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Abstract
Purpose  Ultrasound imaging is the preferred method for the early diagnosis of endometrial diseases because of its non-
invasive nature, low cost, and real-time imaging features. However, the accurate evaluation of ultrasound images relies 
heavily on the experience of radiologist. Therefore, a stable and objective computer-aided diagnostic model is crucial to 
assist radiologists in diagnosing endometrial lesions.
Methods  Transvaginal ultrasound images were collected from multiple hospitals in Quzhou city, Zhejiang province. The 
dataset comprised 1875 images from 734 patients, including cases of endometrial polyps, hyperplasia, and cancer. Here, 
we proposed a based self-supervised endometrial disease classification model (BSEM) that learns a joint unified task (raw 
and self-supervised tasks) and applies self-distillation techniques and ensemble strategies to aid doctors in diagnosing 
endometrial diseases.
Results  The performance of BSEM was evaluated using fivefold cross-validation. The experimental results indicated that the 
BSEM model achieved satisfactory performance across indicators, with scores of 75.1%, 87.3%, 76.5%, 73.4%, and 74.1% for 
accuracy, area under the curve, precision, recall, and F1 score, respectively. Furthermore, compared to the baseline models 
ResNet, DenseNet, VGGNet, ConvNeXt, VIT, and CMT, the BSEM model enhanced accuracy, area under the curve, preci-
sion, recall, and F1 score in 3.3–7.9%, 3.2–7.3%, 3.9–8.5%, 3.1–8.5%, and 3.3–9.0%, respectively.
Conclusion  The BSEM model is an auxiliary diagnostic tool for the early detection of endometrial diseases revealed by 
ultrasound and helps radiologists to be accurate and efficient while screening for precancerous endometrial lesions.
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Introduction

Endometrial cancer is the sixth most commonly diagnosed 
cancer in women (Sung et al. 2021) and encompasses a 
group of malignant epithelial tumours that develop in the 
endometrium (Colombo et  al. 2016). It mainly affects 
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women with postmenopausal, particularly those with a 
history of obesity, hypertension, and familial cancer, and, 
recently, has become increasingly common (Passarello et al. 
2019). Endometrial lesions include endometrial polyps, 
hyperplasia, and cancer, with the latter being the most severe 
(Valentin 2014). The 5 years survival rate for patients in 
stage I endometrial cancer can reach 80–90%, whereas those 
in stages III or IV have significantly lower survival rates, 
of 50–65% and 15–17% (Makker et al. 2021), respectively. 
Early diagnosis plays a pivotal role in effective treatment of 
endometrial cancer.

Histopathological examination of the endometrium is 
considered the gold standard for diagnosing endometrial 
lesions in clinical practice (Karaca et al. 2022). Endome-
trial tissues can be obtained using diagnostic curettage or 
hysteroscopic dilatation and curettage (Vitale et al. 2023). 
However, the high cost and associated risk of complications 
(Dijkhuizen et al. 2003; Williams and Gaddey 2020) make 
histopathological examination a less favourable choice for 
early diagnosis (Wong et al. 2016). In contrast, ultrasound 
imaging, specifically transvaginal ultrasound (TVU), is a 
safe, well-tolerated (Salman et al. 2016), non-invasive, low-
cost, and affordable method that can identify endometrial 
abnormalities such as thickening and atypical imaging fea-
tures (e.g., cystic endometrium, intraluminal fluid, and sus-
pected polyps), serving as the basis for diagnosing endome-
trial diseases (Aggarwal et al. 2021). Therefore, ultrasound 
imaging is the method of choice for the early diagnosis of 
endometrial diseases. However, there is considerable vari-
ability in the evaluation results among different radiologists 
when assessing the same ultrasound image, mainly because 
of the subjective nature of ultrasound-based pathological 
evaluation, which relies heavily on the experience of radi-
ologists. Developing a stable and objective computer-aided 
diagnosis model can effectively reduce the subjectivity asso-
ciated with the diagnoses of radiologists.

Deep learning is reported as a promising tool for the clas-
sification of endometrial diseases (Zhang et al. 2022, 2021; 
Li et al. 2022; Urushibara et al. 2022; Mao et al. 2022; Tao 
et al. 2022; Zhao et al. 2022; Sun et al. 2020). However, 
the studies on this topic have several issues: (1) incomplete 
classification, such as distinguishing between endometrial 
and non-endometrial cancers; (2) lack of sample diversity, 
as samples are often obtained from the same hospital or 
imaging device; and (3) existing studies primarily rely on 
magnetic resonance imaging (MRI) and histopathologi-
cal images (HI) for classification, but these methods have 
drawbacks (Szkodziak et al. 2014; 2017) such as high cost, 
time-consuming procedures, dependence on expert interpre-
tation, potential complications from invasive techniques, and 
limited access to MRI equipment in certain healthcare facili-
ties. In contrast, ultrasound imaging offers a non-invasive 
and cost-effective approach, provides real-time imaging, 

and is widely accessible. Consequently, ultrasound imaging 
has emerged as the preferred method for early detection of 
endometrial diseases.

Our study focused on three prevalent endometrial dis-
eases using TVU images: endometrial polyps, hyperplasia, 
and cancer. This paper proposes a joint training approach 
that integrates an original task with a self-supervised task. 
Specifically, we performed auxiliary training on the original 
task by utilizing self-supervised images generated through 
the original image rotation. The predictions from all the 
images, including the original and rotated images, were then 
aggregated to improve the overall prediction accuracy. Fur-
thermore, self-distillation techniques and a voting ensemble 
strategy were performed to reduce the variance and enhance 
the generalisation and robustness of the model. This study 
aimed to establish an auxiliary diagnostic tool for endome-
trial disease classification by leveraging both original and 
self-supervised labels. This approach effectively addressed 
the challenges of limited sample diversity and incomplete 
classification in the field of endometrial disease classifica-
tion, thereby overcoming the issues related to the low gen-
eralisation and robustness of the model.

Methods

Dataset

Ethics committee approval was granted by the local institu-
tional ethics review board and the requirement for informed 
consent was waived for this retrospective study. This study 
collected ultrasound images from patients aged 40–70 years 
who underwent TVU in Quzhou City, Zhejiang Province, 
including Quzhou People’s Hospital, Quzhou Maternal And 
Child Health Care Hospital, The Second People’s Hospital 
of Quzhou, People’s Hospital of Quzhou Kecheng, Chang-
shan County People’s Hospital, and Kaihua County People’s 
Hospital between January 2018 and March 2023. Ultrasound 
images were obtained from different models of machines, 
including Samsung WS80A, GE Voluson E10, PHiliPsQ5, 
Mindray Resona 6s, GE Voluson E8, and PHiliPsQ7, which 
have several advantages, including data diversity and rich-
ness and cross-device validation, thereby enhancing the gen-
eralisation of the model. All images were initially stored in 
the DICOM format and subsequently converted to the JPG 
format. During the image collection process, the following 
exclusion criteria were applied: (1) images of patients with 
multiple uterine disorders, and (2) images with noticeable 
defects or blurring. These exclusion criteria were imple-
mented to ensure the inclusion of high-quality images and 
provide reliable training data for the study. A total of 1875 
images from 734 patients were obtained, including 462 
images from 168 patients with endometrial cancer, 667 
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images from 290 patients with endometrial hyperplasia, 
and 746 images from 276 patients with endometrial polyps. 
The distributions of the cases and images are summarised 
in Fig. 1.

Data processing

First, the removal of hospital and patient information from 
the image ensured that the image information related to the 
endometrium was fully preserved, which effectively reduced 
the impact of irrelevant information on the performance of 
the model. Second, data augmentation techniques, such as 
random horizontal flipping, were applied to the training 
set, which enhanced the generalisation and robustness of 
the model. Finally, all the images were resized to a uniform 
size of 224 × 224 pixels and normalised, which accelerated 
the convergence of the model.

Statistical analysis

The classification results were evaluated using fivefold 
cross-validation (Wong and Yeh 2019). First, the dataset 
was randomly partitioned into five subsamples of equal size. 
Each subsample was then sequentially used as the test set, 
and the remaining subsamples served as the training set. The 
accuracy of each test was recorded, and the average accuracy 
across all tests was calculated to estimate the performance 
of the algorithm.

To evaluate the performance of the classification of the 
model, we used a receiver operating characteristic (ROC) 
curve and a confusion matrix. The confusion matrix 
included the number of true positive (TP), false positive 
(FP), false negative (FN), and true negative (TN) classifica-
tions. By comparing the predicted results with the actual 
labels, the confusion matrix enabled the evaluation of the 
accuracy of the model across different categories. In addi-
tion, we utilised metrics such as accuracy, area under the 

curve (AUC), precision, recall, and F1 score to further evalu-
ate the performance of the model. By conducting a compre-
hensive analysis of the ROC curve, confusion matrix, and 
the aforementioned evaluation metrics, we gained a more 
comprehensive understanding of the performance of the 
classification of the model.

In the evaluation, Python 3.7.0 was utilized to calculate 
various statistics and metrics, such as accuracy and recall. 
Matplotlib was used for visualisation operations such as 
drawing ROC curves, confusion matrices, and other graphi-
cal representations, which enabled a more intuitive observa-
tion and analysis of the performance of the model.

Model

This study investigated the issues of limited sample diver-
sity and incomplete classification in endometrial disease 
classification, and proposed an approach to learning the 
joint distribution of raw labels and self-supervised labels 
by utilizing TVU images, as displayed in Fig. 2. We used 
a label augmentation (Lee et al. 2020; Xie et al. 2021; Xie 
et al. 2023), as depicted in Fig. 2a. Specifically, in the data-
set, the original labels were N = 3, and the labels obtained 
from self-supervised rotation were M = 4. By learning the 
joint probability distribution of all possible combinations, 
we obtained a total of N*M = 12 labels. Each transforma-
tion was assigned a distinct self-supervised label, enabling 
aggregation of all transformations for prediction. To improve 
the generalization of the model, we utilized the self-distilla-
tion technique (Hinton et al. 2015), as illustrated in Fig. 2b. 
Lastly, to enhance the robustness of the model while reduc-
ing variance, we used a voting ensemble strategy (Rojarath 
et al. 2016; Liu et al. 2022), as shown in Fig. 2c.

The ultrasound images were used as input; the label 
for the original images was y = {0, 1, 2}, and the self-
supervised label Mj = {0°, 90°, 180°, 270°} represented 
the image rotation operations. Self-supervised learning is 

Fig. 1   Statistical distribution of the dataset, the upper part is patients 
and the lower part is images: a Distribution ratios of the number of 
patients and number of images with endometrial polyps, hyperplasia 

and cancer across different hospitals. b The total number and distri-
bution ratio of the number of patients and the number of images of 
three endometrial diseases
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advantageous by training the model to predict transformed 
data, which compels the model to learn the underlying 
structure and features within the data, leading to enhanced 
performance and generalisation of the model. To lever-
age the benefits of self-supervised learning to the full-
est extent possible, we used a joint training strategy that 
combined both original labels and self-supervised labels. 
Consequently, the training objective could be expressed as:

where Lce represents the cross-entropy loss function. 
Because each transformation was assigned a different self-
supervised label, all transformations were aggregated to 
improve the performance of the model, where the aggre-
gated probability was denoted as Pagg. We introduced a 
self-distillation operation, which distilled the aggregated 
knowledge Pagg to another classifier σ. We then used the 
Kullback–Leibler divergence (Kim et al. 2021) to measure 
the similarity between aggregated and self-distilled clas-
sifiers, optimising the performance of the model. Hence, 
the following objectives were optimised:

Optimising the aforementioned objectives allowed the 
model to learn the underlying structure and characteris-
tics of the data through self-supervised tasks, leading to 
enhanced performance and generalisation of the model. 
To enhance the robustness and generalisation of the model 
further, we used a voting ensemble learning strategy. This 
strategy involves integrating multiple models and making 
decisions based on the principle of majority rule, thereby 
reducing the model variance and improving the overall 
performance. In our approach, we utilised DenseNet, 
VGGNet, and ResNet as backbone architectures for feature 
extraction, and combined them using voting strategies.

(1)LJC = LCE(f (y, j)),

(2)
LBSEM = LJC + LKL + LSD = LCE(f (y, j)) + DKL

�
Pagg‖�

�
+ LCE(�(y)).

During the training process, we used a pre-training strat-
egy and imported the pre-training parameters into the model. 
The Adam optimisation algorithm was utilised with a batch 
size of 64, weight decay of 1e–4, and a learning rate of 0.01. 
The training was conducted for 150 iterations.

Results

The based self-supervised endometrial disease classification 
model (BSEM) was evaluated using several performance 
metrics: accuracy, AUC, precision, recall, and F1 score. The 
results obtained for these metrics were 75.1%, 87.3%, 76.5%, 
73.4%, and 74.1%, respectively, which provided a compre-
hensive assessment of the classification performance and 
properties of the model.

To gain a deeper understanding of the BSEM classifica-
tion results across different datasets, we generated separate 
confusion matrices for each fold, as shown in Fig. 3. Fur-
thermore, to visually illustrate the true positive rate and false 
positive rate of the model at different thresholds, we gener-
ated a ROC curve. The ROC curve results for the proposed 
model are shown in Fig. 4.

To visualise the classification effect of our model, we 
utilised Class Activation Mapping (CAM) technology, which 
highlights regions that significantly contribute to the clas-
sification results. In Fig. 5, the grayscale image represents 
the original input and the colour image represents the CAM-
processed output.

Comparison with the baseline

Table 1 presents the performance enhancements achieved by 
the BSEM model for accuracy, AUC, precision, recall, and 
F1 score when compared to the baseline models. Compared 
to the ResNet, DenseNet, VGGNet, ConvNeXt, VIT, and 

Fig. 2   Method overview: a Label augmentation; b Self-distillation; c Voting ensemble
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CMT baseline models, the BSEM model achieved increased 
performances of 4.4%, 3.9%, 3.9%, 4.8%, and 4.8%; 3.3%, 
3.2%, 4.2%, 3.1%, and 3.3%; 5.1%, 5.5%, 5.0%, 5.7%, and 
5.7%; 5.2%, 5.1%, 7.2%, 5.0%, and 5.6%; 6.6%, 7.0%, 7.4%, 
6.7%, and 6.8%; and 7.9%, 7.3%, 8.5%, 8.5%, and 9.0%, 
respectively, for accuracy, AUC, precision, recall, and F1 
score, respectively.

The ROC curve is a crucial performance metric for 
evaluating classification models. Figure 6 provides a visual 
comparison between the proposed model and the baseline 
model, showing their performances on the ROC curve. The 
figure illustrates that, across various thresholds, the BSEM 
model exhibited a higher true-positive rate and a lower false-
positive rate than the baseline model. This observation indi-
cated the superior classification ability and robustness of the 
proposed model.

Fig. 3   Depiction of the confusion matrix results obtained from the fivefold cross-validation, in which the vertical axis represents the true labels, 
and the horizontal axis represents the predicted results

Fig. 4   ROC curves for each fold in the fivefold cross-validation, 
along with the average ROC curve

Fig. 5   CAM-based visualisation of individual models before the 
voting ensemble strategy. The grayscale image represents the origi-
nal input, and the red dotted line denotes the lesion area. The colour 

image corresponds to the CAM output, with the red area indicating a 
considerable contribution to the classification results
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Ablation experiments

To evaluate the effectiveness of each component, we per-
formed ablation studies by adding the following models: 
BSEM−ResNet, BSEM−DenseNet, and BSEM−VGGNet, repre-
senting the models without a voting ensemble strategy, 
and BSEM−SD, representing the model without a self-
distillation operation.

Our findings demonstrated that the proposed BSEM 
model exhibited substantial improvements in various per-
formance metrics when compared with the model without 
the voting ensemble strategy. Specifically, when compared 
with the BSEM−ResNet, BSEM−DenseNet, and BSEM−VGGNet 
models, our proposed model achieved an increase of 0.8%, 
1.5%, 1.1%, 0.7%, and 1.0%; 0.3%, 1.0%, 0.8%, 0.2%, and 
0.5%; and 1.7%, 2.6%, 2.2%, 1.1%, and 1.4%, respectively, 
for accuracy, AUC, precision, recall, and F1 score, respec-
tively (Table 2).

For the comparison between the BSEM model and the 
model without self-distillation, our findings demonstrated 
improvements of 1.8%, 0.7%, 1.3%, 1.9%, and 1.9% in 

accuracy, AUC, precision, recall, and F1 score, respec-
tively, for our proposed model (Table 3).

The ablation experiments demonstrated the effectiveness 
of the voting ensemble and self-distillation in enhancing 
the model performance. The voting ensemble decreased the 
model variance and improved the robustness and accuracy. 
Meanwhile, self-distillation improved model generalisation 
and classification abilities by aggregating knowledge. Con-
sequently, both voting ensembles and self-distillation were 
crucial and effective for enhancing the model performance, 
further confirming the superiority of the BSEM model pre-
sented in this paper.

Discussion

Endometrial cancer is the sixth most commonly diagnosed 
cancer in women (Sung et al. 2021). Early-stage endome-
trial disease has a high cure rate (Makker et al. 2021), and 
ultrasound is the preferred method for early diagnosis (Wong 
et al. 2016). However, conventional classification methods 
for endometrial diseases typically rely on the manual exam-
ination and analysis of numerous medical images, which 
are time-consuming processes with subjective errors. Con-
versely, deep learning models possess robust feature extrac-
tion and learning capabilities, enabling the automatic extrac-
tion of crucial features from input data (Xu et al. 2022; Wei 
et al. 2023; Yang et al. 2022; Chen et al. 2022). This aids 
radiologists in determining the disease type and supports 
their decision-making processes, thereby enhancing diag-
nostic accuracy. Furthermore, deep learning models sig-
nificantly improve processing speed and efficiency through 

Table 1   Performance metrics of the BSEM and baseline models

Method Accuracy AUC​ Precision Recall F1 score

ResNet 70.7% 83.4% 72.6% 68.6% 69.3%
DenseNet 71.8% 84.1% 72.3% 70.3% 70.8%
VGGNet 70.0% 81.8% 71.5% 67.7% 68.4%
ConvNeXt 69.9% 82.2% 69.3% 68.4% 68.5%
VIT 68.5% 80.3% 69.1% 66.7% 67.3%
CMT 67.2% 80.0% 68.0% 64.9% 65.1%
BSEM 75.1% 87.3% 76.5% 73.4% 74.1%

Fig. 6   ROC curves of the BSEM and baseline models

Table 2   Comparison of the model without the voting ensemble strat-
egy and the BSEM model

Method Accuracy AUC​ Precision Recall F1 score

BSEM−ResNet 74.3% 85.8% 75.4% 72.7% 73.1%
BSEM−DenseNet 74.8% 86.3% 75.7% 73.2% 73.7%
BSEM−VGGNet 73.4% 84.7% 74.3% 72.3% 72.7%
BSEM 75.1% 87.3% 76.5% 73.4% 74.1%

Table 3   Comparison between the model without the self-distillation 
technology and the BSEM model

Method Accuracy AUC​ Precision Recall F1 score

ResNet 70.7% 83.4% 72.6% 68.6% 69.3%
DenseNet 71.8% 84.1% 72.3% 70.3% 70.8%
VGGNet 70.0% 81.8% 71.5% 67.7% 68.4%
BSEM−SD 73.3% 86.6% 75.2% 71.5% 72.2%
BSEM 75.1% 87.3% 76.5% 73.4% 74.1%
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their automatic classification and identification capabilities, 
thereby alleviating the workload burden on radiologists (Ker 
et al. 2017; Liu et al. 2019).

However, the use of deep learning for the classification 
of endometrial diseases still faces certain challenges (Zhang 
et al. 2022, 2021; Li et al. 2022; Urushibara et al. 2022; 
Mao et al. 2022; Tao et al. 2022; Zhao et al. 2022; Sun et al. 
2020), such as incomplete classification, limited sample 
diversity, and dependence on specific data such as MRI and 
HI, resulting in low model robustness and generalisation. 
To address these concerns, this study proposed the BSEM 
model, which utilised TVU images as raw data for disease 
classification, which enhanced the model performance by 
training a joint classifier on the original and self-supervised 
tasks. In addition, we incorporated self-distillation tech-
nology to reduce the dependence on specific image types 
and enhance the generalisation of the model, as shown in 
Table 3. Moreover, we used a voting ensemble strategy to 
minimise the model variance and improve the overall per-
formance and stability, as shown in Table 2.

During the model-testing phase, a fivefold cross-vali-
dation approach was used to evaluate the performance of 
the model. The results demonstrated that the BSEM model 
was advantageous for the classification of endometrial dis-
eases, with improved accuracy, AUC, precision, recall, and 
F1 score; the values achieved were 75.1%, 87.3%, 76.5%, 
73.4%, and 74.1%, respectively. Compared with the baseline 
ResNet model, our model exhibited improvements of 4.4%, 
3.9%, 3.9%, 4.8%, and 4.8%, for accuracy, AUC, precision, 
recall, and F1 score, respectively. Furthermore, compared 
with the baseline DenseNet model, our model exhibited 
enhancements of 3.3%, 3.2%, 4.2%, 3.1%, and 3.3%, respec-
tively. In comparison to the baseline VGGNet model, our 
model indicated advancements of 5.1%, 5.5%, 5.0%, 5.7%, 
and 5.7%, respectively. Then, compared with the baseline 
ConvNeXt model, our model displayed enhancements of 
5.2%, 5.1%, 7.2%, 5.0%, and 5.6%, respectively. In compari-
son to the baseline VIT model, our model showed advance-
ments of 6.6%, 7.0%, 7.4%, 6.7%, and 6.8%, respectively. 
Finally, compared with the baseline CMT model, our model 
demonstrated enhancements of 7.9%, 7.3%, 8.5%, 8.5%, and 
9.0%, respectively. These results confirmed the viability and 
effectiveness of deep learning techniques for the diagnosis 
of endometrial diseases.

Our study had some limitations. While cropping the 
image, we were unable to simply keep the lesion area, 
which could have affected the accuracy of the model in 
lesion detection and detailed lesion analysis. Also, the lim-
ited amount of data on endometrial cancer compared with 
those for endometrial polyps and hyperplasia could poten-
tially lead to suboptimal classification results for cancer 
cases. To address these limitations, future research should 

focus on refining image-processing techniques and explor-
ing more precise methods for extracting lesion regions to 
enhance the accuracy and completeness of lesion iden-
tification in cropped images. Additionally, augmenting 
the size of cancer datasets to facilitate the comprehensive 
training and evaluation of models represents a crucial 
avenue for improving cancer classification performance.

Conclusion

This study proposed the BSEM model, a model for endo-
metrial disease classification using TVU images that com-
bines original and self-supervised tasks and incorporates 
the self-distillation technique and voting ensemble strat-
egy. Specific diseases targeted were endometrial cancer, 
polyps, and hyperplasia. The performance of the model 
was evaluated using a fivefold cross-validation method 
during testing, and the experimental results demonstrated 
its high generalisability and robustness.
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