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Abstract
Purpose WEE1 is a crucial kinase involved in the regulation of G2/M checkpoint within the cell cycle. This article aims to 
comprehensively review the existing knowledge on the implication of WEE1 as a therapeutic target in tumor progression 
and drug resistance. Furthermore, we summarize the current predictive biomarkers employed to treat cancer with WEE1 
inhibitors.
Methods A systematic review of the literature was conducted to analyze the association between WEE1 inhibition and 
cancer progression, including tumor advancement and drug resistance. Special attention was paid to the identification and 
utilization of predictive biomarkers related to therapeutic response to WEE1 inhibitors.
Results The review highlights the intricate involvement of WEE1 in tumor progression and drug resistance. It synthesizes the 
current knowledge on predictive biomarkers employed in WEE1 inhibitor treatments, offering insights into their prognostic 
significance. Notably, the article elucidates the potential for precision medicine by understanding these biomarkers in the 
context of tumor treatment outcomes.
Conclusion WEE1 plays a pivotal role in tumor progression and is a promising therapeutic target. Distinguishing patients 
that would benefit from WEE1 inhibition will be a major direction of future research.
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Introduction

The emergence of molecular signature-based targeted ther-
apy has revolutionized the field of antitumor treatment (Lee 
et al. 2018). In particular, the investigation of the DNA dam-
age and repair pathway has garnered significant attention in 
recent years. Notably, numerous clinical trials have provided 
evidence that WEE1 inhibitors exhibit encouraging efficacy. 

Furthermore, when combined with other therapies, WEE1 
inhibition can lead to synergistic anti-tumor effects in sev-
eral cancer types with limited treatment alternatives, such 
as recurrent uterine serous cancer with TP53 mutation (Liu 
et al. 2021), high-grade serous ovarian cancer with platinum 
resistance (Leijen et al. 2016b; Lheureux et al. 2021), and 
unresectable pancreatic cancer (Cuneo et al. 2019). Despite 
these encouraging advances, the beneficiaries of WEE1 
inhibition remain uncertain. In other words, development 
of predictive biomarkers and identification of the appro-
priate population that would respond to WEE1 inhibitors 
are imperative. To this end, this article aims to provide a 
comprehensive review of the existing literature on the asso-
ciation the role of WEE1 as a therapeutic target in tumor 
progression and drug resistance. We also summarize the cur-
rent progress on the predictive biomarkers employed in the 
treatment of tumors targeting WEE1.
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The mechanism of action of WEE1 inhibitors

Cell cycle regulation plays a vital role in maintaining DNA 
integrity (Campos and Clemente-Blanco 2020), which, to a 
great extent, depends on the cell cycle checkpoints, namely 
the G1/S and G2/M checkpoints (Poon 2016). The p53 
protein (encoded by the TP53 gene) plays a crucial role in 
DNA damage response by suppressing the G1/S cell cycle 
checkpoint (Jackson and Bartek 2009). The other pivotal 
checkpoint is the G2/M checkpoint, which is primarily 
regulated by WEE1 kinase (Smith et al. 2020). In the event 
of additional DNA damage during replication or failure 
to repair the initial damage, the WEE1 kinase hinders the 
progression of cell cycle into M phase by phosphorylat-
ing and inhibiting the activity of cyclin-dependent kinases 
CDK1/2 (Russell and Nurse 1987). This results in effective 
extension in the duration of DNA repair (Fig. 1A).

Unfortunately, in the context of human cancers, TP53 is 
the most frequently mutated tumor suppressor across vari-
ous cancer types, with high-grade serous ovarian cancer 
exhibiting the highest mutation rate (Zehir et al. 2017). 
Despite the notorious role of TP53 mutations in cancer, 
pharmacological intervention specifically targeting p53 
mutations has been limited, with only a few targeted drugs, 
such as PRIMA-1 and PRIMA-1Met (APR-246), being 
tested in early clinical trials. In TP53-mutant tumor cells, 
the WEE1 checkpoint encounters heightened pressure and 
thus presents a potential target for therapeutic interven-
tion (Smith et al. 2020). Inhibition of WEE1 facilitates or 
even expedites mitotic progression, leading to an increase 
in genomic instability (Matheson et al. 2016), which ulti-
mately result in mitotic catastrophe (Matheson et al. 2016) 
(Fig. 1B). Besides, WEE1 also regulates CDK2 during the 

S phase to stabilize the replication machinery (Beck et al. 
2012; Li et al. 2020a). Hence, the coordination of diverse 
cellular division events by WEE1 undeniably establishes 
its significance as a potential target for clinical utilization 
in the treatment of tumors (Fig. 1B).

WEE1 and cancer

WEE1 expression in tumors

Recent studies have demonstrated that up-regulation of 
WEE1 is prevalent in various types of tumors (Beck et al. 
2012), particularly in those exhibiting loss of p53 function 
(De Witt Hamer et al. 2011; Lau and Pardee 1982). For 
instance, a comprehensive comparison of 34 cancer-versus-
normal data sets, revealed increased expression of WEE1 
mRNA in 77% of the samples (Mir et al. 2010). Similarly, 
heightened expression or increased activity of WEE1 was 
observed in glioma (Mueller et al. 2014; Music et al. 2016), 
liver cancer models (Masaki et al. 2000, 2003), medullo-
blastoma (Harris et al. 2014), seminoma (Mir et al. 2010), 
breast cancer, and osteosarcoma (PosthumaDeBoer et al. 
2011; Wang et al. 2011). Collectively, these aforementioned 
studies suggest that WEE1 level is elevated in human cancer 
and thus has the potential to serve as a molecular marker 
for tumors.

The role of WEE1 in tumor progression

Inhibiting WEE1 effectively impeded the proliferation and 
migration of colorectal cancer liver metastases endothelial 
cells (CLMECs), leading to impaired vascular endothe-
lial formation (Webster et al. 2017). Furthermore, WEE1 

Fig. 1  Cell cycle checkpoint regulation mechanism. A Cell cycle regulation in cells with intact cell cycle checkpoint function when DNA dam-
age occurs; B Cell cycle regulation after G1/S checkpoint deficiency combined with WEE1 inhibition
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expression was closely associated with tumor-free survival 
rate, tumor burden, and the incidence of ulcer in melanoma 
(Magnussen et al. 2012), while WEE1 repression signifi-
cantly reduced melanoma metastasis (DiSano et al. 2019). 
Additionally, the study by Magnussen et  al. revealed a 
gradual increase in WEE1 expression during the process 
of carcinogenesis, with the highest expression observed in 
patients who had developed tumor metastasis (Magnussen 
et al. 2012). Furthermore, inhibiting WEE1 expression in 
glioma cells resulted in cell death (Sancar et al. 2004). These 
findings collectively suggest that WEE1 may promote tumor 
progression.

The role of WEE1 in drug resistance

DNA repair mechanisms are considered as a significant 
contributor to resistance against DNA damage therapies 
(Dibitetto et al. 2022). WEE1 suppression could overcome 
resistance to EGFR-TKIs inhibitors and enhance the efficacy 
of cisplatin and gemcitabine (Liu et al. 2019). Additionally, 
Li et al. (2020b) demonstrated the significant impact of the 
DGKA-c-Jun-WEE1 signaling axis on platinum sensitivity 
in platinum-resistant ovarian cancer cells. A study involv-
ing 287 patients with advanced high-grade serous ovarian 
cancer observed higher expression of WEE1 in samples that 
recurred after initial chemotherapy compared to pre-chemo-
therapy samples, as well as a significant association between 

high WEE1 expression and poor prognosis in post-chemo-
therapy patients (Slipicevic et al. 2014). Furthermore, high-
throughput screening of related kinases in ovarian cancer 
cells revealed that WEE1 kinase potentially regulated resist-
ance to CHK1 inhibitors (Carrassa et al. 2012). Besides, 
WEE1 inhibition effectively reversed resistance to BRAF 
inhibitors (Haarberg et al. 2013; Sharma et al. 2013) and 
AURKA inhibitor (MLN8237) in HPV- HNSCC (head and 
neck squamous cell carcinoma (Lee et al. 2019). These find-
ings indicate that WEE1 kinase may mediate the resistance 
to traditional chemotherapy and targeted therapy, making it a 
potential biomarker and therapeutic target for post-treatment 
resistance.

Clinical development of WEE1 inhibitors

Despite considerable effort to develop small molecule 
inhibitors targeting WEE1 kinase, the available options are 
currently limited. Hitherto, a total of 79 clinical trials involv-
ing five WEE1 inhibitors have been reported by Clinical-
Trials.gov (Table 1). Among these inhibitors, adavosertib 
(AZD1775) is the first-in-class potent inhibitor of WEE1 
and has been involved in 61 trials. Following AZD1775, 
ZN-c3 has been studied in 12 trials, Debio-0123 in 4 trials, 
and SY-4835 and IMP7068 in only 1 trial each (Table 1). A 
sum of 28 clinical trials have been completed, with 9 trials 

Table 1  Small molecule inhibitors of Wee1 under clinical trials

*Nd not disclosed

Inhibitor Properties WEE1
IC50 (nM)*

Chemical structure* Sponsor Phases Completed 
(n)/total 
(n)

adavosertib A first-in-class, potent, and ATP-
competitive specific small-
molecule Wee1 inhibitor

5.2 AstraZeneca II 28/61

ZN-c3 A novel, selective, and orally 
active bioavailable Wee1 pro-
tein kinase inhibitor

3.9 Zentalis Pharmaceuticals Inc II 0/12

Debio-0123 An oral, potent, and highly selec-
tive Wee1 inhibitor

Nd Almac Discovery Ltd I 0/4

IMP7068 A potent, highly selective Wee1 
inhibitor

Nd Impact Therapeutics Inc I 0/1

SY-4835 A new type of highly active and 
selective Wee1 small molecu-
lar inhibitor

Nd Nd Shouyao Holdings I 0/1
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dedicated to singular treatment and 19 trials investigating 
the efficacy of combination treatments.

The trials employing AZD1775 have yielded encourag-
ing outcomes in prolonging progression-free survival of 
colorectal cancer patients with RAS/TP53 mutations (Selig-
mann et al. 2021). Furthermore, a clinical trial conducted 
on human glioblastoma showed that AZD1775 successfully 
penetrated the blood–brain barrier, with great potential as a 
standalone therapeutic intervention for this disease (Sanai 
et al. 2018). In addition, AZD1775 has been extensively 
investigated as a means to enhance the efficacy of DNA dam-
aging chemotherapy or radiation. For example, for refrac-
tory high-grade serous ovarian cancer, the combination of 
AZD1775 with gemcitabine has exhibited more significant 
therapeutic effect compared to gemcitabine alone (Lheureux 
et al. 2021). Similarly, the combination of AZD1775 with 
gemcitabine plus radiotherapy has been shown to improve 
survival in locally advanced pancreatic cancer (Cuneo et al. 
2019). Furthermore, patients with platinum-sensitive TP53-
mutant ovarian cancer benefited from the combination of 
AZD1775 with paclitaxel and carboplatin (Oza et al. 2020). 
These clinical trials offer important evidence advocating 
AZD1775 either as a monotherapy or in conjunction with 
other chemotherapeutic agents.

However, its application has been limited due to the asso-
ciated toxicities. The most frequently observed toxicities 
included myelosuppression (such as anemia, neutropenia, 
and thrombocytopenia) and diarrhea (Do et al. 2015). In a 
separate investigation afflicted with advanced solid tumors, 
patients received the most prevalent drug-related adverse 
events (AEs) being diarrhea and fatigue when AZD1775 
was administered as a sole monotherapy dose, while 19% of 
patients experienced severe treatment-related AEs, includ-
ing fatigue, nausea, vomiting, diarrhea, anemia, neutropenia, 
and thrombocytopenia in conjunction of AZD1775 with var-
ious chemotherapeutic agents (gemcitabine, carboplatin, or 
cisplatin) (Leijen et al. 2016a). In the meantime, the safety, 
tolerability, and antitumor efficacy of combining AZD1775 
with cisplatin and docetaxel in advanced HNSCC has been 
demonstrated (Méndez et al. 2018), suggesting that more 
investigations are needed to better balance the efficacy and 
toxicity of AZD1775.

ZN-c3 is another selective inhibitor of WEE1 kinase 
with significant anti-proliferative efficacy in various cancer 
cell lines. It is currently under evaluation in several clinical 
trials of different cancers, including ovarian cancer, solid 
tumors, and osteosarcoma (Clinicaltrials.gov). Notably, 
ZN-c3 possesses the advantage of a high maximum toler-
ated dose, enabling it to achieve the similar growth/pro-
liferation inhibition at significantly lower doses compared 
to AZD1775. Although ZN-c3 exhibits greater specificity 
compared to AZD1775, its inhibitory activity has been 
observed on multiple kinases, and common side effects such 

as fatigue, vomiting, diarrhea, and nausea have been consist-
ently reported in several studies (Li et al. 2021; Tolcher et al. 
2021). Nevertheless, ZN-c3 has demonstrated its efficacy 
as a standalone treatment for cancer cells, displaying high 
tolerance and satisfactory safety profiles.

Conversely, the remaining three WEE1 inhibitors, namely 
Debio-0123, SY-4835, and IMP7068, are still under clinical 
evaluation. Thus, the efficacy and potential toxicity of these 
inhibitors have yet to be definitively established.

Predictive biomarkers

Despite the considerable therapeutic potential of WEE1 
inhibition as standalone treatment or in combination thera-
pies, biomarkers that accurately predict its susceptibility 
and resistance remains to be identified. Next, we summa-
rize the potential biomarkers of WEE1 inhibitory treatment 
described so far (Fig. 2).

Biomarkers of sensitivity to WEE1 inhibition therapy

TP53 mutation

The correlation between TP53 mutation status and the 
sensitivity to AZD1775 have been extensively established 
(Bauman and Chung 2014; Bridges et al. 2011; Diab et al. 
2019; Hirai et al. 2009; Ku et al. 2017; Yang et al. 2020). 
In addition, AZD1775 selectively sensitized p53-deficient 
cancer cells to radiotherapy, gemcitabine, carboplatin 
and cisplatin, compared with the isogenic wild-type line 
(Bridges et al. 2011; Hirai et al. 2009). Consistently, cells 
with dysfunctional p53 exhibited heightened sensitivity to 

Fig. 2  Biomarkers of sensitivity to WEE1 inhibition therapy
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WEE1 inhibition when combined with conventional chemo-
therapy and ionizing radiation (Barbosa et al. 2019; Wang 
et al. 2001; Yin et al. 2018). These investigations propose 
that TP53 mutation or dysfunction may serve as a bona fide 
biomarker for AZD1775 sensitivity.

High basal WEE1 expression

Gastric cancer cells exhibiting high expression of WEE1 dis-
played increased susceptibility to WEE1 inhibitory therapy 
(Kim et al. 2016), indicating that the efficacy of WEE1 inhi-
bition may be dependent on the expression level of WEE1 
kinase. Another study of 663 advanced non-small cell lung 
cancer patients showed that WEE1 rs3910384 genotype was 
markedly correlated with prognosis following platinum-
based chemotherapy as well as the combined efficacy of 
platinum and gemcitabine (Liu et al. 2015). Furthermore, 
co-administration of AZD1775 and cisplatin demonstrated 
a synergistic effect in a patient-derived xenograft (PDX) 
model characterized by elevated basal expression of PAXIP1 
and WEE1 (Jhuraney et al. 2016). These findings indicate 
that the basal level of WEE1 kinase may play a part in the 
responsiveness to WEE1 inhibition therapy.

RAS mutations

The particular status of KRAS mutation is critical to the 
response of non-small cell lung cancer (NSCLC) cells to 
sorafenib, a multi-target tyrosine kinase inhibitor. High-
throughput screening utilizing a siRNA library targeting 719 
human kinases identified WEE1 as a modulator of sorafenib 
response, while AZD1775 was observed to augment the sus-
ceptibility of KRAS mutated NSCLC cells towards sorafenib 
(Caiola et al. 2018). In addition, the concurrent inhibition 
of mTOR and WEE1 has been demonstrated to elicit robust 
synergistic cytotoxic effects in NSCLC cell lines harboring 
KRAS mutations. This combination therapy was also found 
to impede the growth of human tumor xenografts and induce 
tumor regression in a murine model of lung adenocarcinoma 
(Hai et al. 2017). Similarly, a notable observation was made 
regarding the combined effect of mTOR inhibitor and WEE1 
inhibitor in both mutant neuroblastoma NRAS- and mutant 
KRAS-positive acute myelogenous leukemia (AML) cell 
lines and primary patient samples. It is worth mentioning 
that these findings have been shown to be applicable to other 
malignancies expressing mutant RAS, such as mutant NRAS-
positive melanoma, and mutant KRAS-positive colorectal 
cancer, pancreatic cancer, and lung cancer (Weisberg et al. 
2015). Moreover, combination of AZD1775 and cisplatin 
significantly prolonged overall survival in a genetically 
engineered mouse model of mutant KRAS with concomi-
tant loss of LKB1. Of note, LKB1 is among the frequently 
mutated genes in NSCLC and commonly co-occurs with 

KRAS mutations (Richer et al. 2017). These findings suggest 
that WEE1 inhibitors exhibit promising anti-tumor potential 
when used in conjunction with other small molecule inhibi-
tors in the context of RAS mutations.

BRCA  mutations

A previous Phase I Study (NCT01748825) evaluated the sin-
gle-agent activity of AZD1775 in patients with BRCA muta-
tions. Notably, two patients with BRCA mutations, one with 
head and neck cancer and one with ovarian cancer, exhibited 
partial response (Do et al. 2015). Chen et al. demonstrate, 
using various in vitro and in vivo model systems, that tri-
ple-negative breast cancers (TNBCs) with either BRCA1/2 
mutations or cyclin E overexpression exhibit heightened sus-
ceptibility to AZD-1775 when administered in conjunction 
with MK-4837 (a PARP inhibitor). The combined treatment 
of these two agents led to synergistic eradication of TNBC 
cells, which was attributed to the induction of replicative 
stress, downregulation of DNA repair mechanisms, failure 
in cytokinesis, and ultimately increased apoptosis (Chen 
et al. 2021). These findings highlight the potential clinical 
application of using BRCA mutations as biomarkers to select 
patients that may benefit from therapies involving AZD1775.

Cyclin E overexpression

Recently, cyclin E levels have been shown to correlate with 
the efficacy of AZD1775 in breast cancer models (Chen 
et al. 2018). Chen et al. conducted a study wherein they 
found that overexpression of cyclin E is more prevalent in 
TNBCs exhibiting high rates of recurrence and these cells 
more susceptible to inhibition of wee1 kinase. Furthermore, 
they also discovered that the overexpression of Cyclin E 
induces the activation of DNA replication stress pathways 
in a CDK2-dependent manner, consequently augmenting the 
activity of Wee1 kinase (Chen et al. 2018). Their study sug-
gests that Cyclin E overexpression may serve as a biomarker 
of sensitivity to WEE1 inhibitors.

Epigenetic modifications

Interestingly, small cell lung cancers with alterations in the 
MYC family exhibited increased sensitivity to combined 
treatment of Olaparib and AZD1775 (Lallo et al. 2018). 
Conversely, AZD1775 enhanced gemcitabine sensitiv-
ity despite the presence of elevated c-MYC expression in 
medulloblastoma (Moreira et al. 2020). Our previous study 
indicated that tumor cells exhibiting elevated basal levels 
of DNMT1 and FOXM1 displayed heightened sensitiv-
ity to AZD1775 (Guo et al. 2022). In addition, the latest 
research reports that sirtuin 1 (SIRT1) deficiency induces 
WEE1 hyperacetylation and activation, rendering cancer 
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cells resistant to WEE1 inhibition (Zhu et al. 2023). These 
findings imply that epigenetic alterations may play a role in 
the responsiveness of WEE1 inhibitory therapy.

Biomarkers associated with resistance to WEE1 
inhibition

Despite numerous studies demonstrating the considerable 
effectiveness of WEE1 inhibition therapy in combating 
tumors, the emergence of primary and secondary resistance 
remains an inevitable challenge. Therefore, a summary of 
biomarkers predicting resistance to WEE1 inhibitors will 
help formulate treatment strategies to avoid it (Fig. 3).

Biomarkers in the PTEN‑PI3K/Akt/mTOR signaling pathway

It has been recently reported that breast cancer cells with 
high PTEN expression can regain their activity after dis-
continuation of AZD1775 treatment (Brunner et al. 2020). 
This suggests that the presence of high levels of PTEN 
may contribute to resistance against WEE1 inhibitors. Fur-
thermore, a high-throughput proteomic analysis revealed 
the overexpression of AKT/mTOR pathway molecules 
and phosphorylated S6 ribosomal protein in small cell 
lung cancer and ovarian cancer models that exhibit pri-
mary resistance to AZD1775 (Li et al. 2020a; Sen et al. 
2017). Similarly, our previous high-throughput Reverse 
Phase Protein Array (RPPA) observed a compensatory 
up-regulation of the mTOR pathway following AZD1775 

treatment during early stages of ovarian cancer. Combina-
tion of WEE1 and mTOR dual inhibition demonstrated 
synergistic effects in both ovarian cancer cell lines and 
PDX models (Li et al. 2020a). These findings suggest that 
activation of the PTEN-PI3K/Akt/mTOR signaling path-
way may play a crucial role in conferring resistance to 
WEE1 inhibition therapy.

Biomarkers in DNA damage response pathway

In a comprehensive investigation involving ovarian cancer, 
chronic myeloid leukemia, and breast cancer, the surviv-
ing cells following WEE1 inhibitor treatment were sub-
jected to sequencing analysis. The results revealed that 
G1/S regulatory genes (SKP2, CUL1, CDK2) were sig-
nificantly enriched in the surviving cells, where inhibiting 
these genes effectively mitigated the formation of DNA 
damage (Heijink et al. 2015). Additionally, another study 
in ovarian cancer showed that the resistance to AZD1775 
therapy was mediated by YAP through the E2F1 DNA 
damage response axis (Oku et al. 2018). Notably, inde-
pendent studies consistently demonstrated a correlation 
between high expression of PKMYT1 and reduced sen-
sitivity to AZD1775 (Ghelli Luserna Di Rorà et al. 2018; 
Lewis et al. 2019). These findings propose that the resist-
ance to WEE1 repression may be attributed to adaptive 
responses within the DNA damage response pathway.

Fig. 3  Biomarkers of resistance 
to WEE1 inhibition therapy
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Biomarkers in epigenetic modifications

It was recently shown that the survival of AZD1775-resistant 
acute leukemia cell lines relied on the activity of MYC and 
HDAC, which was in part due to the increased KDM5A 
activity (Garcia et al. 2020), thus corroborating preclinical 
studies that advocate for the combined utilization of WEE1 
and HDAC inhibitors (Qi et al. 2015; Tanaka et al. 2017; 
Zhou et al. 2015). Similarly, research by Zhou et al. also 
found that the WEE1 inhibitor PD0166285 can arise the 
expression of HDAC11 which was negatively correlated 
with survival of AML patients. Mechanistically, HDAC11 
can reduce the anti-tumor effect of PD0166285 through 
an effect on p53 stability and the changes in phosphoryla-
tion levels of MAPK pathways (Zhou et al. 2023). The 
above studies suggest that epigenetic modifications, such 
as HDACs, are involved in mediating resistance to WEE1 
inhibitor treatment, and targeting these molecules can effec-
tively reverse WEE1 treatment resistance.

Biomarkers in other signaling pathways

Furthermore, our recent study revealed that ovarian and 
colorectal cancer cells sensitive to AZD1775 monotherapy 
exhibited an up-regulation of interferon signaling gene 
groups in a responsive manner (Guo et al. 2022). This find-
ing was further confirmed through RNA-seq analysis of 
murine AZD1775-resistant ovarian cancer cells (Guo et al. 
2022), suggesting that adaptive immune signaling may play 
a role in the development of resistance to AZD1775. In keep-
ing with this, we also demonstrated that refractory ovarian 
cells can enhance the ability to adapt to AZD1775 treatment 
by activating the IRE1α-XBP1 axis of the unfolded protein 
response pathway (Xiao et al. 2022). Our study suggests that 
immune and unfolded protein response may be involved in 
WEE1 therapeutic resistance.

Conclusion

WEE1 inhibition has exhibited significant potential in tumor 
treatment. Preclinical investigations have paved the way for 
the advancement of clinical trials involving WEE1 inhibi-
tors. The refinement of predictive biomarkers would help 
identifying populations that would benefit from WEE1 
inhibitor therapy. Understanding the prognostic significance 
of these biomarkers in relation to tumor treatment outcomes 
and patient prognosis is key to the development of appro-
priate treatment strategy. Despite these important progress, 
further investigation is warranted to identify additional 
biomarkers that can inform the development of treatment 
strategies.
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