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Abstract
Purpose Human papilloma virus (HPV)-positive head and neck squamous cell carcinoma (HNSCC) displays distinct epi-
demiological, clinical, and molecular characteristics compared to the negative counterpart. Alterations in autophagy play an 
important role in cancer, and emerging evidence indicates an interplay of autophagy in HNSCC carcinogenesis and tumor 
promotion. However, the influence of HPV infection on autophagy in HNSCC has received less attention and has not been 
previously reviewed. Therefore, we here aimed to systematically review the role of autophagy explicitly in  HPV+ HNSCC.
Methods Studies accessible in PubMed, Embase, Scopus, and Web of Science investigating HNSCC, highlighting the 
molecular biological differences between  HPV− and  HPV+ HNSCC and its influences on autophagy in HNSCC were analyzed 
according to the PRISMA statement. A total of 10 articles were identified, included, and summarized.
Results The HPV16 E7 oncoprotein was reported to be involved in the degradation of AMBRA1 and STING, and to enhance 
chemotherapy-induced cell death via lethal mitophagy in HNSCC cells. Autophagy-associated gene signatures correlated 
with HPV-subtype and overall survival. Additionally, immunohistochemical (IHC) analyses indicate that high LC3B expres-
sion correlates with poor overall survival in oropharyngeal HNSCC patients.
Conclusion HPV may dampen general bulk autophagic flux via degradation of AMBRA1 but may promote selective 
autophagic degradation of STING and mitochondria. Interpretations of correlations between autophagy-associated gene 
expressions or IHC analyses of autophagy-related (ATG) proteins in paraffin embedded tissue with clinicopathological 
features without biological validation need to be taken with caution.
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Introduction

Head and neck squamous cell carcinoma (HNSCC) mainly 
arises from the mucosa of the oral cavity, pharynx, larynx, 
and nasal and paranasal sinuses. With a global incidence of 
878 348 new registered cases, it was the seventh most com-
mon malignancy worldwide in 2020 (Sung et al. 2021). The 
region of tumor appearance is easily susceptible to exposi-
tion of different carcinogens, mostly nicotine and alcohol. 
Due to reduced exposure to noted risk factors in recent dec-
ades, the global incidence of HNSCC is steadily declining 
(Vigneswaran and Williams 2014; Ellington et al. 2020). 
Meanwhile, the incidence of human papillomavirus—posi-
tive  (HPV+) HNSCC, particularly oropharyngeal squamous 
cell carcinoma (OPSCC), is slowly rising in recent decades 
(Johnson et al. 2020; Lechner et al. 2022). A recent meta-
analysis reported the global percentage of OPSCC that are 
 HPV+ to be 33% in 2021. However, high variation in the 
reported prevalence depending on the geographical region 
need to be considered, ranging from 0% in South India to 
85% in Lebanon (Carlander et al. 2021). Widely used clini-
cal risk factors in relation to HNSCC are the TNM classi-
fication system and HPV/p16 status. HPV types have been 
categorized regarding their potential to induce malignant 
transformation of epithelial cells of the cervix or benign 
epithelial lesions into ‘high-risk’ (HR) and ‘low-risk’ (LR) 
(Cohen et al. 2019). Among the HR-HPV types involved in 
head and neck carcinogenesis, HPV16 was reported to be 
the most common HPV type in OPSCC, with a prevalence 
over 80%, followed by HPV33 and HPV18 (0.7 and 0.3%) in 
a recent meta-analysis including studies from 44 countries 
(Ndiaye et al. 2014). Pathological workup can further yield 
insights into proliferation, vascularization, and perineural 
invasion. This data help clinicians define an appropriate 
therapy regimen within an interdisciplinary team (Huang 
and O’Sullivan 2017; Zanoni et al. 2019; Saidak et al. 2020).

Constant improvement with new guidelines and adjust-
ments based on clinical studies, such as checkpoint inhibi-
tors and robotic surgery are made to decrease mortality rates 
and to improve quality of life for HNSCC patients (Masarwy 

et al. 2021; Virgilio et al. 2021). Recently, modifications 
within the 8th edition of the American Joint Committee of 
Cancer (AJCC) staging system have acknowledged major 
differences between  HPV+ and  HPV− HNSCC, and these are 
considered as two distinct entities with different tumor biol-
ogy. This differentiation is based on different risk-, molec-
ular-, and outcome-profiles (Lechner et al. 2022; Gillison 
et al. 2008). Although mostly linked to higher radiosensi-
tivity and better clinical outcomes, a study from our center 
reported 15 (7.1%) cases with distant metastasis of a total 
211  HPV+ OPSCC patients (Brkic et al. 2021). Importantly, 
clinical risk factors, typical for  HPV− HNSCC, are shown to 
have a low prognostic value for  HPV+ patients (Brkic et al. 
2021; Mendenhall et al. 2019).

Macroautophagy, which will be referred to as 
“autophagy”, is a dynamic cellular recycling process through 
which cells can digest their own cellular contents by lyso-
somal degradation (Fig. 1). Autophagy substrates include 
single proteins to whole organelles, which are degraded to 
generate energy and new building blocks to facilitate cell 
survival and cellular renewal (Mizushima and Komatsu 
2011). The substrates are targeted for degradation upon 
being surrounded and sequestered by an expanding mem-
brane cisterna termed the “phagophore” (Seglen et al. 1987), 
which closes in on itself to form a sequestering double/multi-
membrane vacuole termed the “autophagosome”. The cyto-
plasmic contents inside the autophagosomes are degraded 
upon fusion of the outer autophagosome membrane with 
a lysosome. Autophagosomes were initially found by elec-
tron microscopy studies of mouse and rat cells (Clark 1957; 
Novikoff 1959; Ashford and Porter 1962; Novikoff and 
Essner 1962; Duve and Wattiaux 1966; Yang and Klionsky 
2010). Genetic studies in yeast, identified a set of autophagy-
related (ATG) genes, which are evolutionary conserved from 
plants to humans, and which make up the core machinery 
of the autophagic pathway. Many of the ATGs, including 
ULK1 (homologue of yeast ATG1), ATG5, Beclin-1 (homo-
logue of yeast ATG6) and ATG12, play important roles in 
autophagosome formation.

Autophagy may act preventive in the early stages of car-
cinogenesis (Galluzzi et al. 2015), whilst it can act to pro-
mote or limit the progression of established cancers in a 
manner that may be tumor- and context dependent (Gewirtz 
2014; Zhong et al. 2016; Marsh et al. 2021; Galluzzi et al. 
2017; Linder and Kögel 2019; Rojas-Sanchez et al. 2019; 
Towers et al. 2020). Data mining of the HNSCC cohort of 
the cancer genome atlas (TCGA) revealed that high mRNA 
expression of ATG5 or Beclin-1 (BECN1) is associated with 
decreased overall survival (New et al. 2017; Digomann et al. 
2019), indicating a putative association between increased 
activity of autophagy and decreased overall survival. On 
the other hand, low protein expression of Beclin-1 has 
been linked to poor prognosis in hypopharyngeal (Wang 
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et al. xxxx), laryngeal (Huang et al. 2013), and oral tongue 
HNSCC (Hu et al. 2016). Experimental studies of HNSCC 
cells have suggested that autophagy may promote treatment 
resistance through cell protective mechanisms in response to 
several types of chemotherapeutics or radiation (Sannigrahi 
et al. 2015). However, in some cases, autophagy can instead 
contribute to therapy-induced cell death (Sannigrahi et al. 
2015).

Only few studies assessing the autophagic activity in 
 HPV+ HNSCC could be identified. Research in this field 
might lead to better risk-stratification and new therapy 
options, which are of utmost interest for the subgroup of 
 HPV+ HNSCC patients with dire prognosis. Although 
several reviews summarize recent findings on the roles of 
autophagy in HNSCC (Sannigrahi et al. 2015; Rikiishi 2012; 
Wu et al. 2015; Cosway and Lovat 2016; Adhauliya et al. 
2016; Cruz-Gregorio et al. 2019; Harsha et al. xxxx; Liao 
et al. 2021; Raudenská et al. 2021; Bos et al. 2021; Ander-
son and O’Sullivan 2022), similar literature reviews giving 
an overview of previous studies looking specifically into 
autophagy in  HPV+ HNSCC are still missing. Therefore, we 
here aimed to systematically review the role of autophagy 

explicitly in  HPV+ HNSCC. This systematic review offers 
a new perspective on available evidence regarding the influ-
ence of HPV on autophagy activity and autophagy-associ-
ated genes in  HPV+ HNSCC.

Methods

Search strategy, eligibility criteria, and data 
extraction

This systematic review was conducted in compliance with 
the Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) guidelines and recommenda-
tions (Supplementary Table I) (Page et  al. 2021). All 
studies investigating HNSCC, highlighting the molecular 
biological differences between  HPV− and  HPV+ HNSCC 
and its influences on autophagy in HNSCC regardless 
of study design, virus serotype, or animal model were 
included in this review. To ensure a sufficient and broad 
coverage of primary literature, suitable studies accessi-
ble in PubMed, Embase, Scopus, and Web of Science 

Fig. 1  Schematic diagram of the autophagy machinery in mammalian cells
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published until November 30, 2022, were included in the 
primary screening. We performed the literature search 
using a specific Boolean search combination, e.g., for 
PubMed research: Autophagy AND HPV AND HNSCC. 
This search paradigm was adapted accordingly, if neces-
sary, to be suitable for the extraction of information using 
different databases.

Existing meta-analyses, reviews, and poster presenta-
tions were not considered for this review. Moreover, only 
original articles written in English were included in this 
review.

Primary screening of titles and abstracts of suitable 
studies found with the search paradigm across the four 
databases was performed independently by 2 authors 
(S.A.K. and A.A.). Prior to final inclusion, full texts 
of eligible articles were further screened and assessed 
according to methodological criteria as mentioned above.

Results

We were able to identify 68 articles after the primary 
screening in all databases. After eliminating duplicates and 
reviews, the titles, and abstracts of 25 suitable articles, pub-
lished in a year range from August 2017 to February 2023, 
were screened. Of these, 10 full-text articles were further 
assessed for eligibility. 9 articles were excluded during 
this step due to lack of focus on HPV and/or autophagy in 
HNSCC. Also, 5 conference abstracts were identified and 
excluded as well as one paper which was not available. 
Ultimately, ten articles that met the inclusion criteria were 
included in this review (Fig. 2).

The methodology and results of each of the included stud-
ies are summarized in Table 1. Thematically, the included 
original articles investigated the relationship between 
autophagy, HPV, and HNSCC in three different settings: bio-
informatic analyses, in vitro and in vivo molecular biological 

Fig. 2  Flow diagram of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
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studies, and analyses of formalin-fixed paraffin embedded 
HNSCC patient samples (insert Table 1 here).

Bioinformatic analyses

ATG genes gained attention in the field of cancer research 
within the last years (Mizushima 2018). However, since 
numerous genes are involved directly and indirectly in the 
autophagic machinery, it is difficult to assign a prognostic 
role to a single gene (Klionsky et al. 2021a). A bioinfor-
matic approach with comparisons between  HPV− and  HPV+ 
subtypes and correlations with the core set of ATG genes 
has not been performed. However, correlations to gene 
signatures identified within a larger list of 232 autophagy-
associated genes, which includes the ATGs (HADb; http:// 
autop hagy. lu) (Moussay et al. 2011) was performed in 3 
publications.

Yang et  al. (Yang et  al. 2020) reported on six genes 
(EGFR (Epithelial growth factor receptor), HSPB8 (Heat 
shock protein beta 8), PRKN (Parkin), CDKN2A (cyclin-
dependent kinase inhibitor 2A), FADD (Fas associated 
via death domain), and ITGA3 (Integrin subunit Alpha 3)) 
known to regulate autophagy directly or indirectly, and used 
these to construct a risk-signature gene cluster. This ena-
bled the authors to stratify the patient cohort into a low-risk 
and high-risk group independently of clinicopathological 
characteristics (sex, age, clinical stage, histological grade, 
anatomic subdivision, alcohol history, smoking status, HPV 
status, and mutational status of the samples). Comparative 
analysis of the HPV subtypes, revealed higher expression 
levels of EGFR and ITGA3 in  HPV− HNSCC, while higher 
CDKN2A expression was shown in  HPV+ HNSCC (Yang 
et al. 2020). Notably, a small number of  HPV+ cases was 
included in this study, and it is unclear what these dif-
ferences in expression levels would mean in relation to 
autophagy status in  HPV− versus  HPV+ subtypes.

Fang et al. (2021) proposed a 14-gene autophagy-associ-
ated risk signature for the prediction of overall survival (OS) 
and a 12-gene risk signature for the prognosis of disease-
specific survival (DSS) in HNSCC patients. They reported 
that the OS-related autophagy-associated gene signature 
revealed a high-risk score in the  HPV− cohort, whereas the 
risk score in the  HPV+ cohort was significantly lower (Fang 
et al. 2021).

Lastly, Guo et al. (2020) included long non-coding RNA 
(lncRNA) in the construction of a prognostic risk-signature 
profile. After multivariate Cox regression analysis, three 
autophagy-associated lncRNAs were significantly associ-
ated with survival outcome: AL121899.1, TTTY15 (Testis-
Specific Transcript, Y-Linked 15), and MIF-AS1 (MIF Anti-
sense RNA 1)overexpression of AL121899.1 was associated 
with worse prognosis, whereas overexpression of TTTY15, 
and MIF-AS1 correlated with better prognosis. TTTY15 

was overexpressed in the  HPV+ HNSCC cohort. ATG12, 
BECN1 and MAP1LC3B (Microtubule-associated proteins 
1A/1B light chain 3 B) were reported to be associated with 
the three autophagy-related lncRNA through analysis in 
Tumor Immune Estimation Resource (TIMER), Oncomine 
and Human Protein Atlas Database. ATG12 and BECN1 
were upregulated, whilst MAP1LC3 was downregulated in 
 HPV+ HNSCC tumors (Guo et al. 2020).

Molecular biological studies in vitro and in vivo

Thomas et al. were the first to investigate the mechanisms 
involved in increased cell death in  HPV+ HNSCC cells in 
response to chemotherapy and proposed a link to autophagy 
(Thomas et al. 2017). Specifically, the HPV16 E7 protein 
was reported enhance HNSCC cell death by selectively tar-
geting RB (Retinoblastoma protein) and induce ceramide-
dependent lethal mitophagy (Thomas et al. 2017). In a pre-
vious study of the same group, ceramide-dependent lethal 
mitophagy was initially suggested as a novel form of cell 
death in  HPV− HNSCC, and HPV16 E7 was identified as 
an activator of E2F5 (E2F Transcription Factor 5), which 
acts as a scaffold protein for DRP1 (Dynamin-related pro-
tein 1), an upstream inducer of ceramide-dependent lethal 
mitophagy (Sentelle et al. 2012). Upon DRP1 activation by 
Cisplatin (CDDP), the DRP1-E2F5 complex translocated 
to the mitochondria and enhanced ceramide-dependent 
mitochondrial fission (Thomas et al. 2017). This mitochon-
drial fission mediated an interaction between ceramide on 
the outer layer of the mitochondria and MAP1LC3B in the 
autophagosomal membrane and promoted lethal mitophagy 
(Thomas et al. 2017; Sentelle et al. 2012).

Another interesting interplay between autophagy and 
HPV16 in HNSCC was reported in a study by Luo et al. 
(Luo et al. 2020). It was already described that HPV18 E7 
binds and inhibits STING (Stimulator of interferon genes) 
in HEK 293 and HeLa cells directly (Lau et al. 2015). How-
ever, it was unclear how HPV16 evades STING-induced 
IFN-I (Interferon-1) signaling, since HPV16 E7 might 
have different functions due to low degree of homology to 
HPV18 E7. Besides revealing a correlation between STING 
signaling and enhanced  CD4+/CD8+ T cell infiltration, this 
group also noted that transfection of three HNSCC cell lines 
(93VU147T, UMSCC47, and FaDu) with an HPV16 E7 
expression plasmid inhibited STING-induced transcription 
of IFN-I target genes. Interestingly, co-immunoprecipitation 
assays did not show any direct HPV16 E7-STING associa-
tion. However, LCB-II levels were inversely correlated with 
STING levels in HPV16 E7-transfected HNSCC cell lines, 
indicating that HPV16 E7 may promote autophagy-depend-
ent degradation of STING. A direct interaction between 
HPV16 E7 and NLRX1 (NOD-like receptor X1) was further 
investigated, since NLRX1 had been reported to potentiate 
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autophagosome formation (Lei et al. 2012, 2016). NLRX1 
promoted autophagy-mediated inhibition of STING/IFN-I 
signaling in  HPV16+ HNSCC cells. These findings were 
validated in an HPV16 E6/E7–expressing HNSCC C57BL/6 
mouse model, MOC2-E6/E7. shNLRX1 MOC2-E6/E7 
showed enhanced STING signaling, leading to a decrease 
in cell proliferation and tumor volume, and an increase in 
inflammatory infiltrates within the tumor.

Another link between the HPV16 E7 protein and 
autophagy in HNSCC was described by Antonioli et al. 
(2021). Baseline and starvation-induced autophagy flux 
was significantly lower in  HPV16+ HNSCC cell lines com-
pared to  HPV− cells, as assessed by LC3B western blot-
ting and LC3-LAMP1 co-localization analyses in cells that 
had been treated with Bafilomycin A1. It had previously 
been shown that HPV16 E7 mediates RB degradation in 
a Calpain-dependent manner (calcium-activated cysteine 
proteases) (Antonioli et al. 2021). Interestingly, the authors 
found that HPV16 E7 also mediates the degradation of 
AMBRA1 (Autophagy and Beclin 1 Regulator 1)—a posi-
tive regulator of autophagy—in a calpain-dependent manner, 
as the HPV16 E7-mediated AMBRA1 degradation could 
be reverted by the addition of the calpain inhibitor ALLN.

Lee et al. (2021) and Cho et al. (2021) were investigat-
ing the interplay between p62/SQSTM1 (Sequestosome 1) 
and HPV16 in HNSCC. Based on their experiments, Lee 
et al. concluded that upon radiation treatments  HPV16+ 
HNSCC cells fail to induce autophagic LC3 flux, as 
assessed by LC3B western blotting in cells that had been 
treated with Bafilomycin A1, and undergo apoptotic cell 
death (Lee et al. 2021). Immunoblotting analyses showed 
no obvious difference in the expression level of p62 between 
 HPV− and  HPV16+ cell lines. Targeting the ZZ-domain of 
p62 by small molecule ligand, YOK1104 (Cha-Molstad 
et al. 2017), induced the self-polymerization of p62 and 
enhanced co-localization of p62 with LC3B and LAMP1 in 
 HPV− HNSCC cells compared to  HPV16+ HNSCC cells. 
Moreover, YOK1104 was able to induce p62-dependent 
apoptosis upon radiotherapy via caspase-8 activation (Lee 
et al. 2021). Cho et al. showed a similar radiosensitization 
upon benzoporphyrin derivative and photodynamic therapy 
in  HPV− HNSCC cells. Their study claims to show impaired 
autophagic activity in  HPV16+ HNSCC cells, however, no 
reliable autophagy monitoring method was used to come to 
such conclusion. LC3B immunoblots are shown in the pub-
lication, but only before and after the application of radio-
therapy. The inclusion of a lysosomal protease inhibitor is 
essential for the interpretation of the LC3 flux, but was not 
included in their experiments (Cho et al. 2021).

The most recent study regarding the interplay between 
HPV16 and autophagy in HNSCC, reported an increase of 
O-linked β-N-acetylglucosamine (O-GlcNAc) at Ser409 
in ULK1 upon infection with HPV16 E6/E7-expressing 

lentiviral constructs (Shi et al. 2022). The Ser409 O-Glc-
NAc modification stabilized ULK1 protein levels. HPV16 
E6/E7 expression also increased the levels of LC3-II, but it 
is unclear whether this was related to the increase observed 
in ULK1 protein levels, and unclear whether HPV16 E6/
E7 expression altered autophagy activity. TCGA data analy-
sis revealed that ULK1 mRNA is overexpressed in  HPV+ 
HNSCC patient samples (which predominantly are  HPV16+) 
and associated with improved overall survival.

Formalin‑fixed paraffin embedded HNSCC patient 
samples

In contrast to the aforementioned bioinformatics studies 
analyzing ATG and other autophagy-associated genes in 
TCGA-HNSCC data sets, only one study exclusively inves-
tigated the prognostic relevance of the expression of an 
autophagy-associated gene (LC3B) in  HPV+ HNSCC in an 
in-house HNSCC patient cohort (Lai et al. 2018). Whereas 
high LC3B expression was significantly associated with 
poor survival and described to be an independent prognos-
tic marker for OPSCC, this was not observed for oral SCC 
(although also for oral SCC, disease-free survival remained 
statistically significant after univariate analysis (HR = 2.36, 
95% CI 1.19–4.67, p = 0.014), and Kaplan–Meier survival 
analysis showed that high LC3B expression correlated with 
poor overall and disease-free survival (p = 0.046 and 0.011, 
respectively). Additionally, the authors highlighted that the 
best outcomes were seen in  HPV+ and low LC3B cases, and 
the worst in those with  HPV−/high LC3B expression tumors. 
Among HPV + patients, there was a tendency of better over-
all survival in the low LC3B group versus the high LC3B 
group. It should be noted that the patient groups in these 
comparisons were relatively small (n = 8–18).

Discussion

The role of macroautophagy in tumorigenesis and tumor 
progression remains incompletely understood, in part due 
to the challenge of accurately analyzing this dynamic pro-
cess in cells and tissue. Thus, finding new ways of assess-
ing autophagic activity and further understanding of the 
autophagy machinery are of outmost interest. Although 
autophagy has been suggested to play an important role in 
the development and progression of HNSCC, its role in the 
subtype of  HPV+ HNSCC tumors has received less atten-
tion. Therefore, the aim of the current study was to summa-
rize all recent evidence on the association of autophagy and 
HPV-infection in HNSCC.

Generally,  HPV+ HNSCC cases are linked to an improved 
prognosis, mostly due to better response to radiotherapy. 
This fact initiated a discussion of treatment de-escalation for 
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this patient cohort (Rühle et al. 2021; Rosenberg and Vokes 
2021; Golusinski et al. 2021; Petar et al. 2021). However, a 
relevant subgroup of these patients has a dire prognosis, with 
no typical risk factors. (13) Therefore, better understanding 
of the tumor biology of this patient group and the influence 
of HPV-infection on autophagy in HNSCC is of high inter-
est as it may facilitate discovering new therapeutic targets 
and prognostic markers (Brkic et al. 2022). The latter may 
facilitate stratification of high-risk patients and timely adap-
tion of therapy regimens, as well as enable less aggressive 
treatments for low-risk patients.

In the studies included and reviewed in this work, 
autophagy-associated genes (including ATGs) and proteins 
were analyzed in bioinformatic, molecular, and clinical stud-
ies. Bioinformatic analysis in cancer research offers a new 
perspective in the initial search for new prognostic biomark-
ers and facilitates the risk-stratification prior to therapy start. 
Based on sequencing data of samples derived from HNSCC 
patients and published in “The Cancer Genome Atlas” 
(TCGA), numerous studies have been conducted to dis-
cover new biomarkers for HNSCC (Network 2015; Leemans 
et al. 2018). Some of these studies (Yang et al. 2020; Fang 
et al. 2021; Guo et al. 2020; Feng et al. 2020; Li et al. 2020; 
Ren et al. 2021; Liu et al. 2021; Jiang et al. 2021a; Zhang 
et al. 2022) have investigated different “autophagy-related 
gene signatures” comprising 232 autophagy-associated 
genes from the Human Autophagy Database (HADb; http:// 
autop hagy. lu) (Moussay et al. 2011), wherein three studies 
included comparison of  HPV+ and  HPV− HNSCC (Yang 
et al. 2020; Fang et al. 2021; Guo et al. 2020). It should be 
noted that the majority of the genes within the prognostic 
gene signatures of each of those studies are not ATG genes, 
and that the 232 HADb gene list has not been updated since 
2011. Additionally, the number of genes in the respective 
prognostic models varies greatly (2–15 genes). Interest-
ingly, however, some common denominators can be found 
across several of these studies, suggesting that for instance 
LAMP1, GABARAPL2, and NKX2-3 expression levels may 
be of particularly important prognostic value in HNSCC 
[5475–7880]. Nonetheless, findings from bioinformatical 
studies investigating a potential association between clin-
icopathological features and so-called “autophagy-related 
gene signatures” have to be taken with caution. The bioin-
formatic studies included in this review only report gene sig-
natures comprising genes that are either loosely connected 
to autophagy and/or have various functions in regulating 
autophagy. Furthermore, no biological validations have been 
considered in these studies to demonstrate biological signifi-
cance. Therefore, it remains highly speculative whether the 
ability of the generated signatures to make clinical predic-
tions is indeed associated with autophagy. However, similar 
studies are emerging rapidly, and with the development of 
new gene lists that increasingly integrate more updated and 

comprehensive knowledge, including on selective pathways 
(e.g., mitophagy) and, importantly, with initiatives to gener-
ate sub-lists of genes whose expression levels experimen-
tally correlate with autophagy activity (Bordi et al. 2021) 
future bioinformatics analyses of patient tumor expression 
and clinical data will likely provide important new informa-
tion on the role of autophagy in  HPV+ and  HPV− HNSCC.

With regard to the increased impact of cancer immuno-
therapy, molecular biological investigations focusing on 
autophagy in relation to tumor immunology of HNSCC and 
the differences between  HPV+ tumors and their negative 
counterpart are of particular interest.

The role of autophagy in tumor immunity is complex 
and incompletely understood. On one hand, autophagy can 
promote antigen presentation as well as differentiation, mat-
uration and survival of immune cells in the tumor micro-
environment (Zhong et al. 2016; Münz 2021; Jiang et al. 
2021b). On the other hand, autophagy may alter and pro-
mote resistance of tumor cells to activated effector immune 
cells (Luo et al. 2020; Noman et al. 2011; Baginska et al. 
2013; Messai et al. 2015). Fang et al. reported a signifi-
cant association of low-risk autophagy gene signature score 
with high immune cell infiltration (Fang et al. 2021). At 
the same time, comparison between tumors with different 
HPV status revealed that HPV-infection is also associ-
ated with a low-risk autophagy gene signature score. This 
finding suggests that  HPV+ HNSCC has a higher immune 
cell infiltration, but the authors did not discuss the poten-
tial immunological influence of HPV-infection in HNSCC 
(Fang et al. 2021). Interestingly, a higher number of tumor-
infiltrating leukocytes (TILs) in  HPV+ HNSCC tumors was 
reported through single-cell RNA sequencing of HNSCC 
patient samples (Kürten et al. 2021). Furthermore, Guo et al. 
described overexpression of ATG12 and BECN1 and down-
regulation of MAP1LC3B in  HPV+ tumors (51). Together, 
these studies suggest a putative alteration in autophagy 
status in  HPV+ tumors, linked with enhanced immune cell 
infiltration. However, interpretation of these data is limited 
both by the above-mentioned remarks on autophagy signa-
ture scores, and that analyses of archived tissue represent 
only a snapshot of the autophagic pathway. Abundance of 
ATG12 and BECN1 and low MAP1LC3 expression might 
suggest a deregulation in autophagy activity, but since there 
is currently not enough correlative data that solidly con-
nect expression levels of ATGs with autophagic activity, this 
remains speculative. Additionally, thus far, immunohisto-
chemical staining of ATG proteins generally lack thorough 
validation of antibody specificity and sensitivity (Humbert 
et al. 2020). Due to this current unreliability in detection of 
autophagic flux in paraffin-embedded tissue, the translation 
to clinical work-up is still missing.

Since the mechanisms of autophagy, its role in cancer and 
its deregulation in disease are still far from fully understood, 
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in vitro and in vivo studies are essential to understand the 
relevance of ATG genes and respective proteins prior to 
translating these findings for clinical relevancy. Studies 
analyzing deregulation of protein function due to overex-
pression or knockdown/knockout of ATG genes help to elu-
cidate the interplay between autophagy, oncoproteins, and 
tumor-suppressor proteins. However, correct execution and 
interpretation of autophagy-monitoring assays are funda-
mental to draw solid conclusions (Klionsky et al. 2021b). 
It should be noted that none of the studies included in this 
review have used functional, cargo-based autophagy meth-
ods, and this limits their interpretations. However, LC3 flux 
measurements and analysis of LC3-LAMP1 co-localization 
suggest that HPV16 E6/E7 proteins induce an impairment 
in autophagic flux (Luo et al. 2020; Antonioli et al. 2021). 
One mechanistic explanation to this impairment is illus-
trated by the finding that the HPV16 E7 protein induced 
the degradation of the key autophagy protein AMBRA1 via 
direct interaction in HNSCC cells (Antonioli et al. 2021). On 
the other hand, HPV16 E6/E7 proteins can induce Ser409 
O-GlcNAc modification, which enhances the stability of 
the key autophagy-initiating protein ULK1 in HNSCC cells 
(51). Moreover, HPV16 E7 was reported to induce lethal 
mitophagy (41) as well as autophagy-dependent degradation 
of STING in HNSCC cells (43). It is a conceivable possibil-
ity that HPV16 infection limits some types of autophagy 
(as reflected by decreased LC3 flux), whilst increasing 
certain selective types of autophagy (e.g., of mitochondria 
and STING). More detailed studies that employ additional 
autophagy assays, including cargo-based functional assays 
for bulk and selective autophagy—combined with specific 

interference with the autophagy pathway in several different 
ways [see Klionsky et al. Guidelines for the use and inter-
pretation of assays for monitoring autophagy (4th edition) 
(Klionsky et al. 2021b)] are required to gain more insight 
into how HPV16 infection affects autophagy in HNSCC 
cells. Studies on how HPV-infection affects autophagy in 
non-HNSCC cells may provide hints of general implication. 
Interestingly, HPV16 seems to dampen autophagy via acti-
vation of the PI3K/Akt/mTOR pathway in the early stages 
of virus–host cell interaction, and this limits its autophagy-
mediated clearance (Surviladze et al. 2013; Griffin et al. 
2013; Ishii 2013). However, additional studies are needed 
to elucidate the long-term effects of HPV-infection on 
autophagy, and the mechanisms involved.

Interestingly, an impairment in the early stages of 
autophagy pathway might be an underlining mechanism 
of lower radioresistance in  HPV+ tumors (Digomann et al. 
2019; Jing et al. 2019). Autophagy impairment may also 
render the tumor cells less resistant to activated effector 
immune cells (Luo et al. 2020; Noman et al. 2011; Baginska 
et al. 2013; Messai et al. 2015). This might be one of the 
underlining reasons of generally better prognosis of  HPV+ 
HNSCC. On the other hand, autophagy impairment in tumor 
cells may lead to decreased antigen presentation (Zhong 
et al. 2016; Münz 2021; Jiang et al. 2021b) and an increased 
degradation of STING by HPV16 could help the HNSCC 
cells evade the immune system (Luo et al. 2020). Moreover, 
a tendency of decreased overall survival was observed in 
 HPV+ HNSCC patients with high LC3B expression (52). 
These observations suggest that alterations in autophagy 

Fig. 3  Schematic diagram of the interaction of HPV and autophagy 
in HNSCC. On one hand bulk autophagy may be impaired due to 
HPV16-E7 mediated AMBRA1 degradation. On the other hand, 

selective autophagy, lethal mitophagy in this case, and autophagy-
dependent degradation of STING may be induced by HPV16-E7 and 
chemotherapy
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may be one of the important factors for the poor survival 
outcome for a sub-group of  HPV+ HNSCC patients.

An important factor in the development of solid tumors, 
including HNSCC, is the interaction and communication 
between cancer cells and other cells of the tumor micro-
environment. Of note, none of the molecular biological 
studies included in this review included co-culture experi-
ments, where a possible interaction between cancer cells and 
stromal cells could be analyzed. Host cell autophagy can 
support cancer cell metabolism in a non-cell autonomous 
manner (Sousa et al. 2016; Katheder et al. 2017). Moreover, 
and of emerging interest, is the phenomenon of secretory 
autophagy in the co-dependency between cancer and stromal 
cells (New et al. 2017). The effects of HPV-infection on such 
interactions could be investigated in vitro by experiments on 
primary HNSCC cancer cells, cancer-associated fibroblasts 
(CAFs) and peripheral blood monocytes (PBMCs) from the 
same patient. Additionally, proceedings in the development 
of 3D cell culture have shown to be useful and closer to 
in vivo conditions (Ravi et al. 2015). Therefore, focusing on 
3D cell culture experiments, such as patient-derived orga-
noids, should enable faster and more reliable translation to 
clinical research. Taken together, these remaining challenges 
need to be overcome prior to successful clinical translation 
of autophagy research to improve translational and clinical 
research in this promising field.

Certain limitations of our study need to be addressed. 
First, the review process was conducted independently 
(S.A.K; A.A.)—however, titles and abstracts that do not 
mention the keywords of our search paradigm may have been 
missed. Furthermore, the inclusion criteria of this systematic 
review included only a small number of studies, consisting 
of only 10. An opportunity to broaden the study spectrum 
could have been to consider studies about mediators of inter-
cellular communication in the tumor microenvironment that 
module the autophagy or autophagic flux inhibitors. How-
ever, this would have gone beyond the scope of our primary 
objective, which was to provide the first comprehensive 
review about the interactions of HPV and autophagy in 
HNSCC.

In summary, this review highlights the significant role of 
HPV oncoproteins and their influence on ATGs and other 
autophagy-associated genes and proteins in HNSCC. Evi-
dence suggests that bulk autophagic flux might be impaired 
in  HPV+ HNSCC tumors. Moreover, the HPV16 E7 protein 
has been reported to induce the degradation of not only the 
key autophagy initiator protein AMBRA1, but also STING, 
which may promote tumor immune evasion despite a puta-
tive higher abundance of TILs in  HPV16+ HNSCC. Thus, 
selective autophagy-dependent degradation of STING and 
also mitochondria may be induced by HPV16 E7 (Fig. 3). 
Additionally, several autophagy-associated signatures may 
have a prognostic significance in  HPV+ HNSCC, although 

their relation to autophagy activity remains to be explored. 
All these findings indicate that autophagy might play a dis-
tinct role in  HPV+ HNSCC.
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