Skip to main content

Advertisement

Log in

Siglec 15 as a biomarker or a druggable molecule for non-small cell lung cancer

  • Review
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Lung cancer has been the main cause of cancer mortality worldwide. Furthermore, lung cancer rates of new cases per year evidenced a large incidence of this neoplasm in both men and women. Because there is no biomarker for early detection, it is frequently detected late, at an advanced state. The introduction of multiple lines of tyrosine kinase inhibitors in patients with EGFR, ALK, ROS1, and NTRK mutations has modified the therapy of lung cancer. Immunotherapy advances have resulted in substantial improvements in overall survival and disease-free survival, making immune checkpoint inhibitors (ICIs) a potential option for lung cancer treatment. Current PD-1/PD-L1/CTLA-4 immunotherapies have resulted in important response and survival rates. However, existing medicines only function in around 20% of unselected, advanced NSCLC patients, and primary and acquired resistance remain unsolved obstacles. Therefore, precise predictive indicators must be identified to choose the best patients for ICI treatment. Thus, Sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) stands out as a potential tumor biomarker, with distinctive expression in normal tissues, in tumor immune involvement, and a high structural similarity to PD-L1. Understanding the tumor immune response and the search for new therapeutic targets leads to the improvement of therapeutic pathways directed at the tumor microenvironment. The present review aims to analyze Siglec-15 potential as a diagnostic, prognostic, and response biomarker in lung cancer, considering its results evidenced in the current literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: The author (2023). TAM tumor-associated macrophages

Fig. 2

Source: The author (2023). V-set variable domain, c2-set constant domain 2

Similar content being viewed by others

Data availability statement

The authors declare that the datasets generated during and/or analyzed during the current study are available in the manuscript.

References

  • Aguirre-Ducler A et al (2022) Tumor cell SYK expression modulates the tumor immune microenvironment composition in human cancer via TNF-α dependent signaling. J Immunother Cancer 10(7):e005113

    PubMed  PubMed Central  Google Scholar 

  • Alfranca YL, Garcia MEO, Rueda AG, Ballesteros PÁ, Rodríguez DR, Velasco MT (2022) Blood biomarkers of response to immune checkpoint inhibitors in non-small cell lung cancer. J Clin Med 11(11):3245

    PubMed  PubMed Central  CAS  Google Scholar 

  • Altorki NK et al (2019) The lung microenvironment: an important regulator of tumour growth and metastasis. Nat Rev Cancer 19(1):9–31

    PubMed  PubMed Central  CAS  Google Scholar 

  • American Cancer Society (2023) Facts and figures 2023. American Cancer Society, Atlanta

    Google Scholar 

  • Angata T (2020) Siglec-15: a potential regulator of osteoporosis, cancer, and infectious diseases. J Biomed Sci 27(1):1–7

    Google Scholar 

  • Angata T, Varki NM, Varki A (2001) A second uniquely human mutation affecting sialic acid biology* 210. J Biol Chem 276(43):40282–40287

    PubMed  CAS  Google Scholar 

  • Angata T et al (2007) Siglec-15: an immune system Siglec conserved throughout vertebrate evolution. Glycobiology 17(8):838–846

    PubMed  CAS  Google Scholar 

  • Antonia SJ et al (2017) Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N Engl J Med 377(20):1919–1929

    PubMed  CAS  Google Scholar 

  • Arasanz H et al (2022) Circulating low density neutrophils are associated with resistance to first line anti-PD1/PDL1 immunotherapy in non-small cell lung cancer. Cancers (basel) 14(16):3846. https://doi.org/10.3390/cancers14163846

    Article  PubMed  CAS  Google Scholar 

  • Araujo LH et al (2018) Câncer de pulmão no Brasil. J Bras Pneumol 44:55–64

    PubMed  PubMed Central  Google Scholar 

  • Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11(10):889–896

    PubMed  CAS  Google Scholar 

  • Bochner BS et al (2005) Glycan array screening reveals a candidate ligand for Siglec-8. J Biol Chem 280(6):4307–4312

    PubMed  CAS  Google Scholar 

  • Bornhöfft KF et al (2018) Siglecs: a journey through the evolution of sialic acid-binding immunoglobulin-type lectins. Dev Comp Immunol 86:219–231

    PubMed  Google Scholar 

  • Cognasse F et al (2015) The inflammatory role of platelets via their TLRs and Siglec receptors. Front Immunol 6:83

    PubMed  PubMed Central  Google Scholar 

  • Dakubo GD et al (2007) Clinical implications and utility of field cancerization. Cancer Cell Int 7(1):1–12

    Google Scholar 

  • Daly J, Carlsten M, O’dwyer M (2019) Sugar free: novel immunotherapeutic approaches targeting siglecs and sialic acids to enhance natural killer cell cytotoxicity against cancer. Front Immunol 10:1047

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ding P et al (2022) Glucosamine-phosphate N-acetyltransferase 1 and its DNA methylation can be biomarkers for the diagnosis and prognosis of lung cancer. J Clin Lab Anal 36(9):e24628

    PubMed  PubMed Central  CAS  Google Scholar 

  • Domagala-Kulawik J (2015) The role of the immune system in non-small cell lung carcinoma and potential for therapeutic intervention. Transl Lung Cancer Res 4(2):177–190

    PubMed  PubMed Central  CAS  Google Scholar 

  • El-Fattah A, Eslam E (2022) IDO/kynurenine pathway in cancer: possible therapeutic approaches. J Transl Med 20(1):1–13

    Google Scholar 

  • Feng Y, Li N, Ren Y (2022) GNPNAT1 predicts poor prognosis and cancer development in non-small cell lung cancer. Cancer Manag Res 14:2419–2428

    PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Gil A et al (2018) Sialylated keratan sulfate proteoglycans are Siglec-8 ligands in human airways. Glycobiology 28(10):786–801

    PubMed  CAS  Google Scholar 

  • Han Y et al (2020) PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res 10(3):727–742

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hanahan D (2022) Hallmarks of cancer: new dimensions. Cancer Discov 12(1):31–46

    PubMed  CAS  Google Scholar 

  • Hao JQ et al (2020) The significance of Siglec-15 expression in resectable non-small cell lung cancer. Neoplasma 67(6):1214–1222

    PubMed  CAS  Google Scholar 

  • Hendriks LE, on behalf of the ESMO Guidelines Committee et al (2023) Oncogene-addicted metastatic non-small-cell lung cancer: ESMO clinical practice guideline for diagnosis, treatment and follow-up. Ann Oncol 34(4):339–357

    PubMed  CAS  Google Scholar 

  • Hirsch F et al (2017) Lung cancer: current therapies and new targeted treatments. Lancet 389(10066):299–311. https://doi.org/10.1016/S0140-6736(16)30958-8

    Article  PubMed  CAS  Google Scholar 

  • Hu X et al (2022) DDX24 promotes metastasis by regulating RPL5 in non-small cell lung cancer. Cancer Med 11:4513–4525

    PubMed  PubMed Central  CAS  Google Scholar 

  • Huang M-Y et al (2021) Combination therapy with PD-1/PD-L1 blockade in non-small cell lung cancer: strategies and mechanisms. Pharmacol Ther 219:107694

    PubMed  CAS  Google Scholar 

  • Huang J et al (2022a) LncRNA NBR2 regulates cancer cell stemness and predicts survival in non-small cell cancer patients by downregulating TGF-β1. Curr Pharm Biotechnol 24:1059–1069

    Google Scholar 

  • Huang R et al (2022b) GRSF1 predicts an unfavorable prognosis and promotes tumorigenesis in lung adenocarcinoma based on bioinformatics analysis and in vitro validation. Ann Transl Med 10(13):747

    PubMed  PubMed Central  Google Scholar 

  • Jiang C et al (2022) The potential mechanism of HDAC1-catalyzed histone crotonylation of caspase-1 in nonsmall cell lung cancer. Evidence Based Complementary Altern Med 2022:1–8

    Google Scholar 

  • Kang F et al (2020) The diverse functions of Siglec-15 in bone remodeling and antitumor responses. Pharmacol Res 155:104728

    PubMed  CAS  Google Scholar 

  • Kang S et al (2022) Long noncoding RNA SNHG5 induces the NF-κB pathway by regulating miR-181c-5p/CBX4 axis to promote the progression of non-small cell lung cancer. Archivos de Bronconeumología 59:10–18

    PubMed  Google Scholar 

  • Kim JS et al (2022) Predictive role of galectin-3 for immune checkpoint blockades (ICBs) in advanced or metastatic non-small cell lung cancer: a potential new marker for ICB resistance. J Cancer Res Clin Oncol 149:1–11

    Google Scholar 

  • Lahiri A, Maji A, Potdar PD et al (2023) Lung cancer immunotherapy: progress, pitfalls, and promises. Mol Cancer. https://doi.org/10.1186/s12943-023-01740-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Larsen JE, Minna JD (2011) Molecular biology of lung cancer: clinical implications. Clin Chest Med 32(4):703–740

    PubMed  PubMed Central  Google Scholar 

  • Li C et al (2022a) PAK4 expression is associated with the prognosis in non-small cell lung cancer. Medicine 101(33):e30050

    PubMed  PubMed Central  CAS  Google Scholar 

  • Li D et al (2022b) Interfering with ITGB1-DT expression delays cancer progression and promotes cell sensitivity of NSCLC to cisplatin by inhibiting the MAPK/ERK pathway. Am J Cancer Res 12(7):2966–2988

    PubMed  PubMed Central  CAS  Google Scholar 

  • Li M-J et al (2022c) Upregulation of CCNB2 and its perspective mechanisms in cerebral ischemic stroke and all subtypes of lung cancer: a comprehensive study. Front Integr Neurosci 16:854540

    PubMed  PubMed Central  CAS  Google Scholar 

  • Li S et al (2022d) Elevated expression of the membrane-anchored serine protease TMPRSS11E in NSCLC progression. Carcinogenesis 43:1092–1102

    PubMed  CAS  Google Scholar 

  • Li Y, Liu X, Ma Z (2022e) EGFR, NF-κB and noncoding RNAs in precision medicine. Progr Mol Biol Transl Sci 190(1):189–218

    CAS  Google Scholar 

  • Lin G et al (2022) C1QTNF6 regulated by miR-29a-3p promotes proliferation and migration in stage I lung adenocarcinoma. BMC Pulm Med 22(1):1–14

    Google Scholar 

  • Mantovani A, Locati M (2013) Tumor-associated macrophages as a paradigm of macrophage plasticity, diversity, and polarization: lessons and open questions. Arterioscler Thromb Vasc Biol 33(7):1478–1483

    PubMed  CAS  Google Scholar 

  • Nie J et al (2022) Circular RNA circFARSA promotes the tumorigenesis of non-small cell lung cancer by elevating B7H3 via sponging miR-15a-5p. Cell Cycle 21(24):2575–2589

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ning J et al (2022) Down-regulated m6A reader FTO destabilizes PHF1 that triggers enhanced stemness capacity and tumor progression in lung adenocarcinoma. Cell Death Discov 8(1):1–13

    Google Scholar 

  • Ponta H, Sherman L, Herrlich PA (2003) CD44: from adhesion molecules to signaling regulators. Nat Rev Mol Cell Biol 4(1):33–45

    PubMed  CAS  Google Scholar 

  • Punekar SR et al (2022) Immunotherapy in non-small cell lung cancer: past, present, and future directions. Front Oncol 12:877594

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rabinovich GA, Croci DO (2012) Regulatory circuits mediated by lectin-glycan interactions in autoimmunity and cancer. Immunity 36(3):322–335

    PubMed  CAS  Google Scholar 

  • Raju S, Joseph R, Sehgal S (2018) Review of checkpoint immunotherapy for the management of non-small cell lung cancer. ImmunoTargets Ther 7:63

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rashid S et al (2022) Molecular structure, expression, and the emerging role of Siglec-15 in skeletal biology and cancer. J Cell Physiol 237(3):1711–1719

    PubMed  CAS  Google Scholar 

  • Ren X (2019) Immunosuppressive checkpoint Siglec-15: a vital new piece of the cancer immunotherapy jigsaw puzzle. Cancer Biol Med 16(2):205

    PubMed  PubMed Central  Google Scholar 

  • Schenck E et al (2021) 2020 innovation-based optimism for lung cancer outcomes. Oncologist 26(3):e454–e472. https://doi.org/10.1002/onco.13590

    Article  Google Scholar 

  • Schmidt T et al (2012) Macrophage—tumor crosstalk: role of TAMR tyrosine kinase receptors and of their ligands. Cell Mol Life Sci 69(9):1391–1414

    PubMed  CAS  Google Scholar 

  • Shafi S et al (2022) Quantitative assessment of Siglec-15 expression in lung, breast, head, and neck squamous cell carcinoma and bladder cancer. Lab Investig 102:1–7

    Google Scholar 

  • Shi Y et al (2022) Circulating cytokines associated with clinical outcomes in advanced non-small cell lung cancer patients who received chemoimmunotherapy. Thorac Cancer 13(2):219–227

    PubMed  CAS  Google Scholar 

  • Shields MD, Marin-Acevedo JA, Pellini B (2021) Immunotherapy for advanced non-small cell lung cancer: a decade of progress. Am Soc Clin Oncol Educ Book 41:e105–e127

    Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin 70(1):7–30. https://doi.org/10.3322/caac.21590

    Article  PubMed  Google Scholar 

  • Smart SK et al (2018) The emerging role of TYRO3 as a therapeutic target in cancer. Cancers 10(12):474

    PubMed  PubMed Central  CAS  Google Scholar 

  • Spigel DR et al (2022) Five-year survival outcomes from the PACIFIC trial: Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. J Clin Oncol 40(12):1301

    PubMed  PubMed Central  CAS  Google Scholar 

  • Takahata M et al (2007) Sialylation of cell surface glycoconjugates is essential for osteoclastogenesis. Bone 41(1):77–86

    PubMed  CAS  Google Scholar 

  • Takamiya R et al (2013) The interaction between Siglec-15 and tumor-associated sialyl-Tn antigen enhances TGF-β secretion from monocytes/macrophages through the DAP12–Syk pathway. Glycobiology 23(2):178–187

    PubMed  CAS  Google Scholar 

  • Tiantian MA et al (2022) PD-L1 expression, tumor mutational burden, and immune cell infiltration in non-small cell lung cancer patients with epithelial growth factor receptor mutations. Front Oncol 12:922899

    Google Scholar 

  • Villalobos P, Wistuba II (2018) Lung cancer biomarkers. Hematol Oncol Clin N Am 31(1):13–29

    Google Scholar 

  • Wang J et al (2019) Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy. Nat Med 25(4):656–666

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wimmel A et al (1999) Synthesis and secretion of the anticoagulant protein S and coexpression of the Tyro3 receptor in human lung carcinoma cells. Cancer Interdiscip Int J Am Cancer Soc 86(1):43–49

    CAS  Google Scholar 

  • Wu H-R et al (2019) Expedient assembly of Oligo-LacNAcs by a sugar nucleotide regeneration system: finding the role of tandem LacNAc and sialic acid position toward Siglec binding. Eur J Med Chem 180:627–636

    PubMed  CAS  Google Scholar 

  • Wyant T, Alteri R, Kalidas M (2022) About lung cancer what is lung cancer? American Cancer Society, Atlanta, pp 1–15

    Google Scholar 

  • Zhang C et al (2019) Upregulation of long noncoding RNA SNHG20 promotes cell growth and metastasis in esophageal squamous cell carcinoma via modulating ATM-JAK-PD-L1 pathway. J Cell Biochem 120(7):11642–11650

    PubMed  CAS  Google Scholar 

  • Zhou Y et al (2022) Effect of PFKFB4 on the prognosis and immune regulation of NSCLC and its mechanism. Int J Gen Med 15:6341–6353

    PubMed  PubMed Central  Google Scholar 

  • Zöller M (2011) CD44: can a cancer-initiating cell profit from an abundantly expressed molecule? Nat Rev Cancer 11(4):254–267

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the financial support by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE).

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

R. S.M and M.M da S wrote the main manuscript text C.F. de M.V; T. D. da S; and G.G.C prepared figures and table L. A.R.M.J; M.G.da R.P, and M.J.B.de M.R reviewed the manuscript M.C.P reviewed the manuscript and figures and table

Corresponding author

Correspondence to Michelly Cristiny Pereira.

Ethics declarations

Conflict of interest

The authors declare no potential financial conflict of interest related to this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreira, R.S., da Silva, M.M., de Melo Vasconcelos, C.F. et al. Siglec 15 as a biomarker or a druggable molecule for non-small cell lung cancer. J Cancer Res Clin Oncol 149, 17651–17661 (2023). https://doi.org/10.1007/s00432-023-05437-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-023-05437-z

Keywords

Navigation