
Vol.:(0123456789)

Journal of Cancer Research and Clinical Oncology (2024) 150:7 
https://doi.org/10.1007/s00432-023-05521-4

RESEARCH

Plasma cell‑free DNA as a sensitive biomarker for multi‑cancer 
detection and immunotherapy outcomes prediction

Juqing Xu1,2 · Haiming Chen3,4 · Weifei Fan2 · Mantang Qiu3,4 · Jifeng Feng1

Received: 17 August 2023 / Accepted: 16 November 2023 / Published online: 9 January 2024 
© The Author(s) 2024

Abstract
Background  Cell-free DNA (cfDNA) has shown promise in detecting various cancers, but the diagnostic performance of 
cfDNA end motifs for multiple cancer types requires verification. This study aimed to assess the utility of cfDNA end motifs 
for multi-cancer detection.
Methods  This study included 206 participants: 106 individuals with cancer, representing 20 cancer types, and 100 healthy 
individuals. The participants were divided into training and testing cohorts. All plasma cfDNA samples were profiled by 
whole-genome sequencing. A random forest model was constructed using cfDNA 4 bp-end-motif profiles to predict cancer 
in the training cohort, and its performance was evaluated in the testing cohort. Additionally, a separate random forest model 
was developed to predict immunotherapy responses.
Results  In the training cohort, the model based on 4 bp-end-motif profiles achieved an AUC of 0.962 (95% CI 0.936–0.987). 
The AUC in the testing cohort was 0.983 (95% CI 0.960–1.000). The model also maintained excellent predictive ability in 
different tumor sub-cohorts, including lung cancer (AUC 0.918, 95% CI 0.862–0.974), gastrointestinal cancer (AUC 0.966, 
95% CI 0.938–0.993), and other cancer cohort (AUC 0.859, 95% CI 0.776–0.942). Moreover, the model utilizing 4 bp-end-
motif profiles exhibited sensitivity in identifying responders to immunotherapy (AUC 0.784, 95% CI 0.609–0.960).
Conclusion  The model based on 4 bp-end-motif profiles demonstrates superior sensitivity in multi-cancer detection. Detec-
tion of 4 bp-end-motif profiles may serve as potential predictive biomarkers for cancer immunotherapy.
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Introduction

Cancer is a leading cause of morbidity and mortality world-
wide, and the number of newly diagnosed cancer cases per 
year is increasing (Sung et al. 2021). Effective diagnosis 
and prevention are key points for improving patient progno-
sis. Although new cancer screening methods are available, 
including low-dose computed tomography (LDCT) for lung 
cancer scanning and gastrointestinal endoscopy to detect 
gastroenteric tumors, the detection of tumors and survival 
rates remain unsatisfactory (Ajani et al. 2022; Benson et al. 
2021; Blandin Knight et al. 2017). Their usage has been 
limited due to factors such as radiation exposure, invasion, 
high false-positive rates, and high costs. Therefore, there is 
an urgent need to develop a reliable, non-invasion, accurate, 
and cost-effective approach for detecting cancers.

Cell-free DNA (cfDNA) is a DNA fragment released into 
the bloodstream by cell apoptosis or necrosis (Kustanovich 
et  al. 2019). In cancer patients, a fraction of cfDNA is 
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released by tumor cells, which is termed circulating tumor 
DNA (ctDNA) (Aggarwal et al. 2021). Accumulating evi-
dence suggests that circulating DNA fragments do not 
undergo a random fragmentation process. They carry genetic 
and epigenetic information from the cell and tissue of origin, 
which can be associated with tissue sources, disease status, 
chromatin accessibility, and nuclease activities (Chan et al. 
2016; Jiang et al. 2018; Lo et al. 2021; Sun et al. 2015). 
As a result, cfDNA analysis, as a non-invasive approach, is 
increasingly finding applications in the fields of tumor diag-
nosis and treatment. The most prevalent method for cfDNA 
detection is somatic mutation sequencing. However, the sen-
sitivity of mutation-based approaches may be compromised 
in patients with a limited number of recurrent mutations 
and the presence of non-tumor mutations resulting from 
clonal hematopoiesis of indeterminate potential (Cescon 
et al. 2020; Genovese et al. 2014). Additionally, several 
methylation-based cfDNA assays have been developed. 
Nevertheless, a significant challenge hindering its clinical 
implementation is the current incapability of existing detec-
tion technologies to simultaneously achieve high sensitivity, 
low cost, and deep sequencing coverage (Luo et al. 2021).

Recently, several cfDNA fragmentation-based 
approaches, including fragment size, end motifs, and nucleo-
some footprints, etc., have become new multi-omics technol-
ogies after ctDNA mutation and methylation (Garcia-Pardo 
et al. 2022; Wang et al. 2019). For example, tumor-secreted 
DNA tends to possess a shorter length compared to non-
tumor-secreted DNA. Thus, detecting cfDNA fragment size 
can help distinguish cancer patients from healthy subjects 
(Chabon et al. 2020; Mouliere et al. 2018). However, the 
sensitivities of the approaches based on fragment size fea-
tures may not be sufficient for clinical use in some tumors 
with low ctDNA shedding rates (Cristiano et  al. 2019; 
Mouliere et al. 2018). Alternatively, analysis of cfDNA 
fragmentation features, including nucleosome position, 
occupancy and spacing (referred to as nucleosome foot-
prints analysis) can reveal the tumor tissue-of-origin (Snyder 
et al. 2016; Vanderstichele et al. 2022). However, current 
approaches for cfDNA nucleosome remain challenging due 
to a lack of robust computational methods (Doebley et al. 
2022). The profile of cfDNA end motifs represents a distinct 
type of plasma DNA fragmentation signature, revealing a 
large number of tumor derived changes (Jiang et al. 2020). 
As demonstrated by previous research, the hepatocellular 
carcinoma (HCC)-derived DNA fragments carry a differ-
ent distribution of end motifs compared to non-tumoral 
DNA (Jiang et al. 2018). Moreover, a recent study revealed 
that patients with HCC exhibited a preferential pattern of 
cfDNA 4-mer end motifs compared to non-HCC subjects, 
with an AUC of 0.86 (Jiang et al. 2020). Such preferred 
end motifs were also observed among other cancer types 
(Jiang et al. 2020; Wang et al. 2023a). More importantly, the 

tumor-associated preferred end motifs are more pervasive, 
hence more readily detectable, and may therefore serve as 
an emergent class of ctDNA signatures. These findings col-
lectively suggested that the end motif approach could out-
perform other fragment measures in identifying a variety 
of cancers (Cristiano et al. 2019). However, the utility of 
cfDNA end motifs in multiple cancer types still needs veri-
fication. Thus, we hypothesized that differences in cfDNA 
end motifs could enhance sensitivity for detecting cancer, as 
demonstrated by previous studies (Jiang et al. 2020, 2018) 
and facilitate non-invasive genomic analysis of cancer. In 
this study, we utilized 4 bp-end-motif profile to establish 
a robust model for detection multiple cancers. This model, 
based on 4 bp-end-motif, could also predict the response to 
immunotherapy. Our findings demonstrate that the proposed 
approach can aid in cancer detection and guide treatment.

Methods

Patient cohorts and sample collection

This study enrolled 106 individuals with histologically con-
firmed cancer and 100 healthy volunteers from the Affiliated 
Geriatric Hospital of Nanjing Medical University, China. 
The cancer cohort consisted of various cancer types, includ-
ing lung cancer (33), gastric cancer (21), colon cancer (18), 
esophageal carcinoma (4), breast cancer (2), hepatocellular 
carcinoma (4), duodenal carcinoma (2), cholangiocarcinoma 
(2), renal cancer (4), bladder cancer (2), pancreatic cancer 
(3), ovarian cancer (3), endometrial cancer (1), mediastinal 
tumor (1), tongue cancer (1), thyroid cancer (1), cholangio-
carcinoma (2), prostatic cancer, lymphoma (1), metastatic 
hepatic carcinoma (1), and lymph node metastasis carci-
noma (1). Clinical characteristics, including immunother-
apy information, were collected. The clinical information 
of individuals with cancer and volunteers without cancer is 
listed in Supplementary Table S2, 3. We performed plasma 
sample collection, shipping, and storage, cfDNA extraction, 
library preparation, and whole-genome sequencing (WGS) 
analysis uniformly as described in Supplementary Materi-
als and Methods. In brief, the blood draw of the participants 
was performed from January 2022 to June 2022. The steps 
of cfDNA extraction, library preparation, and WGS were 
performed immediately after each other in batches by the 
College of American Pathologists (CAP)-accredited clinical 
laboratory (Beijing GenePlus Technology Inc., China). The 
study was approved by the ethics committee at the Affiliated 
Geriatric Hospital of Nanjing Medical University (approval 
no.014) and complied with the Declaration of Helsinki. All 
participants signed written informed consent forms.
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cfDNA extraction and whole‑genome sequencing

We performed plasma sample collection, cfDNA extrac-
tion followed by WGS, as described in Supplementary 
Materials and Methods. Briefly, the venous blood samples 
were collected during routine physical checks (healthy 
volunteers) or on the day of therapy, prior to the first 
treatment (cancer patients). All samples were collected, 
shipped, and processed uniformly. A total of 5–10 ng of 
plasma cfDNA per sample was subject to PCR-free WGS 
library construction with the VAHTS® Universal DNA 
Library Prep Kit for Illumina V3 (Vazyme). The libraries 
underwent paired-end sequencing on DNBSEQ-T7. To 
minimize bias, the sample operating team was blinded 
to the case or control status of the samples during the 
whole process.

Bioinformatic analysis and modeling

Raw sequencing data processing was carried out as 
described in Supplementary Materials and Methods. The 
libraries in this study had a mean sequencing depth 
5×. We extracted 4 bp-end-motif of cfDNA fragments 
from the WGS data for model construction. The cfDNA 
4 bp-end-motif referred to the 5′ end 4 bp sequences, as 
reported by Jiang et al. (2020). The proportion and fre-
quency of each 4 bp-end-motif over the total motifs (256, 
44) was calculated for each sample. Random forest (RF) 
models incorporating variable importance ranking were 
constructed and evaluated based on the training cohort 
using fivefold cross-validation as the resampling method 
to avoid overfitting of the model to new data. The predic-
tive model’s performance was validated on the testing set.

Statistical analysis

For statistical analysis, the receiver operating characteris-
tic (ROC) curves were generated using the pROC package 
(1.18.4). Based on true positive (TP), true negative (TN), 
false positive (FP), and false negative (FN) of cancer pre-
diction, we calculated the sensitivity [TP/(TP + FN)], speci-
ficity [TN/(TN + FP)], positive (PPV) [TP/(TP + FP)] and 
negative predictive values (NPV) [TN/(TN + FN)], accu-
racy [ (TP + TN)/(TP + FP + TN + FN)], as well as their 
corresponding 95% confidence intervals. Heatmap clus-
tering analysis was generated using the pheatmap package 
(1.0.12) in R. The Mann–Whitney test, Fisher's exact test, 
and ANOVA analysis were performed using SPSS, and the 
Wilcoxon test was conducted using R.

Results

Participant characteristics

A total of 106 cancer patients treated in the Department 
of Hematology and Oncology, Affiliated Geriatric Hospital 
of Nanjing Medical University, were enrolled in the study. 
These patients represented 20 different cancer types, and 
their diagnoses and stages were assigned by treating phy-
sician according to the WHO classification. Among them, 
2.8% were at stage II, 13.2% were at stage III, and 84.0% 
were at the stage IV. The cancer group had a median age of 
67 (range 33–93), and the majority were male (60.4%) (Sup-
plementary Table S2). Additionally, 100 healthy volunteers 
were collected from the Physical Examination Center, with 
a median age of 57 years (range 24–88), and males account-
ing for 27% of the participants (Supplementary Table S3). 
All participants were of Chinese origin. As shown in Fig. 1, 

Fig. 1   Workflow of the study. A total of 206 participants (cancer 106, 
healthy 100) were included in this study. Whole-genome sequencing 
of plasma cfDNA was performed, and their cfDNA 4bp-end-motif 
was profiled. 145 participants (cancer 75, healthy 70) were allocated 
to training for building the random forest algorithm-based machine 

learning model. 61 participants (cancer 31, healthy 30) were allocated 
to testing for confirming the model performance. 44 cancer patients 
administered immunotherapy (response 13, non-response 31) were 
allocated for building random forest algorithm-based machine learn-
ing model to predict the immune response
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the 206 participants were randomly assigned to the training 
cohort (75 multi-cancer and 70 healthy) and testing cohort 
(31 multi-cancer and 30 healthy) at a ratio of 7:3. The train-
ing cohort was employed for model construction and train-
ing, while the testing cohort was used for independent vali-
dation of selected feature variables and the corresponding 
model. The clinical characteristics of the participants are 
presented in Supplementary Table S1. Notably, there were 
uneven distributions in the mean age, sex, and BMI among 
patients with and without cancer within the cohorts. The 
proportion of females was higher in the healthy groups com-
pared to the cancer groups (ptrain < 0.001 and ptest = 0.012, 
Fisher's exact test), and the healthy volunteers were gen-
erally younger than the cancer patients (ptrain = 0.002 and 
ptest = 0.243, Mann–Whitney test). As expected, the propor-
tion of patients with BMI ≤ 24 was higher among cancer 
patients (ptrain = 0.002 and ptest = 0.044, Fisher's exact test). 
Smoking status was comparable between the two groups. 
Despite these observed biases in the distribution of base-
line clinical characteristics between cancer and non-cancer 
subjects, it’s important to note that these differences had no 
significant effect on the performance of the prediction model 
(P > 0.5, ANOVA analysis).

Of the cancer patients, 44 were administered immuno-
therapy, and 95.5% were at stage IV. The most common pri-
mary tumor observed were gastrointestinal (43.2%), lung 
(36.4%), and renal (9.1%) cancers. All patients received 
treatment involving the programmed death receptor 1 (PD-
1) inhibitor, either alone or in combination with targeted 
agents, chemotherapy, or other immunotherapies. Among 
those who received immunotherapy, 13 patients (29.5%) 
achieving a response, while 31 patients (70.5%) displayed 
non-response to the treatment (Supplementary Table S2). 
A response was identified as the sum of complete response 
(CR) and partial response (PR), while non-response referred 
to patients who did not achieve CR or PR. CR was defined as 
disappearance of all target lesions. PR was defined as at least 
a 30% decrease in the sum of diameters of target lesions, 
taking as reference the baseline sum diameters (Eisenhauer 
et al. 2009).

Model construction, validation, and statistical 
analysis

Initially, we utilized the random forest algorithm to select 
important variables through variable importance ranking 
within the training set. We identified thirteen representa-
tive motifs contributing most significantly to the predictive 
model. Subsequently, we employed ROC curve analysis to 
study the potential diagnostic ability of the model for can-
cer detection. The AUC value between cancer patients and 
healthy participants was 0.962 with a sensitivity of 88.0% 
at 88.6% specificity (Supplementary Figure S1A, Table S4). 

Heatmap clustering analysis was then employed to discern 
the distinctive characteristics of these thirteen plasma motifs 
between cancer patients and healthy participants (Supple-
mentary Figure S1B). This analysis revealed that the thir-
teen motifs tended to form distinct clusters between the two 
groups. Figure 2A also depicts the variable importance of 
features for the random forest model. AAGG was the most 
important of the thirteen factors, followed by ACCT and 
AGGA. Furthermore, we analyzed the frequency distribution 
of these thirteen selected variables across the 206 samples. 
The frequencies of all thirteen motifs showed significant 
differences between the cancer patients and healthy partici-
pants. Specifically, the frequencies of motif AAAA, ATGA, 
ACAC, and ACGA were significantly increased in cancer 
patients, while the frequencies of the remaining nine motifs 
(AAGG, AGGC, AGGA, ACTG, AGGG, ACCC, ACCT, 
ACCG, and AACG) showed a significant decrease in cancer 
patients (Fig. 2B). Previous studies have indicated that the 
sequence of end motif AAAA was highly expressed in hepa-
tocellular carcinoma (HCC) samples and enriched in shorter 
sequences (< 150 bp) (Jiang et al. 2020; Jin et al. 2021). 
Consistent with prior findings, the abundance of end motif 
AAAA in our results was significantly increased in multi-
cancer. However, data on the corresponding other sequences 
were not reported, which may be related to the different 
sequencing platforms. Despite this, considering that plasma 
cfDNA is contributed to the tissue of origin and that shorter 
fragments (< 150 bp) are predominantly derived from tumor 
secretion (Mouliere et al. 2018), our findings strongly sug-
gested a preferential association of the end motifs AAAA, 
ATGA, ACAC, and ACGA with tumor-derived DNA ends. 
However, further research is needed to definitively establish 
if AAGG, AGGC, AGGA, ACTG, AGGG, ACCC, ACCT, 
ACCG or AACG are correlated with ctDNA fragment ends. 
Based on assessments in the testing cohort, the predictive 
model achieved an AUC of 0.962 and a sensitivity of 0.880 
at a specificity of 0.886 (Fig. 2C, Table S4). These results 
suggest that our model exhibited an excellent ability to dis-
tinguish between cancer and healthy subjects.

Performance of the predictive model in identifying 
multi‑cancer

Subsequently, we examined the model’s performance 
across various types of cancer cohorts by combining the 
training cohort and testing cohort. A total of 106 multi-
cancer patients were stratified into three sub-cohorts: lung 
cancer cohort (33), gastrointestinal cancer cohort (54), and 
the remaining types of tumors were grouped into the ‘other 
cancer’ cohort (19). The results consistently demonstrated 
that the model exhibited outstanding detection capabilities 
for each specific tumor type. As shown in Fig. 3 and Sup-
plementary Table S5, the model’s AUC in the lung cancer 
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cohort was 0.92 (95% CI 0.86–0.97), with sensitivity and 
specificity were 0.85 and 0.83, respectively. The model’s 
AUC in the gastrointestinal cancer cohort was 0.97, with 
a sensitivity of 0.94 at a specificity of 0.84. A similarly 
high level of performance was observed in the ‘other can-
cer’ cohort, achieving an AUC of 0.86 and a sensitivity 
of 0.63 at 0.82 specificity. Furthermore, we assessed the 
model’s performance across different cancer stages. For 

stage II–III, the AUC was 0.97 (95% CI 0.94–1.0) with 
a sensitivity of 1.0 and a specificity of 0.94. In stage IV, 
the model achieved an AUC of 0.96 (95% CI 0.94–0.97), 
along with a sensitivity of 0.97 and a specificity of 0.94. 
These results indicated that the model consistently deliv-
ered exceptional performance across various cancer stages. 
Additionally, it's worth noting that cancer scores exhibited 

Fig. 2   Predictive model construction and validation. A Variable 
importance plot from random forest analysis (mean decrease accu-
racy). The Mean Decrease Accuracy plot expresses how much accu-
racy the model losses by excluding each variable. The variables are 
presented from descending importance. The higher the value of mean 
decrease accuracy, the higher the importance of the variable in the 
model. B Boxplot showing differential frequencies between cancer 
and healthy subjects for the thirteen representative 4bp-end-motifs 

contributing most significantly to the model (****: p < 0.0001, Wil-
coxon rank-sum test). X-axis represented the thirteen important vari-
ables from random forest analysis. Y-axis (relative abundance) repre-
sented the frequency of each motif which was calculated by dividing 
the number of reads carrying that motif by the total number of reads. 
C ROC curve evaluating the performance of predictive model in dis-
tinguishing cancer from healthy subjects for the testing set (AUC = 
0.983)

Fig. 3   Evaluation the performance of predictive model in various cancer types. A ROC curve for the lung cancer cohort (AUC = 0.918). B ROC 
curve for the gastrointestinal cancer cohort (AUC = 0.966). C ROC curve for the other cancer cohort (AUC = 0.859)
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variation not only across different cancer types but also 
across clinical stages, as visualized in Fig. 4.

Prediction of tumor immunotherapy by cfDNA 
4 bp‑end‑motif‑based model

To assess the value of cfDNA end motif in predicting 
response to immunotherapy across different tumor types, 
we evaluated the relationship between 4  bp-end-motif 
profiles and efficacy using immune check point inhibits. 
Among 44 immunotherapy-treated participants, 13 (29.5%) 
achieved a response, while 31 (70.5%) did not respond. We 
developed a random forest model and identified six most 
important variables (TGAC, CCCG, GGGC, ACAC, GGTC, 
and GATT) (Fig. 5A) through variable importance ranking. 
ROC curve analysis was employed to evaluate the potential 
predictive ability of immunotherapy outcomes. The AUC 
between response and non-response was 0.784 (95% CI 
0.609–0.960) with a sensitivity of 0.846 and a specificity of 
0.742 (Fig. 5B, Table S6). These findings suggest that pre-
treatment plasma DNA end motifs hold promise for predict-
ing immunotherapy outcomes.

Discussion

In this report, we analyzed the 4  bp-end-motif feature 
derived from the WGS data, which identifies as the first 
4-nucleotide sequence on each 5′ fragment end of plasma 
DNA after alignment to the reference genome (Jiang 
et al. 2020). Our findings demonstrated that profiling the 

distribution and sequences of cfDNA end motifs can effec-
tively differentiate tumors from non-tumoral samples and 
can predict immunotherapy response.

In our study, the 4 bp-end-motif machine learning model, 
using the random forest algorithm, achieved an AUC of 
0.983 (95% CI 0.96–1.00) and exhibited a sensitivity of 0.90 
at a specificity of 0.87 in the testing cohort. In addition, the 
model showed excellent performance across various cancer 
stages, with high AUC values in both stage II-III (AUC: 
0.97, 95% CI 0.94–1.0) and stage IV (AUC: 0.96, 95% 
CI 0.94–0.97). This performance surpassed that of other 
reported prediction models based on cfDNA end-motif pro-
files (Guo et al. 2022; Jiang et al. 2020; Wang et al. 2023a, 
b). Moreover, the model’s performance varied across differ-
ent cancer types, with gastrointestinal cancer group showing 
the highest AUC (0.97, 95% CI 0.94–0.99), followed by lung 
cancer group (AUC: 0.92, 95% CI 0.86–0.97) and finally 
the other cancer group (AUC: 0.86, 95% CI 0.78–0.94). We 
noted an upward trend in the distribution of cancer scores 
from stage II to stage IV. Taken together these findings that 
the possible reason of our model outperform other existing 
models might be related to the association with late tumor 
stage and cancer-related heterogeneity (Bettegowda et al. 
2014; Liu et al. 2020; van der Pol and Mouliere 2019). It’s 
worth noting that our model exhibited some biases in detect-
ing different tumor types, likely due to an uneven sample 
proportion used in the model construction.

Previous study has suggested that the proportion of 
tumor-derived DNA fragment size is enriched in certain 
cancer types (e.g., liver, colorectal, lung, and breast) that 
shed more ctDNA into the bloodstream, while detection 

Fig. 4   Distribution of cancer scores by cancer type (A) and cancer stage (B). Each dot in the boxplots represents the cancer score of each partici-
pant. The bar plot shows the mean value and standard deviation of each stage group. The case numbers in the groups are indicated
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rates are lower in low-shedding cancer types like renal, blad-
der, pancreatic, and glioma (Mouliere et al. 2018). Notably, 
our study encompassed some cancers with ‘low-shedding 
rates’ classified within gastrointestinal cancer and other can-
cer types. Remarkably, the prediction model, constructed 
using 4 bp-end-motif, yielded high AUC values across vari-
ous cancer types, indicating its consistent capacity to dis-
tinguish patients with cancer from non-cancer subjects. As 
mentioned earlier, cfDNA methylation-based methods have 
been used for multi-cancer detection, exhibited sensitivities 
for stage II–IV ranging from 0.43 to 0.93 (Liu et al. 2020). 
The sensitivity of our model was 1.0 in stage II–III, and 0.97 
in stage IV for all cancer types, which is significantly better 
than their report. Furthermore, methylation-based methods 
usually rely on immunoprecipitation enrichment or targeted 
enrichment, limiting their ability to simultaneously achieve 
high sensitivity, low cost, and deep sequencing coverage 
(Luo et al. 2021). In contrast, our approach, focusing on 
plasma DNA end motifs, offers the advantage of achieving 
maximal diagnostic power with a relatively small number 
of DNA molecules analyzed (Jiang et al. 2020). These find-
ings indicate that the detection of cfDNA end motifs is both 
highly sensitive and broad-spectrum, making it suitable for 
multiple cancer diagnosis (Jiang et al. 2020).

Recently, research has highlighted the role of cfDNA 
in predicting tumor recurrence and guiding treatment. For 
instance, a study by Y. Wang et al. revealed that cfDNA 
fragmentomics can potentially predict the response to neo-
adjuvant chemoradiotherapy (nCRT) in locally advanced 

rectal cancer (AUC: 0.96) (Wang et al. 2023b). Powles et al. 
reported that patients with urothelial carcinoma who tested 
positive for ctDNA were more sensitive to adjuvant atezoli-
zumab (Powles et al. 2021). Additionally, our study reana-
lyzed 44 patients who received immunotherapy, and found 
that the baseline plasma 4 bp-end-motif based model exhib-
ited high sensitivity in distinguishing responders from non-
responders, achieving a sensitivity of 0.846 at a specificity 
of 0.742. These findings highlight the potential of utilizing 
pre-treatment cfDNA end motifs to identify patients likely to 
benefit from immunotherapy. Notably, our study is the first 
to demonstrate the potential of cfDNA end motif profiles as 
therapeutic biomarkers for immunotherapy in multi-cancer 
patients. However, the underlying mechanisms behind these 
observations remain poorly understood. Recent data have 
suggested that variations in plasma DNA profiles were asso-
ciated with the deletion of the deoxyribonuclease 1-like 3 
(DNASE1L3) gene. Serpas et al. showed that genetically 
inactivating the DNASE1L3 gene led to changes in the rela-
tive frequencies of cfDNA 4-mer end motifs (Serpas et al. 
2019). Patients with DNASE1L3 gene deletion exhibited 
aberrations in size and a reduction of a ‘CC’ end motif of 
plasma DNA (Chan et al. 2020). Furthermore, many human 
cancers exhibit down-regulation of DNASE1L3 expression, 
and DNASE1L3 deficiency in mice led to delayed tissue 
recovery, increased chronic inflammation, immune cell 
dysfunction, impaired antitumor immunity, and ultimately 
affected the antitumor immune responses (Li et al. 2023; 
Liu et al. 2021). These findings suggest that the ability of 

Fig. 5   Immunotherapy prediction model construction and validation. 
A Random forest algorithm identifying six most representative motifs 
based on mean decrease accuracy. B ROC curve evaluating the per-

formance of predictive model in distinguishing response from non-
response for the patients receiving immunotherapy (AUC = 0.784)
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end motif profiling to predict immunotherapy response may 
be linked to immune function dysregulation mediated by 
aberrant DNASE1L3 expression. Several biomarkers used 
to guide therapy selection, such as programmed death-ligand 
1 (PD-L1) expression, tumor mutation burden (TMB), and 
microsatellite instability (MSI), often rely on invasive 
tumor tissue biopsies (Anagnostou et al. 2022). Addition-
ally, minimal residual disease (MRD) has gained attention 
as a ctDNA-based detection approach primarily used for 
monitoring recurrence and guiding adjuvant immunotherapy 
in early-stage disease (Chaudhuri et al. 2017; Powles et al. 
2021; Tie et al. 2022).However, there are limited reports 
on its role as a predictive marker for immunotherapy in 
advanced cancers. Collectively, our study demonstrates that 
cfDNA end motif profiles offer significant promise for non-
invasive assessment and provide a new avenue for predicting 
clinical outcomes.

Several limitations exist in this study. Firstly, despite 
the remarkable performance in detecting multi-cancers and 
predicting immune response, the underlying mechanism of 
cfDNA end motifs remains not fully understood, necessitat-
ing further research into their mechanisms. Furthermore, 
the imbalance of baseline characteristics (age/gender/BMI) 
and the limited size of our sample population may introduce 
bias. Expanding the sample size and equilibrating the demo-
graphics in future studies will enhance the statistical power 
and provide more accurate estimates of the model’s predic-
tive performance. Additionally, our study lacks a benign 
lesion group of comparison, which means our results do 
not offer insights into the model’s ability to discriminate 
between cancer and benign lesions. Further validation with 
independent and large-scale cohorts is necessary to address 
this limitation.

In conclusion, our study supports the nation that detecting 
the 4 bp-end-motif feature holds promising clinical applica-
tion for cancer detection and provides profound insights for 
the design of personalized treatment strategies.

Supplementary Information  The online version contains supplemen-
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