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Abstract
Background Recent research reported that mononuclear phagocyte system (MPS) can contribute to immune defense but 
the classification of head and neck squamous cell carcinoma (HNSCC) patients based on MPS-related multi-omics features 
using machine learning lacked.
Methods In this study, we obtain marker genes for MPS through differential analysis at the single-cell level and utilize 
“similarity network fusion” and “MoCluster” algorithms to cluster patients’ multi-omics features. Subsequently, based on the 
corresponding clinical information, we investigate the prognosis, drugs, immunotherapy, and biological differences between 
the subtypes. A total of 848 patients have been included in this study, and the results obtained from the training set can be 
verified by two independent validation sets using “the nearest template prediction”.
Results We identified two subtypes of HNSCC based on MPS-related multi-omics features, with CS2 exhibiting better 
predictive prognosis and drug response. CS2 represented better xenobiotic metabolism and higher levels of T and B cell 
infiltration, while the biological functions of CS1 were mainly enriched in coagulation function, extracellular matrix, and 
the JAK-STAT signaling pathway. Furthermore, we established a novel and stable classifier called “getMPsub” to classify 
HNSCC patients, demonstrating good consistency in the same training set. External validation sets classified by “getMPsub” 
also illustrated similar differences between the two subtypes.
Conclusions Our study identified two HNSCC subtypes by machine learning and explored their biological difference. 
Notably, we constructed a robust classifier that presented an excellent classifying prediction, providing new insight into the 
precision medicine of HNSCC.
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Introduction

Head and neck cancer (HNSC) is the sixth most common 
malignant tumor in the world, with head and neck squa-
mous cell carcinoma (HNSCC) accounting for the majority 
(Sung et al. 2021). Although some progress has been made 
in the treatment of HNSCC recently, many patients expe-
rience significant declines in swallowing or speech, and 
the 5-year total mortality rate remains at 60% (Murdoch 
2007). Immunotherapy has become an emerging cancer 
treatment modality that regulates the immune system to 
fight against tumor cells and mitigates resistance to other 
treatment modalities, thus having a significant impact on 
the survival and quality of life of cancer patients (Chen 
and Mellman 2013). Preclinical data indicate that HNSCC 
is a deeply immunosuppressive disease characterized by 
abnormal secretion of pro-inflammatory cytokines and 
dysfunction of immune effector cells (Gavrielatou et al. 
2020). Recent clinical practices have shown that the use of 
monoclonal antibodies to inhibit the PD-1/L1 checkpoint 
demonstrates good efficacy in the treatment of various can-
cer types including HNSCC. Combination therapies using 
checkpoint inhibitors with radiotherapy and/or chemother-
apy, cytokine-based and/or adoptive T-cell therapies have 
also presented some effectiveness (Wallis et al. 2015). 
However, only a small number of HNSCC patients indeed 
have benefited from the widely used immunotherapy 
strategies in clinical practice (Seiwert et al. 2016), so it is 
increasingly important to discover new biomarkers for the 
personalized treatment of patients.

The mononuclear phagocyte system (MPS) is an impor-
tant component of the body’s immune defense (Zhang and 
Zhang 2020; Ren et al. 2021) and the primary executor of 
nanoparticle clearance. Previous researches have shown 
that MPS is the first and foremost significant obstacle 
blocking drug carriers to target sites after entering the 
body, especially in terms of clearing the majority of circu-
lating nanomaterials (Lu et al. 2023). MPS, consisting of 
monocytes, macrophages, and dendritic cells (DCs), play 
a role in innate immunity through pathogen sensing and 
phagocytosis and serve as a cellular component in adaptive 
immunity by presenting antigens to T cells (Geissmann 
et al. 2010). Monocytes represent immune effector cells, 
equipped with chemokine receptors and adhesion recep-
tors, producing inflammatory cytokines, phagocytosing 
cells, and toxic molecules (Geissmann et al. 2010). They 
can differentiate into inflammatory DCs or macrophages 
during inflammation but may be less efficient in the steady 
state (Auffray et al. 2009). Macrophages are phagocytic 
cells that can eliminate malignant cells by phagocyto-
sis or by producing soluble factors to induce tumor cell 
apoptosis. In addition to their direct cytotoxic abilities, 

macrophages play an important role in regulating the pro-
gression of tumors through mechanisms such as angiogen-
esis, fibrosis, and immune surveillance (Long and Beatty 
2013). The secretion products of pDC which is a subtype 
of DC have immunogenic and tolerogenic functions in 
tumor immunity (Mitchell et al. 2018; Koucký et al. 2019).

MPS is a part of the tumor immune microenvironment. 
Previous studies have shown that the proportion of MPS in 

Fig. 1  The flowchart of the present study



Journal of Cancer Research and Clinical Oncology (2024) 150:37 Page 3 of 19 37

Table 1  The summary characteristics of the included samples in this study

Datasets
TCGA-HNSC

Sources Data types Samples

TCGA Gene expression RNAseq 481
Range Mean

Age 20–90 61.54
No %

Age
 19–39 16 3.33
 40–49 51 10.60
 50–59 115 23.91
 60–88 299 62.16

Gender
 Female 131 27.23
 Male 350 72.77

Clinical stage
 Stage I 18 3.74
 Stage II 93 19.34
 Stage III 102 21.20
 Stage IVa 253 52.60
 Stage IVb 9 1.87
 Stage IVc 6 1.25

Radiation therapy
 Yes 245 50.94
 No 132 27.44
 Not reported 104 21.62

GSE65858

Sources Data types Samples

GEO gene expression RNAseq 270
Range Mean

Age 35–87 60.12
No %

Age
 19–39 2 0.74
 40–49 39 14.44
 50–59 100 37.04
 60–88 129 47.78

Gender
 Female 47 17.40
 Male 223 82.60

Clinical stage
 Stage I 18 6.67
 Stage II 37 13.70
 Stage III 37 13.70
 Stage IVa 155 57.41
 Stage IVb 16 5.93
 Stage IVc 7 2.59

Treatment
 Uni-modality 78 28.89
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HNSCC patients varies individually and is usually associ-
ated with patient survival and other phenotypes (Balm et al. 
1982,  1984a, b). However, in the exploration of biomarkers 
for HNSCC, previous research has not yet focused on this 
important component of the immune system. Instead, they 
have paid more attention to biomarkers associated with sev-
eral hot topics, such as PDL-1 expression (Dong et al. 2002; 
Freeman et al. 2000; Topalian et al. 2012), tumor mutational 
burden/neo-antigens (Charoentong et al. 2017), interferon-γ 
gene signature (Woo et al. 2015), and tumor microenviron-
ment (Ager and May 2015). There seems to be no previous 
study using MPS to search for biomarkers and to accurately 
classify HNSCC patients based on these biomarkers, to 
achieve further precision treatment. Therefore, differenti-
ated patient classification based on MPS biomarkers is feasi-
ble and can provide some references for future personalized 
treatment of HNSCC.

Based on biomarkers of MPS obtained from single-cell 
sequencing analysis, this study aimed to recognize HNSCC 
subtypes with distinct overall survival, drug, and immuno-
therapy responses. Notably, we can not only consider the 

impact of gene expression, but also the factor including gene 
methylation and mutation to have a more comprehensive 
analysis while classifying HNSCC patients. In addition, to 
make our research results potentially useful in practice, we 
constructed a robust classifier based on genes with specific 
expression in subtypes, which can classify patients even 
with only gene expression data and had a certain degree of 
accuracy. The classifier now has been uploaded to GitHub 
(https:// github. com/ CQMUZC/ getMP sub).

Materials and methods

Data source

A single-cell RNA sequencing (scRNA-seq) profile, 
GSE195832, was obtained from the GEO database (https:// 
www. ncbi. nlm. nih. gov/ geo). Considering the aim to 
explore the marker genes from tumor-infiltrating MPS, four 
raw scRNA-seq samples, GSM5851565, GSM5851567, 
GSM5851569, and GSM5851571, were included in our 

Table 1  (continued)

GSE65858

Sources Data types Samples

 Multi-modality 189 70.00
 Palliative 3 1.11

GSE41613

Sources Data types Samples

GEO gene expression RNAseq 97
No %

Age
 19–39 6 6.19
 40–49 16 16.49
 50–59 28 28.87
 60–88 47 48.45

Gender
 Female 31 31.96
 Male 66 68.04

Clinical stage
 Stage I/II 41 42.27
 Stage III/IV 56 57.73

Treatment
 Uni-modality 43 44.33
 Multi-modality 53 54.64
 Not reported 1 1.03

GSE195832

Sources Data types Samples
GEO Single-cell RNAseq Not applicable

https://github.com/CQMUZC/getMPsub
https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo
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analysis. TCGA HNSCC multi-omics feature regarding 
RNA-seq, methylation, and mutation were attained as the 
training dataset from UCSC Xena (https:// xenab rowser. 
net/) to form the specific HNSCC subtype. GSE41613 and 
GSE65858 were applied as the validation datasets to confirm 
whether the subtypes had strong universality and to verify 
certain effectiveness of the classifier.

Single‑cell analysis

We first paid attention to the global quality of the mixed data 
including Mitochondrial percentage, the count of expression 
in samples per gene, and the count of gene expression per 
sample. Only cells with a mitochondrial percentage below 

Fig. 2  Single-cell analysis recognized marker genes. A The expres-
sion level of MPS specific genes in 25 cell clusters. B The heatmap of 
expression level in 25 clusters. C Annotation results under the UMAP 

reduction. D KEGG analysis characterized phagocytosis-related bio-
logical functions

https://xenabrowser.net/
https://xenabrowser.net/
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25% and gene expression numbers between 600 and 7500 
will be included in the analysis. In addition, only genes 
expressed in more than 1000 cells will be considered. Given 
the batch effect from different samples, we employed “har-
mony” reduction to diminish the system error (Korsunsky 
et al. 2019; Azizi et al. 2018). We performed standardization 
and normalization on the preprocessed expression matrix 
so that gene expression levels of each cell can be compared 
and further analyzed. Principal component analysis (PCA) 
was adopted to reduce the data noise and uniform mani-
fold approximation and projection (UMAP) was utilized 
to further depict cell clusters clearly. Given the results of 
“clustree” and the specific biological targets (Zappia et al. 
2018), cells were clustered by integrated results from graph-
based clustering and shared nearest-neighbor clustering. 
Then we annotated cell clusters and verified each other by 
two methods, which used the R package “SingleR” based 
on “celldex” to auto-annotate cells and some marker genes 
to manually annotate. According to the results, R function 
“FindAllMarkers” was applied to identify differentially 
expressed genes (DEGs) between each cell cluster and oth-
ers. Through all the above analysis, we determined MPS and 
detected their marker genes to deepen our understanding. To 
confirm the identity of these marker genes, Enrichr (https:// 
maaya nlab. cloud/ Enric hr/) was adopted to identify which 
cells will be enriched by these markers. And KEGG path-
way enrichment analysis was employed to represent their 
biological function.

Clustering analysis in multi‑omics features

MPS-related muti-omics were identified by the intersection 
of gene variables and markers from the single-cell analy-
sis. R package “MOVICS” was utilized to characterize the 
HNSCC subtypes by unsupervised clustering (Lu et  al. 
2021). In the beginning, R function “getElites” filtered fea-
tures that met some stringent requirements, in which “Cox” 
was used for RNA-seq and methylation while “freq” was 
for binary omics data. Then the optimal number of clusters 
was acquired referring to Cluster Prediction Index (CPI) and 
Gaps-statistics (Chalise and Fridley 2017). Considering the 
silhouette score and the final survival difference, SNF (Wang 
et al. 2014) and MoCluster (Meng et al. 2016) performed the 
consensus clustering and recognized the HNSCC subtypes. 
The overall nominal P-value was calculated by log-rank 
test and Kaplan–Meier (KM) Curve was printed to show 

the HNSCC subtypes’ survival difference. Finally, based on 
the specific expression genes of two subtypes, we aimed to 
develop a classifier that can predict the subtypes of other 
HNSCC patients using only RNA-seq.

Drug sensitivity

Genomics of Drug Sensitivity in Cancer (GDSC) are a pub-
lic database containing cancer cells’ drug sensitivity and 
molecular markers corresponding to the applied drugs. 
Among patient subtypes, we considered the differences in 
four small molecule compounds, Paclitaxel, 5-Fluorouracil, 
Erlotinib, and Pazopanib. We tested the differential drug 
response of two clusters to nanomedicines, because Abrax-
ane, a nano-subtype of paclitaxel, was included in the GDSC 
drug database. 5-Fluorouracil, as the main clinical treatment 
for HNSCC, was utilized to test whether the subtype had a 
distinct drug sensitivity for conventional treatment methods. 
Erlotinib and Pazopanib were utilized to test whether there 
was a response to specific targets, EGFR and CSF1R. Given 
the effect of these drugs used in combination with radiother-
apy, we subsequently test the differential drug response of 
patients who had records of radiation therapy in two clusters. 
Independent-samples t-test was performed to determine the 
differences in two clusters. Kruskal–Wallis rank sum test 
was performed for multiple subtypes.

Tumor immune microenvironment

“CIBERSORT” algorithm (https:// ciber sort. stanf ord. edu/) 
evaluated the infiltration degree of 22 immune cells between 
the two subtypes. EPIC can analyze the expression matrix 
to determine the infiltration proportions of eight types of 
immune cells, including B cells, cancer-associated fibro-
blasts (CAFs),  CD4+ T cells,  CD8+ T cells, endothelial cells, 
macrophages, and NK cells, which were all important com-
ponents of the immune microenvironment. TIMER utilized 
a deconvolution algorithm to infer the abundance of tumor-
infiltrating immune cells from gene expression profiles. 
The immune-infiltrating situation of different subtypes can 
be corroborated given the results of the above algorithms. 
Additionally, “TIDE” algorithm was employed to evaluate 
the potential clinical efficacy of immunotherapy in different 
subtypes and reflected the underlying ability of tumors to 
escape the immune system. The TIDE score evaluated the 
potential response to immune checkpoint therapy, with a 
higher score indicating a poorer response to this treatment 
and may require alternative therapies. The Exclusion score 
evaluated the degree of infiltration of immune-suppressive 
cells in the tumor microenvironment. The higher score indi-
cated a more severe infiltration of immune-suppressive cells 
and a poorer response to immune checkpoint therapy. The 
Dysfunction score evaluated the functional state of immune 

Fig. 3  Clustering analysis recognized HNSC subtypes. A The num-
ber of multi-omics clusters. B A stable clustering result by apply-
ing hierarchical clustering. C The heatmap of overall clustering 
process. D The KAPPA value of the classifier. E The KM curve of 
TCGA cohort. F The KM curve of GSE41613. G The KM curve of 
GSE65858

◂

https://maayanlab.cloud/Enrichr/
https://maayanlab.cloud/Enrichr/
https://cibersort.stanford.edu/
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cells in the tumor microenvironment. The higher score 
demonstrated that the function of immune cells was sup-
pressed in the tumor microenvironment, leading to a poorer 
response to immune checkpoint therapy. Besides, the higher 
MSI score corresponded to a higher level of immune cell 
infiltration and stronger immune response.

MPS‑related analysis

The abundance of MPS including macrophages, DCs, and 
monocytes was calculated by “IOBR” (Zeng et al. 2021). 
Some targets, CSF1R, TLR8, EFGR, CXCR4, ABCA1, 
MGFE8, CD47, and CX3CL1, related to tumor-associated 
macrophagocytes (TAMs), immune therapy in HNSCC, and 

efferocytosis were detected to explore whether subtypes 
expressed differently.

Functional analysis

GO was a database established by the Gene Ontology Con-
sortium, aimed at describing gene and protein function. 
Through GO enrichment analysis, this study can roughly 
annotate genes and classify them according to biological 
processes, molecular function, and cellular component. 
KEGG was a database that systematically analyzed gene 
function, links genomic information and functional informa-
tion. The Hallmark gene set was a collection of genes devel-
oped jointly by the Human Cell Atlas and the Genomics 

Fig. 4  The comparison of two subtypes’ drug sensitivity. A The esti-
mated IC50 of paclitaxel, 5-fluorouracil, erlotinib, and pazopanib 
between two subtypes in TCGA cohort. B The estimated IC50 of 

paclitaxel, 5-fluorouracil, erlotinib, and pazopanib between two sub-
types in GSE41613. C The estimated IC50 of paclitaxel, 5-fluoroura-
cil, erlotinib, and pazopanib between two subtypes in GSE65858
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Institute of the Novartis Research Foundation. The gene set 
was generated from cell-type-specific genomic expression 
data and contained gene markers for multiple tissue and cell 

types, which can be utilized to identify and analyze differ-
ences between different cell types or states. In this study, 
GSEA enrichment analysis was performed using the three 

Fig. 5  The comparison of two subtypes’ immune cell infiltration. A 
Differences in 22 immune cells between two subtypes by algorithm 
CIBERSORT. B Differences in eight immune cells between two sub-
types by algorithm EPIC. C Differences in six immune cells between 
two subtypes by algorithm TIMER. D The TIDE score of two sub-

types. E The Dysfunction score of two subtypes. F The Exclusion 
score of two subtypes. G The MSI score of two subtypes (ns/empty 
space, no significance, *p < 0.05, **p < 0.01, ***p < 0.001, and 
****p < 0.0001)
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different reference gene sets of GO, KEGG, and Hallmark to 
validate the specific biological differences exhibited by two 
subtypes. Pathways enriched in two or more reference gene 
sets were considered to represent unique biological functions 
specific to the subtype.

Integrated metabolism analysis

In addition to representing the immune microenvironment 
of subtypes, the R package “IOBR” had been used to evalu-
ate metabolic differences between two subtypes. This study 
assessed the metabolic levels of subtypes from three per-
spectives: metabolism, fatty acid metabolism, and choles-
terol metabolism, aiming to explore the relevant differences.

The integrated analysis of copy number variation

Considering subtype-specific mutation might be promising 
as therapeutic target, this study compared the mutational 
frequency among different subtypes. R package “MOVICS” 
offered two functions to measure genomic alterations poten-
tially affecting immunotherapy, namely the quantification of 
total mutation burden (TMB) and fraction genome altered 
(FGA). In addition, the function “compFGA” calculated and 
compared not only FGA but also computed specific gain 
(FGG) or loss (FGL) per sample within each subtype. To 
measure the consistency of current subtypes with other pre-
existing classifications, “MOVICS” offered the function 
“compAgree” to generate alluvial diagram, visualizing the 
consistency of two evaluation phenotypes with the current 
subtype as a reference.

Statistical analysis

All the data processing and analyses were executed in R soft-
ware (Version 4.2.2). t-Test and Wilcoxon test were utilized 
to compare the differences between quantitative variables 
while Chi-square test was employed in qualitative variables. 
Spearman correlation test was utilized to explore the rela-
tionships between variables. The Kappa coefficient was uti-
lized to measure the level of agreement between classifier 
results and actual classifications. A KAPPA value below 
0.4 indicated poor agreement, 0.4–0.6 indicated moderate 
agreement, 0.6–0.8 indicated good agreement, and above 

0.8 indicated excellent agreement. P < 0.05 was considered 
statistically significant in the whole process.

Results

Data processing

The main process of this study, including the analysis 
involved, is specifically shown in Fig. 1. Considering integ-
rity and commonality, 848 HNSCC patients were included 
as the working data when patients containing missing infor-
mation were excluded. Among them, 481 TCGA-HNSCC 
patients were included to train the classifier while 270 
HNSCC samples in GSE65858 and 97 HNSCC samples 
in GSE41613 were enrolled, respectively, as two valida-
tion datasets. The basic characteristics including the origin, 
form, and some clinical characteristics of data per dataset is 
displayed in Table 1.

Single‑cell analysis recognized marker genes

Through diminishing the batch effort, four raw scRNA-seq 
samples presented a uniform and random distribution under 
the UMAP reduction (Figure S1A). 25 cell clusters were 
gathered, of which a smaller number responded to more cells 
(Figure S1B). Some genes, CXCL8, AIF1, C1QC, C1QA, 
CD68, C1QB, CD83, CD86, CD14, and LYZ, that have been 
confirmed to be specifically expressed in MPS are used as 
manually annotated marker genes to view their expression in 
25 cell clusters. Cluster 1, 13, and 16 were the cell popula-
tions with high expression of these genes (Fig. 2A). Besides, 
other cells were identified for gene expression using cor-
responding marker genes. Based on their expression level, 
each cell cluster was ultimately annotated as a specific cell 
population, in which cell clusters with high or no expres-
sion of multiple marker genes were defined as “unknown”. 
Besides, R package “SingleR” recognized certain cells refer-
ring to “celldex”. The corresponding heatmap (Fig. 2B) 
depicted the expression level of various cells in 25 clusters. 
Finally, we presented the annotation results under the UMAP 
reduction, showing their specific clusters (Fig. 2C). Almost 
cell clusters had the same definition except for “unknown”, 
and “Fibroblasts”, which heatmap resulted by “SingleR” 
also had a similar expression level compared with manual 
annotation. For instance, the heatmap indicated Fibroblasts 
reference expressed highly in cluster 2, 20, and 11, defined 
as “tissue stem cells” by SingleR, which is consistent with 
our manual annotation. Notably, clusters 1, 13, and 16 were 
manually annotated as mononuclear phagocytes including 
monocytes, macrophages, and DCs, that is, manual annota-
tion and SingleR had the same determination regarding the 
targeted cells. 863 marker genes of mononuclear phagocytes 

Fig. 6  MPS-related analysis. A The specific proportion of mac-
rophages between two subtypes. B The specific proportion of DCs 
between two subtypes. C The specific proportion of monocytes 
between two subtypes. D-K The expression level of TLR8, CSF1R, 
EGFR, CXCR4, ABCA1, MFGE8, CD47, and CX3CL1, between 
two subtypes. (ns/empty space, no significance, *p < 0.05, **p < 0.01, 
***p < 0.001, and ****p < 0.0001)

◂
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were found by R function “FindAllMarkers” (Table S3) and 
were corroborated enriching in macrophages, monocytes, 
and DCs by Enrichr (Table S1). KEGG analysis presented 
that the pathway enriching the most genes was “Phago-
some”, indicating our marker genes indeed characterized 
phagocytosis-related biological functions (Fig. 2D).

Clustering analysis recognized HNSC subtypes

Given the integrated results by the CPI and Gap-statistics, 
the imputed optimal cluster was 2 (Fig. 3A). The consensus 
heatmap depicted robust pairwise similarities for two sub-
types and the details of how it got a stable clustering result 
by applying hierarchical clustering (Fig. 3B). The genome-
wide heatmap was utilized to reveal information about how 
the samples cluster together and provide insights into poten-
tial sample biases or other artifacts (Fig. 3C). Additionally, 
it offered the difference in some phenotypes such as age 
and clinical stage between the two subtypes. According to 
subtype-specific biomarkers (Table S2), we established an 
HNSC classifier using nearest template prediction (NTP) 
to predict the possible subtypes of each sample. The Kappa 

values, evaluating the performance of the HNSC subtypes 
classifier, represented a good consistency in predicting 
the subtype for HNSC samples by the comparison of the 
actual subtype and the predicted type in the training dataset 
(Fig. 3D). The consensus clustering resulted in the HNSC 
subtypes with distinct survival differences in the training 
dataset, in which samples in cluster 2 were more likely to 
have a better prognosis (Fig. 3E). GSE41613 and GSE65858 
were considered the validation dataset to confirm the effec-
tiveness of the HNSC classifier. The KM curve indicated 
that cluster 2 identified by the classifier had a longer overall 
survival time (Fig. 3F, G). Notably, for the convenience of 
future research, we have packaged the classifier using the 
NTP algorithm into an R package called “getMPsub” and 
uploaded it to GitHub for easy accessibility.

Drug sensitivity

The t-test showed significant differences in sensitivity to 
four small molecule compounds between two subtypes, with 
cluster 2 exhibiting lower IC50 values, indicating greater 
sensitivity to these drugs. Both in the TCGA training set 

Fig. 7  Functional analysis of two subtypes. A The pathway enrichment analysis of two subtypes by three algorithms such GO, KEGG, and 
HALLMARK. B The difference of biological function between two subtypes. C The expression level of KRAS between two subtypes
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and in the two validation sets, the drug sensitivity of the two 
subtypes represented similar differences, which also veri-
fied the robustness of our classifying strategy (Fig. 4A–C). 
According to the NCCN (National Comprehensive Cancer 
Network, https:// www. nccn. org/) guidelines for head and 
neck cancer treatment, these drugs were used in combination 
with radiotherapy in first-line treatment and in previous stud-
ies. Therefore, we do corresponding drug sensitivity tests on 
patients from the TCGA cohort who had records of radiation 
therapy. Further testing revealed that CS1 exhibited similar 
drug sensitivity regardless of its history of radiation therapy 
while CS2 patients, after undergoing radiation therapy, were 
more sensitive to 5-FU and Pazopanib compared to those 
without radiation therapy. (Figure S13).

Immune cell infiltration analysis

Tumor immune cell infiltration in recent researches was 
widely considered a crucial feature of the TME. The boxplot 
illustrated the different abundance of immune cells between 
the TME of two HNSC subtypes via three algorithms, CIB-
ERSORT, EPIC and TIMER. In the CIBERSORT results, 
cluster 2 in three datasets tended to represent a higher degree 
of immune infiltration in almost all 22 immune cells, except 
in M1 macrophages, M2 macrophages, resting DCs, Neu-
trophils, activated Mast cells, resting memory CD4 T cells, 
and memory B cells (Fig. 5A, Figs. S7, S8). Similar results 
were acquired by the EPIC and TIMER algorithm, showing 
that the cluster 2 had a higher level of immune infiltration 
in main immune cell, CD8 T cell, and a lower level of some 
cells related to MPS (Fig. 5B, C, Figs. S7B, C, S8B, C). The 
difference in the degree of specific cell infiltration might be 
caused by the number of immune cells and different statisti-
cal methods used. Above the results, cluster 2 performed 
better. As a supplement, cluster 2 had a lower level of TIDE 
score, Exclusion score, but a higher score of MSI, indicat-
ing a better performance of the potential clinical efficacy of 
immunotherapy (Fig. 5D–G, Figs. S7D–G,  S8D–G).

MPS‑related analysis

We examined the cell proportions of MPS in HNSC sub-
types and found that cluster 2 in most gene signature, at a 
statistical level, had lower scores for macrophages, mono-
cytes, and DCs, indicating that patients in cluster 2 had a 
lower proportion of MPS cells (Fig. 6A–C, Figs. S9A–C, 
S10A–C). This study then detected the immune checkpoint 
targets related to MPS. In the traditional HNSC targets, clus-
ter 2 had a lower expression level of EFGR and a higher 

expression level of CXCR4 (Fig. 6F, G), with similar trend 
or similar statistical meaning in two validations (Figs. S9F, 
G, S10F, G). Considering that MPS included TAMs, we also 
tested the relevant targets for TAMs. Cluster 2 had a higher 
expression level of CSF1R and a lower expression level of 
TLR8 (Fig. 6D, E). Recent studies had also found that MPS 
more or less participated in efferocytosis, so this study also 
tested whether there were expression differences in signal-
ing molecules and targets for efferocytosis in HNSC patient 
subtypes. Finally, the result depicted that CD47, MFGE8, 
and ABCA1 all had lower expression levels in cluster 2, 
while CX3CL1 had a higher expression level in cluster 2 
(Fig. 6H–K). MFGE8, ABCA1, and CX3CL1 all presented 
the same results in at least one validation set (Figs. S9H–K, 
S10H–K).

Functional analysis

Enrichment analysis showed that there were many path-
ways related to immunotherapy in both clusters, such as the 
JAK-STAT signaling pathway in cluster 1 and the KRAS 
signaling pathway in cluster 2. However, pathways enriched 
in two or more reference sets showed differences in differ-
ent subtypes. Cluster 1 enriched pathways were related to 
coagulation function, extracellular matrix (ECM), and JAK-
STAT signaling pathway, while cluster 2 enriched pathways 
were related to xenobiotic metabolism and DNA methyla-
tion (Fig. 7A, Figs. S3, S4). Biological functional GSVA 
analysis using the gene sets built in “MOVICS” represented 
significant differences between the two subtypes in interleu-
kins, cytokines, pathogen defense, and senescence (Fig. 7B, 
Figs. S11A,  S12A). The KRAS expression levels between 
the two subtypes in TCGA, GSE65858 were depicted 
using box plots, indicating significant statistical differences 
(Fig. 7C, Fig. S12B).

Metabolism analysis

This study also investigated metabolic differences between 
subtypes, including overall metabolism, fatty acid metabo-
lism, and cholesterol metabolism. In most cases, cluster 2 
had higher metabolic scores, corresponding to better meta-
bolic capabilities. Notably, cluster 2 had a higher level of 
drug metabolism by cytochrome than cluster 1 while clus-
ter 2 had a relatively lower level of drug metabolism by 
other enzyme, suggesting the talent difference of drug using 
(Fig. 8A, Figs. S5A, S6A). The expression level of fatty acid 
metabolism revealed that cluster was more likely to have a 
better ability of fatty acid metabolism (Fig. 8B, Figs. S5B, 

https://www.nccn.org/
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S6B). The level of cholesterol metabolism also had the simi-
lar tendency (Fig. 8C, Figs. S5C, S6C).

The integrated analysis of copy number variation

Comparing the mutational frequency among different clus-
ters, this study noticed SYNE1, NSD1, CASP8, RP1, HRAS, 
CTNND2 had a statistical difference (Fig. 9A). Cluster 2 
had a higher level of TMB, which is a favorable prognostic 
factor for cancer (Fig. 9B). Besides, the boxplot (Fig. 9C) 
demonstrated that cluster 2 had a more copy number-altered 
genome, whether lost or obtained. The alluvial diagram 
illustrated the differences in existing phenotypes between 
different subtypes, which can be seen that Cluster 2 has a 
higher proportion of survival status in a smaller number of 
people compared to Cluster 1 (Fig. 9D, Figs. S11D, S12D).

Discussion

An increasing number of studies had discovered the signifi-
cant role of MPS in TME, and the regulation of HNSCC 
progression by MPS had stirred a heated discussion. Nearly 
all studies aimed at the overall influence of immune system 
on HNSCC pathobiology, and there seemed to be a lack of 
the exploration and application of MPS biomarkers for clas-
sifying HNSCC patients and verifying, from the statistical 
perspective based on the clinical data, whether MPS had an 
impact on the growth process of HNSCC. Therefore, the 
work of this study is both reasonable and necessary.

This study first detected the MPS marker genes at the sin-
gle-cell level. By validating the results of manual and auto-
matic annotation, we found that MPS in the single cell RNA 
seq samples included monocytes, macrophages, and DCs. 
Comparing the differences between cells, we identified genes 
that were specifically expressed in MPS. Based on the MPS 
marker genes, we utilized comprehensive clustering analy-
sis mixing the results of “SNF” and “MoCluster” to divide 
481 HNSC patients in TCGA into two subtypes, CS1 and 
CS2. KM curve and other functional analyses showed that 
CS2 had a better prognosis, and the two subtypes showed 
significant differences in multiple aspects such as drug sen-
sitivity, tumor mutations, and enriched pathways, providing 
a certain differentiation strategy for clinical treatment of 
HNSCC. In addition, according to the specific expression 
genes of CS1 and CS2, we constructed a classifier that can 
perform corresponding stratification with only patient gene 

expression profile data. The KAPPA value of the classifier 
for the classification results was 0.688, representing a good 
performance. Two external independent validation sets were 
employed to test the efficacy of the classifier, and the final 
results corroborated that CS2 had better prognostic effects 
and similar differences in other aspects. To make our study 
reproducible and truly applicable to clinical research, we 
uploaded our packaged classifier to GitHub. Researchers 
can accurately classify patients with only RNA-seq data 
and clinical information, which might provide a reference 
for future clinical practice.

From the perspective of patient survival analysis alone, 
CS2 patients had longer overall survival time, with similar 
results in both the training and validation sets. However, pre-
dicting patient prognostic effects was only one function of 
the classifier. This study also explored other aspects such as 
the differences between the two subtypes in drug response, 
immune microenvironment, and biology. Even if CS1 had 
a higher probability of poor prognosis, we still hoped to 
present the various differences between the two subtypes at 
the genetic level to find suitable treatment strategies for each 
and apply them to clinical practice.

As many studies have shown that MPS played a crucial 
role in drug delivery, a higher proportion of MPS can lead 
to the dissolution of drug carriers, thereby enhancing patient 
resistance to drugs. Therefore, this study focused on the per-
formance of the two subtypes in the GDSC database. CS2 
presented a more sensitive response to Paclitaxel, 5-fluoro-
uracil, Erlotinib, and Pazopanib, indicating that they may 
have better efficacy in clinical trials for patients in CS2. 
Paclitaxel therapy produced promising results in HNSCC 
patients and was successfully combined with cisplatin, car-
boplatin and/or etoposide in patients with advanced HNSCC 
(Spencer and Faulds 1994; Hitt et al. 2012). Given paclitaxel 
included Abraxane, a nanoformulation, in the GDSC, dif-
ferences in patient drug response can indirectly reflect the 
impact of MPS on nanocarriers. 5-Fluorouracil was a major 
antimetabolite drug that was widely used in patients with 
advanced and recurrent HNSCC, which often appeared in 
clinical treatment (Yasumatsu et al. 2009; Lima et al. 2021; 
Psyrri et al. 2017). The EGFR signaling pathway contrib-
uted to the development and progression of HNSCC, and 
the EGFR-targeted drug erlotinib had shown good efficacy 
in the treatment of HNSCC (Gross et al. 2014; Stanam et al. 
2015; Allen et al. 2015; Xu et al. 2017). For patients with 
recurrent or metastatic HNSCC, 800 mg/day of the CSF1R-
targeted drug Pazopanib oral suspension in combination 
with standard weekly cetuximab had observed encouraging 
preliminary anti-tumor activity (Dincer et al. 2019; Adkins 
et al. 2018). From the analysis of the above drugs, which 
are clinically commonly used, targeting EFGR, CSF1R, 
and containing nanocarriers, we concluded that CS2 was 
more sensitive to these small molecular compounds. In other 

Fig. 8  Metabolism analysis of two subtypes. A The overall metabo-
lism analysis between two subtypes. B The fatty acid metabolism 
analysis between two subtypes. C The cholesterol metabolism 
analysis between two subtypes. (ns/empty space, no significance, 
*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001)
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words, these drugs may be preferred when patients were 
identified as CS2 type. Furthermore, our study found CS2 
patients who treated radiation therapy were more sensitive 
to 5-fluorouracil and Pazopanib compared to those without 
radiation therapy, indicating a combination strategy can be 
an effective way to improve the status of patients. Since the 
subtypes in this study were clustered based on multi-omics 
data related to MPS, it was reasonable to believe that MPS 
had a certain impact on the efficacy of these drugs.

CS2 had higher scores in most B cells and T cells in all 
three immune infiltration analyses, indicating a higher pro-
portion of cells and immune effects. Overall, the immune 
system of CS2 can better inhibit HNSCC tumors, resulting 
in a better prognosis and drug response for patients. The 
biological functions analysis of CS2 illustrated that most 
pathways were enriched in metabolic pathways, which might 
be related to MPS. Further metabolic analysis also indicated 
that CS2 had better performance in overall metabolic, fatty 
acid metabolism, and cholesterol metabolism, reflecting 
CS2’s strong biological feature of xenobiotic metabolism. 
This phenomenon can be seen in some clues from immune 
infiltration analysis, which CS2 had lower proportions of 

MPS such as macrophages and DCs. Previous literature 
had shown that metabolism was a crucial underpinning of 
MPS (Davies et al. 2019), and its functional heterogene-
ity required diverse metabolism. MPS such as macrophages 
must induce or inhibit metabolic pathways to find, ingest, 
and digest apoptotic cells (Trzeciak et al. 2021). Metabolic 
interactions occurred when these cells came into contact 
with other cells, such as the stress-related metabolism pro-
duced by the interaction between NKT cells and MPS (Cor-
tesi et al. 2018). In addition, MPS was also involved in the 
process of endogenous lipid oxidation-induced metabolism 
(Gioia and Zanoni 2021). In other aspects, we also compared 
the mutation differences between the two subtypes, in which 
CS2 had higher TMB and FGA, representing patients in CS2 
were more likely to benefit from immunotherapy.

Although CS1 was considered to have a worse progno-
sis, the analysis of immune checkpoint inhibitors (ICIs) 
depicted higher expression of CS1 in many targets such as 
CD47, ABCA1, and MFGE8, which might be potential thera-
peutic targets. These targets had recently been shown to be 
associated with efferocytosis. In cancer treatment, CD47, as 
the classic “don’t eat me” signal of efferocytosis, was often 

Fig. 9  The integrated analysis of copy number variation. A The com-
parison of the mutational frequency between two subtypes. B The 
level of TMB between two subtypes. C The comparison of FGA, 

FGL, and FGG between two subtypes. D Consistency between sub-
types and other clinical phenotypes. (0 means alive and 1 means 
death)
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overexpressed in apoptotic cell clearance defects and patho-
logical blockade of CD47-SIRP1 interaction (Mehrotra and 
Ravichandran 2022). ABCA1 expression defects can lead to 
decreased efferocytosis in disease, and it seemed to have a 
beneficial effect on efferocytosis and anti-inflammatory signal 
transduction in vivo (Tang and Oram 2009; Wang and Oram 
2005; Wang and Oram 2007; Joseph et al. 2002). Inflamma-
tory-induced TLR signaling can further inhibit the expres-
sion of ligands such as MFGE8, thereby inhibiting increased 
efferocytosis and furthering disease pathology (Komura et al. 
2009). Further enrichment analysis demonstrated that CS1 
exhibited specificity in coagulation function, ECM, and JAK-
STAT signaling pathway. In HNSCC patients, high platelet 
count and low tumor stroma ratio were closely associated with 
increased metastasis and poor prognosis. STAT3 and STAT5 
were expressed and activated in HNSCC, contributing to cell 
survival and proliferation. In HNSCC, STAT can be activated 
by various signaling pathways, including EGFR, α7 nicotinic 
receptor, interleukin receptor, and erythropoietin receptor 
pathways (Lai and Johnson 2010). Due to the characteristic 
gene enrichment of CS1 in this target, future research can 
apply JAK inhibitors to clinical treatment when patients were 
identified as CS1 (Hwang et al. 2021).

Conclusion

In this study, we identified two HNSCC subtypes and 
explored their biological difference. Based on the specific 
genes from the two subtypes, we established the relevant 
classifier, contributing to implementing precise treatment 
for HNSCC patients. Combined with other clinical charac-
teristics, we hope our study can guide therapeutic strategies 
and offer some clues between MPS and HNSCC.

Limitations

The study also has some limitations. In drug response analy-
sis, the reference database only has response data of single 
drug action so we are unable to conduct sensitivity testing 
on the combined small molecule drug regimen. We look for-
ward to more researchers delving deeper into drug response 
for cell lines to provide more data for future research.
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