwig et al. 2017). The Wald ratio was used when 
only one IV was available from the exposure. The findings 
are primarily grounded in the IVW method, with the other 
four methods serving as supplementary analyses (Boehm 
and Zhou 2022). When the direction of causality remains 
consistent across these five approaches, it is considered 
a relatively stable causal association. The causal effect 
was expressed as an odds ratio (OR) when the p-value 
was < 0.05 based on the MR analysis (Hu et al. 2022).

To evaluate the robustness and validity of the results, 
we performed sensitivity analyses. Heterogeneity among 
the instrumental variables was assessed using Cochran’s Q 
statistics, with p < 0.05 indicating significant heterogeneity 
(Bowden and Holmes 2019). Horizontal pleiotropy, which 
suggests IVs are associated with the outcome through 
pathways other than the exposure, was tested using MR-
PRESSO (p < 0.05) (Morrison et al. 2020). Leave-one-out 
analysis was conducted to identify potential outliers by 
sequentially excluding individual SNPs and assessing their 
impact on the causal effect estimation using the inverse-
variance-weighted method.

All statistical analyses were performed using R soft-
ware (version 4..0; The R Foundation for Statistical Com-
puting, Vienna, Austria). The main R packages used in this 
study were Two Sample MR, MRPRESSO, and Mendelian 
Randomization.

Results

The bidirectional two-sample Mendelian randomization 
(MR) analysis revealed potential causal effects between 
gut microbiota composition and TC. Specifically, we 
investigated the influence of the gut microbiota on the 
occurrence of TC and the impact of TC on the composi-
tion of the gut microbiota.
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Causal effects of gut microbiota on TC

To comprehensively investigate the potential causal relation-
ships between the gut microbiota and TC, we extensively 
employed a collection of 2934 IVs. Ensuring the robust-
ness of our approach, the F-statistic for each SNP surpassed 
the threshold of 10, confirming the absence of any weak 
instrument bias (Supplementary material 1). This array of 
IVs spanned a spectrum of taxonomic levels, encompass-
ing five distinct phyla, 16 diverse classes, a solitary order, 
29 families, and an array of 115 genera, reflecting a broad 
taxonomic diversity. The range of IVs employed varied 
from 1 to 24, allowing us to comprehensively account for 
diverse genetic variation. By meticulously applying the MR 
analysis framework, we effectively combined the effects of 
SNPs originating from the same gut microbiota constituents. 
Moreover, through the application of the MR methodology, 
we uncovered 1 phylum, 1 specific class, 1 order, 3 families, 
and 6 distinct genera that evidently exerted a discernible 
causal influence on TC, as evidenced and elaborated in the 
detailed findings presented in Table 1.

Following the MR analysis, we identified several taxo-
nomic groups within the gut microbiota that may play a 
causal role in TC development. Utilizing the Inverse Vari-
ance Weighting (IVW) method, we pinpointed specific 
taxonomic entities with potential associations with TC risk. 
Notably, the families Christensenellaceae and Victival-
laceae, as well as the genera Methanobrevibacter, Rumi-
nococcus2, and Subdoligranulum within the phylum Eur-
yarchaeota, were implicated as potential risk factors for TC 

(Fig. 2). Particularly noteworthy, the genus Subdoligranulum 
exhibited a prominent odds ratio (OR) of 1.907, suggesting 
its potential significance in TC progression. These findings 
highlight the potential impact of altered gut microbiota taxo-
nomic groups on TC susceptibility. Conversely, our analysis 
revealed protective factors, including class Betaproteobacte-
ria, family FamilyXI, and genera Anaerofilum, Odoribacter, 
and Sutterella, along with order Burkholderiales (Fig. 3). 
Intriguingly, class Betaproteobacteria demonstrated the 
strongest protective effect, indicated by its notably low odds 
ratio (OR = 0.522).

Causal effects of TC on gut microbiota

In addition to assessing the effects of the gut microbiota on 
TC, we investigated the influence of TC on the composition 
of the gut microbiota. During the IV selection, a total of 7 
SNPs that met the criteria were identified. The MR analysis 
revealed that TC has a causal impact on the abundance of 
one family and five genera within the gut microbiota, as 
evidenced and elaborated in the detailed findings presented 
in Table 2. Specifically, following TC onset, it was observed 
that the abundances of family Defluviitaleaceae, genus 
Ruminococcus gauvreauii group, genus Coprobacter, genus 
Defluviitaleaceae UCG011, genus Family XIII UCG001, 
and genus Prevotella9 were downregulated (Fig. 4). Among 
these taxonomic groups, the genus Coprobacter exhibited 
the highest odds ratio (OR) of 0.944, indicating an increased 
risk associated with the decreased abundance of this genus 
in TC patients.

Table 1  The causal effects 
of the gut microbiota on 
individuals with thyroid cancer 
(TC)

The exposure represents the specific taxa for the causal effect between the gut microbiota and thyroid can-
cer (TC); the method is for Mendelian randomization (MR) analysis in each row; the number of single 
nucleotide polymorphisms (SNPs) is the instrumental variables (IVs) for calculations; and the p-values and 
odds ratios (ORs) indicate significance and effect size, respectively. MR Mendelian randomization, SNP 
single nucleotide polymorphism, OR odds ratio

Exposure Method Number of 
SNPs

OR P-value

Class.Betaproteobacteria Inverse variance weighted 11 0.522075 0.015
Family.Christensenellaceae Inverse variance weighted 11 1.664362 0.015
Family.Christensenellaceae Weighted median 11 1.892848 0.033
Family.FamilyXI Inverse variance weighted 8 0.752928 0.037
Family.FamilyXI Weighted median 8 0.686181 0.041
Family.Victivallaceae Inverse variance weighted 13 1.26803 0.042
Genus.Anaerofilum Inverse variance weighted 11 0.702544 0.021
Genus.Methanobrevibacter Inverse variance weighted 6 1.504903 0.027
Genus.Odoribacter Inverse variance weighted 7 0.531732 0.04
Genus.Ruminococcus2 Inverse variance weighted 15 1.846461 0.0016
Genus.Subdoligranulum Inverse variance weighted 11 1.906763 0.01
Genus.Sutterella Inverse variance weighted 12 0.59618 0.024
Order.Burkholderiales Inverse variance weighted 10 0.528774 0.021
Phylum.Euryarchaeota Inverse variance weighted 12 1.308882 0.029
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Sensitivity analyses

Sensitivity analyses were conducted to assess the robust-
ness of our findings. Heterogeneity statistics, horizontal 
pleiotropy assessment, and leave-one-out analysis were 
performed to evaluate the consistency and reliability of the 
causal effects observed. Heterogeneity analysis revealed 
no significant evidence of heterogeneity among the inves-
tigated variables of the gut microbiota for both the causal 
effects on TC and the effects of TC on the gut microbiota. 
Furthermore, we found no evidence of horizontal pleiot-
ropy between the instrumental variables and the gut micro-
biota, indicating that the observed associations remained 
robust and were not influenced by other potential path-
ways. It is worth noting that similar to the case of thyroid 
cancer, no horizontal pleiotropy was detected in the con-
text of instrumental variables for thyroid cancer. Leave-
one-out analysis further supported the robustness of our 
findings, as no individual SNP significantly influenced the 
observed associations between the gut microbiota and TC 
(Figs. 5 and 6). Similarly, no individual SNP significantly 
affects the impact of TC on the gut microbiota composi-
tion (Fig. 7).

Discussion

In this study, we conducted bidirectional MR analysis to 
investigate the potential causal relationship between gut 
microbiota composition and TC. Our findings revealed 
mutual associations between gut microbiota and TC. On 
one hand, we observed specific bacterial taxa associated 
with an increased or decreased risk of TC. For instance, 
the genus Subdoligranulum and class Betaproteobacteria 
were identified as risk factors and protective factors for TC, 
respectively. These findings suggest that certain microbial 
communities within the gut may contribute to the devel-
opment or prevention of TC. The identification of these 
specific taxa provides potential targets for further research 
and therapeutic interventions. Conversely, while recent 
studies have predominantly explored the impact of gut 
microbiota on thyroid gland activity, there is a scarcity of 
research addressing the reciprocal influence of TC on the 
gut. We observed alterations in the composition of the gut 
microbiota following the occurrence of TC. For instance, 
the relative abundance of was decreased, and certain taxo-
nomic groups, including family Defluviitaleaceae, genus 
Ruminococcus gauvreauii group, genus Coprobacter, genus 

Fig. 2  The scatterplot depicts the assessment of the potential risk 
impact of the gut microbiota on TC using SNPs and five MR methods 
(A-F). Each dot represents an SNP from the gut microbiota GWAS 
summary dataset. x-axis: SNPs' effect on gut microbiota (posi-
tion =|β-value|, error bar = SE from gut microbiota GWAS). y-axis: 
SNPs’ effect on TC (position = flipped β-value, error bar = SE from 

TC GWAS). Line colors: MR techniques (IVW, weighted median, 
MR Egger, weighted mode, simple mode). Slope = b-value from 
methods, indicating gut microbiota's causal effect on TC. Positive 
slope: exposure as risk factor; negative: opposite. TC thyroid cancer, 
MR Mendelian randomization, SNP single nucleotide polymorphism
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Defluviitaleaceae UCG011, genus Family XIII UCG001, 
and genus Prevotella9, exhibited decreased abundance fol-
lowing TC occurrence, suggesting that TC may exert a regu-
latory influence on the gut microbiota composition.

The gut microbiota has emerged as a pivotal player in 
a spectrum of physiological and pathological processes, 

encompassing immune regulation, metabolic modulation, 
and disease progression. The potential influence of gut 
microbiota on immune responses and the metabolism of 
trace nutrients suggests a potential role in the regulation of 
thyroid homeostasis (Knezevic et al. 2020; Docimo et al. 
2020; Samimi and Haghpanah 2020). Disturbances in the 

Fig. 3  The scatterplot illustrates the evaluation of the potential pro-
tective effect of the gut microbiota on thyroid cancer (TC) using sin-
gle nucleotide polymorphisms (SNPs) and five MR methods (A-F). 
Each dot represents an SNP from the gut microbiota GWAS summary 
dataset. x-axis: SNPs’ effect on gut microbiota (position =|β-value|, 
error bar = SE from gut microbiota GWAS). y-axis: SNPs’ effect on 

TC (position = flipped β-value, error bar = SE from TC GWAS). Line 
colors: MR techniques (IVW, weighted median, MR Egger, weighted 
mode, simple mode). Slope = b-value from methods, indicating gut 
microbiota’s causal effect on TC. Positive slope: exposure as a risk 
factor; negative: opposite. TC thyroid cancer, MR Mendelian rand-
omization, SNP single nucleotide polymorphism

Table 2  The causal impacts 
of thyroid cancer (TC) on 
the composition of the gut 
microbiota

The exposure represents the specific taxa for the causal effect between thyroid cancer (TC) and the gut 
microbiota; the method is for Mendelian randomization (MR) analysis in each row; the number of single 
nucleotide polymorphisms (SNPs) is the instrumental variables (IVs) for calculations; and the p-values and 
odds ratios (ORs) indicate significance and effect size, respectively. MR Mendelian randomization, SNP 
single nucleotide polymorphism, OR odds ratio

Outcome Method Number of 
SNPs

P-value OR

Family.Defluviitaleaceae Inverse variance weighted 7 0.042 0.958259
Genus.Ruminococcusgauvreauiigroup Inverse variance weighted 7 0.049 0.968421
Genus.Coprobacter Weighted median 7 0.012 0.926937
Genus.Coprobacter Inverse variance weighted 7 0.012 0.944251
Genus.DefluviitaleaceaeUCG011 Inverse variance weighted 7 0.028 0.954851
Genus.FamilyXIIIUCG001 Inverse variance weighted 7 0.024 0.962874
Genus.Prevotella9 Inverse variance weighted 7 0.0067 0.951285
Genus.Prevotella9 Weighted median 7 0.046 0.953613
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gut microbiota have been implicated in various thyroid dis-
orders, including primary hypothyroidism, autoimmune thy-
roid disorders (AITD), and thyroid cancer (Su et al. 2020; 
Zheng et al. 2023; Köhling et al. 2017). With advancements 
in genetic sequencing technologies, researchers have delved 
deeper into the realm of gut microbiota. Current research on 
the interplay between thyroid cancer and gut microbiota pre-
dominantly focuses on clinical correlations and functional 
insights, which to some extent resonate with our study's find-
ings. For instance, Zhang et al. noted that the gut microbiota 
profile of the thyroid cancer group featured dominance of 
Prevotella, Roseobacter, Coccidioides faecalis, Anaerobac-
ter, Ruminalococcus, Neisseria, Streptococcus, and Por-
phyromonas, in contrast to the dominance of Mycobacte-
rium avium, Sutterella, and Butyricimonas in the healthy 
control group (Zhang et al. 2019). Feng et al. observed a 
conspicuous enrichment of Firmicutes and Bacteroidetes 
in the gut microbiota of thyroid cancer patients, with the 
healthy cohort demonstrating an enrichment of Actinobac-
teria. The comparison revealed six distinct genera, includ-
ing Lactobacillus, Prevotella, Roseobacter, Actinomyces, 

Fusobacterium, and Christensenella, exhibiting notable 
differences between thyroid cancer patients and healthy 
individuals (Feng et al. 2019). Likewise, Yu et al. unveiled 
elevated levels of Prevotella, Clostridium, and Spirochaeta-
ceae, alongside decreased levels of Propionibacterium, Bac-
teroides, Bacteroidetes, and Firmicutes in thyroid cancer 
patients (Yu et al. 2022). Furthermore, an investigation tar-
geting patients who underwent thyroidectomy for papillary 
thyroid carcinoma, followed by postoperative radioiodine 
therapy and consequent hypothyroidism, disclosed a signifi-
cant reduction in gut microbiota richness compared to the 
healthy group. This was accompanied by marked alterations 
in six genera, including Prevotella, Blautia, Rectalibacter, 
Bifidobacterium, Fusicatenibacter, and Parabacteroides.

Currently, our understanding of the potential mechanisms 
governing the interaction between the gut microbiota and thy-
roid cancer remains limited. Within the scope of this study, 
we have identified specific families, such as Prevotellaceae 
and Ruminococcaceae, that are responsible for producing 
short-chain fatty acids (SCFAs) like butyrate and propionate 
(Kircher et al. 2022). These SCFAs are renowned for their 

Fig. 4  The scatterplot illustrates the assessment of the impact of TC 
on gut microbiota using SNPs and five MR methods (A-F). Each dot 
represents an SNP from the gut microbiota GWAS summary dataset. 
x-axis: SNPs’ effect on TC (position =|β-value|, error bar = SE from 
TC GWAS). y-axis: SNPs’ effect on gut microbiota (position = flipped 
β-value, error bar = SE from gut microbiota GWAS). Line colors: MR 

techniques (IVW, weighted median, MR Egger, weighted mode, sim-
ple mode). Slope = b-value from methods, indicating gut microbiota’s 
causal effect on TC. Positive slope: exposure as risk factor; negative: 
opposite. TC thyroid cancer, MR Mendelian randomization, SNP sin-
gle nucleotide polymorphism
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Fig. 5  Leave-one-out analysis is used to assess the risk factor impact 
of gut microbiota on TC. Employing a leave-one-out analysis meth-
odology within the scenarios denoted by (A-F), a comprehensive 
exploration was conducted to gauge the sensitivity of the risk factor 

influence attributed to distinct types of gut microbiota on the develop-
ment of thyroid cancer (TC). The error bar represents the 95% confi-
dence interval with the method of IVW

Fig. 6  Leave-one-out analysis is used to assess the protective factor 
impact of gut microbiota on TC. Employing a leave-one-out analysis 
methodology within the scenarios denoted by (A-F), a comprehensive 
exploration was conducted to gauge the sensitivity of the protective 

factor influence attributed to distinct types of gut microbiota on the 
development of thyroid cancer (TC). The error bar represents the 95% 
confidence interval using the IVW method
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potent anti-inflammatory and anti-tumor properties (Liu et al. 
2021). However, their decreased levels within the intestines 
of TC patients hint at a potential influence in promoting the 
onset and progression of TC. Moreover, specific species such 
as Bifidobacterium, Ruminococcus, and Ruminococcaceae 
exhibit the ability to convert propionate to acetate via the 
acetyl-CoA pathway, while Blautia species employ an alter-
native enzyme called anaerobic acetyl-CoA synthetase to 
synthesize acetate. These intricate processes play a pivotal 
role in maintaining intestinal homeostasis and potentially 
influence the development of interconnected disorders like 
immune dysregulation and tumor progression (Louis et al. 
2014). Concurrently, existing studies' functional enrichment 
analysis of the gut microbiota sheds light on the potential 
impact of various metabolites, including lipids, flavonoids, 
and phenols, in influencing the onset and progression of thy-
roid cancer, aligning with findings from previous research 
(Feng et al. 2019). Notably, our study revealed Christensenel-
laceae as a risk factor. In a similar vein, Lu et al. conducted 
comprehensive analyses involving 16S rRNA gene sequenc-
ing and LC–MS techniques on TC patient samples. Their 
findings uncovered a substantial reduction in the abundance 
of g_Christensenellaceae_R-7_group and other genera closely 
linked to lipid metabolism within the TC group (Lu et al. 
2022). Interestingly, a metabolite known as 27-hydroxycholes-
terol (27HC), intricately connected with lipid metabolism, dis-
played diminished levels in the TC group. Earlier research has 
indicated the potential of cholesterol and 27HC to heighten 

thyroid cancer aggressiveness (Revilla et al. 2019). A recent 
revelation indicates a noteworthy correlation between 27HC 
and metabolism-associated microorganisms, notably the g_
Christensenellaceae_R7_group, within the intricate network 
of microbial-metabolite interactions. This suggests that 27HC 
could potentially foster thyroid cancer proliferation driven by 
estrogen receptors. Concurrently, the g_Christensenellaceae_
R7_group, as a central genus in the diminished genus cluster, 
might significantly contribute to lipid metabolic equilibrium 
through 27HC. Moving forward, a deeper exploration into 
the intricate relationship among g_Christensenellaceae_R-7_
group, 27HC, and thyroid tumorigenesis holds promise and 
warrants further investigation.

The strengths of our study lie in the use of MR analy-
sis, which provides a powerful tool to assess causality and 
overcome some of the limitations of observational studies. 
By leveraging genetic variants as instrumental variables, we 
minimized the potential for confounding and reverse cau-
sation, providing more robust evidence for the causal rela-
tionship between gut microbiota and TC. However, several 
limitations should be acknowledged. Firstly, our study relied 
on summary data from large-scale GWASs, which may intro-
duce potential biases and limitations inherent to the original 
studies. Secondly, our findings were based on populations of 
European ethnicity, and generalizability to other populations 
should be interpreted with caution. Future studies incorpo-
rating diverse ethnic populations are needed to validate our 
findings. Lastly, while our study identified associations and 

Fig. 7  Leave-one-out analysis was employed to investigate the impact 
of thyroid cancer (TC) on the gut microbiota. Through the utiliza-
tion of leave-one-out analysis within the contexts outlined by (A-F), a 

thorough examination was undertaken to assess the sensitivity of the 
causal effect of TC on various categories of gut microbiota.The error 
bar represents the 95% confidence interval with the method of IVW
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potential causal effects, the exact mechanisms underlying 
the observed relationships remain to be elucidated. Further 
mechanistic studies, including functional experiments and 
microbiota profiling, are warranted to provide deeper insights 
into the gut microbiota-TC interplay.

In conclusion, our bidirectional MR analysis provides 
evidence supporting a reciprocal relationship between gut 
microbiota composition and TC. Our findings underscore 
the potential involvement of the gut microbiota in the devel-
opment of TC. Further investigations are essential to vali-
date our results, delve into the functional implications of 
distinct microbial taxa, and unravel the mechanistic con-
nections between the gut microbiota and TC. Ultimately, a 
better understanding of the gut microbiota-TC interaction 
may open up new avenues for personalized approaches to 
TC management and pave the way for the development of 
microbiota-based therapeutics in the future.
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