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Abstract
Background Renal clear cell carcinoma (RCC) is a common cancer in urinary system with increasing incidence. At present, 
targeted therapy and immunotherapy are the main therapeutic programs in clinical therapy. To develop novel drugs and 
provide new ideas for clinical therapy, the identification of potential ccRCC subtypes and potential target genes or pathways 
has become a current research focus.
Aim The aim of this study was to explore the underlying mechanisms of mitochondrial function in ccRCC. This regulatory 
pathway is closely related to tumor development and metastasis in ccRCC patients, and their abnormal changes may affect 
the prognosis of cancer patients. Therefore, we decided to construct a prognostic model of ccRCC patients based on mito-
chondrial regulatory genes, aiming to provide new methods and ideas for clinical therapy.
Result The 5-year survival prediction model based on iterative LASSO reached 0.746, and the cox model based on coxph 
reached C-index = 0.77, integrated c/D AUC = 0.61, and integrated brier score = 0.14. The rsf model based on randomFor-
estSRC was built with C-index = 0.82, integrated c/D AUC = 0.69, and integrated brier score = 0.11. The results show that 
mitochondrial regulatory pathway is a potential target pathway for clinical therapy of ccRCC, which can provide guidelines 
for clinical targeted therapy, immunotherapy and other first-line therapy.

Keywords Clear cell renal cell carcinoma · Mitochondria · Machine learning · Bioinformatics · Immunotherapy · Target 
therapy · Prognostic model
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MDR  Multidrug resistance
PT  Petasin

Introduction

Renal cell carcinoma, as one of the most common tumors 
of the urinary system, accounts for 3% of all cancers, with 
the highest incidence in Western countries. In general, the 
incidence has increased by about 2% per year globally and in 
Europe. Clear cell renal cell carcinoma is the most common 
solid lesion in the kidney, accounting for about 90% of all 
renal malignancies. It includes different RCC subtypes with 
specific histopathological and genetic characteristics. The 
male to female ratio is 1.5: 1. The average age of patients 
with the disease tends to be younger (Sung et al. 2021). 
Several proven risk factors have been identified, including 
smoking, obesity and high blood pressure. These are con-
sidered clear risk factors for RCC (Cairns 2010). Clear cell 
renal cell carcinoma is the largest pathological subtype of 
renal carcinoma, accounting for more than 75%. It is usu-
ally found during surgery that the tumor incision surface is 
golden yellow, often accompanied by bleeding and necrosis 
(Cohen and McGovern 2005). Loss of the 3p chromosome 
and mutation of the von Hippel-Lindau (VHL) gene on the 
3p25 chromosome are often found. The loss of VHL pro-
tein function contributes to the occurrence, progression and 
metastasis of tumors. The 3p locus contains at least four 
additional ccRCC tumor suppressor genes (UTX, JARID1C, 
SETD2, PBRM1) (Gossage et al. 2015; Thompson et al. 
2018). ccRCC generally has a poorer prognosis than other 
classifications, but this difference disappears after adjust-
ment for stage and grade. Therefore, ccRCC itself is hetero-
geneous and has a different prognosis (Jonasch et al. 2021). 
Based on this idea, clinicians continue to identify potential 
subtypes of renal cancer and develop its potential ability to 
guide prognosis and clinical therapy.

In addition to being the key organelles of energy genera-
tion in the cell, mitochondria also participate in the metabolic 
processes such as apoptosis, free radical production and lipid 
metabolism. Several studies have reported that abnormal 
mitochondrial function contributes to the pathology of many 
common diseases, including neurodegeneration, metabolic dis-
eases, heart failure, ischemia–reperfusion injury, infections in 
protozoa and cancer (Annesley and Fisher 2019). Mitochon-
dria are, therefore, an important drug target for these highly 
prevalent diseases. Several strategies aimed at therapeutically 
restoring mitochondrial function are emerging, and a handful 
of drugs have entered clinical trials. Mitochondria are mater-
nally inherited and originated as organelles of symbiotic bac-
teria. They co-evolved with the host, so most mitochondrial 
proteins are nuclear encoded. However, mitochondria retain 
a small 16 kb DNA genome that encodes tRNAs, rRNA, and 

proteins essential for respiration. Cells have hundreds of mito-
chondria and can be wild-type or a mixture of wild-type and 
mutant types, a state known as heterogeneity. Mitochondria are 
important bioenergy and biosynthesis factories that are essen-
tial for normal cell function and human health (Nunnari and 
Suomalainen 2012). Otto Warburg proposed that mitochon-
drial respiratory defects were a potential basis for aerobic gly-
colysis and cancer, known as the Warburg effect (Vaupel et al. 
2019). However, in fact, the Warburg effect can only be used as 
the basis for FDG-PET tumor imaging, and not all tumors have 
this aerobic glycolytic property (Czernin et al. 2013). Mito-
chondrial respiratory defects are not usually the cause of aero-
bic glycolysis, nor are they usually selected for during tumor 
evolution. In most cancers, it is carcinogenic driver mutations 
such as activation of K-ras, c-Myc, and phosphatidylinositol-3 
(PI3) kinases or loss of phosphatase and tensin homologues 
and p53 that promote glycolysis, rather than mutations in the 
inactivated mitochondrial respiratory complex. Most cancers 
always preserve mitochondrial function, including respiration. 
Some tumors have high levels of oxidative phosphorylation, 
while others still retain mitochondrial respiration and other 
functions. Quantified by flux analysis in cultured cells, it was 
found that AKT conversion did not significantly affect respira-
tion, while Ras conversion reduced respiration, but most ATP 
was still produced by oxidative phosphorylation. Functional 
tests of mitochondrial activity requirements in cancer have 
revealed their importance. The inactivation of the mitochon-
drial transcription factor Tfam depletes the mitochondria in 
tumor cells, thus impairing the growth of K-ras lung tumors. 
Depleting the mtDNA of tumor cells by poisoning mtDNA 
replication to produce r0 cells can significantly disrupt tumor 
development. In addition, selection for recovery of MTDNA-
depleted r0 tumor growth was associated with horizontal trans-
fer of the mitochondrial genome in host tissue and respiratory 
recovery (Kroemer and Pouyssegur 2008; Wallace 2012; Klein 
et al. 2020; Missiroli et al. 2020). These and other findings 
suggest that the role of mitochondria in cancer is not as sim-
ple as Warburg thought. Instead, they point to the importance 
of mitochondrial function for tumor growth. Therefore, we 
decided to identify potential subtypes of ccRCC and construct 
prognostic models based on the expression levels of regulatory 
genes of mitochondrial composition and function, and reveal 
the guiding significance of mitochondrial regulatory mecha-
nisms for the clinical therapy of ccRCC.

Material and methods

Data resource

RNA-seq and clinical information of ccRCC/KIRC samples 
were obtained from The Cancer Genome Atlas (TCGA) data-
base by TCGAbiolinks R package (tumor n = 537, control 
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n = 72) (Tomczak et al. 2015; Colaprico et al. 2016). In addi-
tion to the sample information of ccRCC/KIRC patients, 
cancer types of 32 different organs and tissues were also 
obtained for pan-cancer analysis. Gene expression informa-
tion and resistance data of cell lines were obtained from the 
Genomics of Drug Sensitivity in Cancer (GDSC) database 
to predict resistance in ccRCC samples(Yang et al. 2012).

Gene set acquisition and potential subtype 
identification

The mitochondrial regulatory gene set was obtained from 
1136 human mitochondria-related genes included in the 
MitoCarta3.0 database (Rath et al. 2021). Based on the 
unsupervised consensus clustering algorithm and the step 
analysis of Boruta algorithm, positive and negative related 
genes were divided and selected, and the sample subtype 
identification was completed. GO and KEGG databases 
were used for pathway enrichment analysis of the screened 
genes to determine whether the function of the screened 
genes was related to mitochondria (Kanehisa et al. 2017; 
The Gene Ontology Consortium 2019). All ccRCC samples 
were identified as clusterA (High-Mitopathway enrichment) 
and clusterB (Low-mitopathway enrichment) groups.

Immunoinfiltration analysis of subtypes

Tumor infiltrating immune cells are invasive immune cells 
isolated from tumor tissue. A successful anti-tumor immune 
response requires the presence, activation, and co-stimula-
tion of all lymphoid components of the immune system, 
including different populations of T cells, B cells, dendritic 
cells, natural killer cells (NK cells), bone marine-derived 
suppressor cells (MDSC), neutrophils, and macrophages. 
The process of malignant tumor is not only the accumula-
tion of tumor cells, but also the formation of microenviron-
ment by endothelial cells, fibroblasts and infiltrating immune 
cells. Cells in the tumor microenvironment play an important 
role in tumor development, invasion and metastasis. These 
cells influence tumor diagnosis, survival outcome, and sensi-
tivity to clinical immunotherapy. Seven immune infiltration 
quantization algorithms including TIMER, CIBERSORT, 
Cibersort-ABS, QUANTISEQ, MCPCOUNTER, XCELL 
and EPIC were used to calculate the immune cell infiltration 
state of ccRCC samples, and heat maps were drawn to com-
pare the differences in the degree of immune cell infiltration 
of the two subtypes (Newman et al. 2015; Becht et al. 2016; 
Li et al. 2017; Aran et al. 2017; Finotello et al. 2019; Racle 
and Gfeller 2020). The proportion of immune cells and stro-
mal cells in a tumor has a significant impact on prognosis, 
and immune cells and stromal cells are two major types of 
non-tumor components in the tumor microenvironment, and 
have been shown to be of great value for tumor diagnosis and 

prognostic evaluation. The immune score and stromal score 
calculated based on estimate algorithm are helpful for the 
quantification of immune and stromal components in tumors. 
Based on estimate algorithm, we can obtain three scores: (1) 
stromal score (describing the matrix in the tumor tissue) (2) 
immune score (describing the infiltration of immune cells 
in the tumor tissue) (3) tumor purity (describing the tumor 
purity). Based on DNA methylation site markers, we cal-
culated the methylation score MeTIL of tumor-infiltrated 
lymphocytes to evaluate the degree of tumor immune inva-
sion from the perspective of DNA methylation (Lu et al. 
2021). To further determine the degree of tumor response 
to immunotherapy, we extracted the gene expression of key 
sites of immunotherapy and compared whether there were 
differences among different subtypes.

Drug resistance analysis

The GDSC database is currently the largest public database 
of information on drug sensitivity and molecular markers 
of cancer cells. Based on multiple studies and database 
information, the database is integrated and re-analyzed to 
describe the sensitivity and response of different tumor cells 
to drugs at the three search levels of cell, drug and molecule. 
The drug resistance analysis was mainly based on the gene 
expression data and drug resistance data of each cancer cell 
line in the GDSC database, and the model was constructed 
by ridge regression. After ccRCC samples were input into 
ridge regression prediction model, the drug resistance data 
of each ccRCC sample was obtained. We drew a box chart 
based on the resistance of ccRCC subtypes to various clini-
cal cancer targeted therapies to compare the differences in 
drug resistance, and calculated the statistical differences 
based on wilcox-test. pRRophetic R package is used for data 
analysis (Geeleher et al. 2014).

Prediction model construction

LASSO-COX regression has been used to construct poly-
genic clinical prognostic models. The purpose of this algo-
rithm is to reduce the variables included in the final pre-
diction model and minimize the overfitting degree of the 
model while ensuring the accuracy of the model. However, 
lasso regression algorithm needs to set seeds, lasso is highly 
dependent on seeds when allowed, because the algorithm 
itself needs cross-validation, and the cross-validation pro-
cess is to randomly select samples. So once we change the 
seed, the optimal lambda will change, and the resulting 
feature will change. Therefore, we decided to improve the 
classical LASSO regression algorithm by iterating LASSO 
to produce genes that are retained under consensus (Sveen 
et  al. 2012). We ran 1000 times LASSO regression in 
seed-independent sequences to sequence the frequency of 
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occurrence of the genes that were preserved. The area under 
ROC curve (AUC) further selects the smallest combination 
of genes associated with survival. Consensus is the feature 
that is retained at high frequency after multiple runs of lasso 
(independent of seeding) and can be considered to have the 
most impact on the topic of interest. The order of frequency 
represents the degree of influence of these features, and then 
these features are incorporated into the cox model in turn, 
and the inclusion stops when the AUC reaches its peak, at 
which time the model is optimal and contains the least fea-
tures. We show the process of model construction in the 
form of AUC change curve, and plot the 5-year ROC curve 
at the peak of AUC. After riskscore (riskscore = Σgene exp 
× gene coef) was calculated, COX regression model and 
random survival forest model were incorporated into the 
sample combined with clinical characteristics, TNM grad-
ing, staging and other variables, and two prognostic models 
for ccRCC patients were constructed.

Model performance evaluation

Survival analysis is a task that deals with event time predic-
tion. In addition to Cox regression models, a number of sur-
vival analysis models based on machine learning algorithms 
have recently emerged, most of which generally lack inter-
pretability due to their complexity. Survex (https:// github. 
com/ Model Orien ted/ survex), as a tool to explain survival 
analysis models, can explain not only Cox regression mod-
els, but also randomForestRSC models based on machine 
learning algorithms. Based on the survex package, we cal-
culated a variety of time-dependent model evaluation indi-
cators of cox model and rsf model, including C-index, C/D 
AUC (cumulative/dynamic), and brier score. We then ana-
lyzed the importance and bias dependence of each feature, 
and performed local interpretation of each feature based on 
the SHAP algorithm to evaluate the importance of the vari-
able in predicting the two selected observations. Compare 
cox and rsf two prediction models and choose a better pre-
diction model as the final choice.

Results

Clustering and gene screening

In unsupervised cluster analysis, we tried a variety of group-
ings. According to the evaluation curve of CDF of clusters, 
we finally selected two clusters, clusterA and clusterB, and 
divided the positive and negative correlation sets of all 
genes. Then, dimension reduction of 1136 mitopathway 
genes (Supplementary Table 1) was carried out based on 
boruta algorithm, and the number of genes was reduced to 
273 (Fig. 1A–C, Supplementary Tables 2–3). The survival 

curves drawn according to the two clusters suggest that 
there are significant survival differences between the two 
clusters (Fig. 1D, p < 0.001). The Mitopathway gene rich-
ment score of each sample was calculated based on PCA 
algorithm based on positive and negative gene sets. As can 
be seen from the violin chart, there are obvious differences 
in richment score of the two clusters. ClusterA obviously 
has high-mitopathway enrichment, ClusterB obviously has 
low-mitopathway enrichment. The p-value obtained by 
kruskal.test is 2.2e–16, which is significantly lower than 
0.05 (Fig. 1E). The selected genes were input into GO and 
KEGG databases for analysis and their functional annota-
tions were obtained (Fig. 1F, G). We found that these genes 
mainly function to regulate the composition of mitochon-
dria, form mitochondrial membrane structure, and perform 
metabolic pathways dependent on mitochondria (degrada-
tion of valine, leucine and isoleucine, degradation of fatty 
acids, carbon metabolism, citric acid cycle (TCA cycle), and 
so on. Mitochondrial membrane fatty acid metabolism).

Immune cell infiltration landscape 
and immune‑related score

The levels of immune components obtained by seven 
immune cell infiltration fitting algorithms are presented in 
the form of heatmap (Fig. 2A, Supplementary Table 4). The 
correlation between immune component levels and mito-
chondrial function was revealed through labeling clustering 
and sequencing of samples based on mitopathway score. 
Immune-related score calculated based on the ESTIMATE: 
stromal score, immune score, tumor purity, tumor-infiltrating 
lymphocyte methylation score (MeTIL) and Immune check-
point related genes also suggested that there were significant 
differences in immune microenvironment between the two 
clusters (Wilcox-test p < 0.05, Fig. 2B, C, Supplementary 
Tables 5, 6). The IC50 prediction results of 12 anticancer 
drugs based on the GDSC database are presented in the form 
of box charts, and the Wilcox-test p-value is marked at the 
bottom of each box chart (Fig. 2D, Supplementary Table 7). 
We found that pazopanib, sunitinib and sorafenib, the three 
first-line ccRCC targets, had significant differences in IC50 
in different clusters (p < 0.05), suggesting that the expres-
sion of mitopathway can guide the clinical application of 
these targeted drugs to some extent. Mitochondrial regula-
tory genes are expected to become Nova biomarkers guiding 
clinical therapeutic use of ccRCC.

Construction of ccRCC prediction model

Iterative LASSO was used to further screen 273 mitochon-
drial regulatory genes. After 1000 iterations, 7 genes were 
finally selected for the construction of the model, respec-
tively: ABCB6, ACSL1, ALDH4A1, ATP5MF, BIK, 

https://github.com/ModelOriented/survex
https://github.com/ModelOriented/survex
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CPT1C, GCSH (Supplementary Table 8). The correspond-
ing 5-year survival prediction AUC at this time is 0.746, and 
the survival curve difference p-value of the risk groups is 
much less than 0.001, which confirmed the effectiveness of 
the iterative LASSO algorithm (Fig. 3A–C). We sequenced 
the ccRCC samples according to these gene expression lev-
els, and took the loci that could make the greatest differ-
ence in survival between the two groups of samples (the 
lowest p-value) as the cut-off value (Fig. 3D). The results of 
survival curve indicated that the expression difference of 7 
genes was related to the survival difference of patients. After 
the riskscore of all samples was calculated (Supplementary 
Table 9), it was fused with clinical data to build a prediction 
model. Based on the expression levels of 7 genes and their 
coefficients, the riskscore of pan-cancer samples was calcu-
lated to provide an overview of whether the mitochondrial 
pathway is a protective or a risk pathway in different cancers 
(Fig. 3E). We found it very interesting that there are two 

common pathological subtypes of kidney cancer: riskscore 
of mitochondrial pathway plays a risk role in both clear cell 
renal cell carcinoma (ccRCC) and papillary renal cell carci-
nom (pRCC), which provides a good idea for drug develop-
ment of renal cell carcinoma. We can look for pathways that 
act on the same organ or tissue at the same time, thereby 
extending the range of action of the drug. In R, cox regres-
sion model is constructed based on coxph function and rsf 
model is constructed based on randomForestSRC function.

Variable interpretation and comparison 
of prediction models

Due to the complexity of machine learning algorithms, we 
cannot directly apply nomogram and other display meth-
ods. Therefore, we adopted survex R package to compare 
the two models and explain the global/local features. 
Through calculation and comparison of C-index, AUC and 

Fig. 1  Selection of mitopathway genes and Clustering of ccRCC sam-
ples. A Heatmap shows the condition of samples clustering. B Cumu-
lative distribution function of samples clustering. C Heatmap shows 
the gene expression after Boruta algorithm of two different clusters. 
The color blocks on the right indicate the distribution of gene expres-

sion and other clinical information in different groups. D The survival 
curve of the two clusters. E Violin plot shows the difference of the 
mitopathway enrichment in different clusters. F GO database enrich-
ment analysis. G KEGG database enrichment analysis
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Brier score (Fig. 4A, B, Supplementary Tables 10–12), 
we found that the prediction performance of the rsf model 
was comprehensively superior to that of the cox model. 
After each variable was split, variable interpretation was 
carried out. In the global interpretation, we found that the 
influence of stage variable in the cox model on the model 
gradually increased over time (Fig. 4C, D). In rsf model, 
riskscore and age are the main influencing variables. In the 
degree of dependence curve plot, the wider the curve area, 
the more obvious the change of the variable can cause 

the fluctuation of the model (Fig. 5A, B). We find that 
riskscore is of great importance in both the cox model and 
the rsf model. In the SHAP algorithm, we found that with 
the increase of time, the SHAP value of riskscore in the 
rsf model with two observed values (12, 32) would gradu-
ally increase and occupy the dominant position of model 
variables(Fig. 5C, D). The comparison and interpretation 
results of cox model and rsf model indicate the effective-
ness and accuracy of the model construction, indicating 
that mitochondrial regulation related genes have certain 

Fig. 2  Heatmap shows the difference of immune infiltration and 
scores between the two clusters and the difference of drug sensitiv-
ity results of multiple targeted drugs. A The difference of immune 
landscape in different clustering algorithms. The lower color blocks 
represent different levels of immune cells. B The difference of immu-
nization scores in different groups. The color blocks on the right rep-

resent different levels of immunity scores. C Differences of immune 
checkpoint regulatory genes in different groups. The color blocks on 
the right represent different levels of immunity scores. D The box plot 
shows the drug sensitivity of different clusters to 12 common clini-
cally targeted drugs, expressed as IC50
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application value in the clinical survival prediction of 
ccRCC.

Discussion

Renal cell carcinoma (RCC) is a kind of malignant tumor 
that is not sensitive to radiotherapy or chemotherapy. Cur-
rently, effective tumor therapy mainly relies on a variety 
of molecular targeted therapeutic drugs targeting vascular 
endothelial cell growth factor (VEGF), platelet-derived 
growth factor (PDGF) and mammalian target protein of 
rapamycin (mTOR) and immunotherapy targeting immune 
checkpoints such as PD-1 and PD-L1 (Yoon 2017; Chen 
et al. 2019; Braun et al. 2020; Lai et al. 2021; Qi et al. 2022). 
Renal cell carcinoma (RCC) is also considered to be a meta-
bolic disease in many studies, mainly due to the presence of 
large amounts of carbohydrate, cholesterol, and fat meta-
bolic reprogramming in renal cell (Wettersten et al. 2017). 
In normal cells, a large portion of glucose is metabolized to 
pyruvate through the TCA (Krebs) cycle in the mitochon-
dria and oxidative phosphorylation, which is almost com-
pletely oxidized to CO2, resulting in a large amount of ATP 

(Tsvetkov et al. 2022). Pyruvate can be metabolized into 
lactic acid only when oxygen is restricted. Instead, most 
cancer cells convert most glucose into lactic acid, regard-
less of oxygen availability (the Warburg effect). In addition, 
tumor cells increase ROS production, thereby enhancing 
their antioxidant defenses to avoid oxidative damage and 
maintain ROS homeostasis. Because of this, key enzyme 
proteins and intermediates in the TCA cycle and oxidative 
phosphorylation have become potential targets for many can-
cer targeting drugs. Clear cell renal cell carcinoma is the 
most common pathological type of renal cell carcinoma. In 
70–90% of patients with clear cell renal cell carcinoma, the 
VHL gene is inactivated, resulting in significantly increased 
hypoxia-inducing factor (HIF) levels in the cancer cells in 
the normoxic state (Zhang and Zhang 2018; Thompson et al. 
2018). HIF can inhibit mitochondrial glucose oxidation by 
up-regulating the expression of pyruvate dehydrogenase 
kinase (PDK), a key protein kinase that regulates mitochon-
drial glucose oxidation metabolism, and then up-regulating 
the expression level of intracellular glycolytic enzyme. The 
inhibition of mitochondrial function in cancer cells in this 
anaerobic state can inhibit the apoptosis process of the mito-
chondrial pathway, reduce the levels of alpha-ketoglutarate, 
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a circulating metabolite of tricarboxylate, and mitochondria-
related ROS, and thus inhibit the function of P53. P53 has 
been proved to have tumor suppressor function, which can 
inhibit the expression of pyruvate dehydrogenase kinase 2 
(PDK2), thus activating mitochondrial oxidative metabolism 
and promoting TCA cycle (Zhang et al. 2013; Harlander 
et  al. 2017). In addition, p53 can induce mitochondrial 
GLS2 expression to enhance GSH synthesis and alpha- 
ketoglutarate, thereby promoting TCA cycling. P53 func-
tion is often impaired in tumors. Idasanutlin (RG7388), a 
small molecule that blocks the negative regulation of P53 
in rat double microgene 2 (Mdm2), is currently in Phase 
III trials (Konopleva et al. 2020). It has been shown that 
RG7388 effectively reduces cell proliferation and induces 
p53-dependent pathways, cell cycle arrest and apoptosis, 
thereby inhibiting tumor growth. Meanwhile, ALRN-6924, 

a dual-targeted inhibitor of Mdm2/MdmX, has been tested in 
Phase I clinical trials (Saleh et al. 2021). The present results 
suggest that it stably activates p53-dependent transcription 
at the single-cell and single-molecule levels, and has good 
tolerance and antitumor activity in patients with solid tumors 
or lymphomas carrying wild-type TP53.

Studies have shown that OXPHOS can provide ATP for 
tumor proliferation. The electron transport chain (ETC) 
is an important component of OXPHOS, which consists 
of the complex I-IV, CoQ, and Cyt c and is required for 
tumor growth. As a major producer of proton gradients in 
ETC, complex I is a suitable target for the development of 
OXPHOS inhibitors. Early metformin and BAY87-2243 
received much attention for their ability to inhibit complex 
I, but their low potency and severe side effects prevented 
their further development (Foretz et al. 2014; Mallik and 
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Chowdhury 2018; Du et al. 2022). Petasin (PT) is a com-
plex I inhibitor that mainly inhibits tumor growth in animal 
models with high efficiency and low toxicity (Heishima 
et al. 2021). In addition, the human epidermal growth fac-
tor receptor 2 (ERBB2) inhibitor mubritinib has anticancer 
effects by inhibiting complex I (Baccelli et al. 2019).

Multidrug resistance (MDR) in tumor cells is also related 
to mitochondria. MDR is one of the main causes of chemo-
therapy failure. The occurrence of MDR is associated with a 
variety of proteins on the cell membrane, such as the energy-
dependent P-gp protein, which can expel chemotherapy 
drugs from the cell with the help of ATP. The ATP needed 
for P-gp to function comes mainly from the mitochondria. 
With high energy demand, mitochondria produce more 
ATP through glycolysis (Kopecka et al. 2020). Considering 
the multitude of drugs available for the clinical treatment 
of ccRCC, we decided to analyze the sensitivity of ccRCC 
samples with differential cuprotosis expression to these 
commonly used drugs, starting with common chemotherapy 

drugs and targeted therapies for kidney cancer. Therefore, all 
12 drugs selected from the GDSC database are first and sec-
ond-line treatments for kidney cancer. The IC50 prediction 
results for all drugs show significant differences between the 
high and low cuprotosis expression groups, with most drugs 
in the three groups showing a trend of increased or decreased 
IC50 values. It is gratifying to note that the first-line drugs in 
this subgroup: Sorafenib, Sunitinib, and pazopanib all show 
good resistance differences. This indicates that the classic 
ccRCC drugs used in clinical practice are related to cupro-
tosis. This preliminary result confirms our hypothesis from 
a clinical treatment perspective and suggests that the differ-
ential expression of cuprotosis still has guiding significance 
in the selection of currently used therapeutic drugs.

Based on these current research hotspots, we believe 
that mitochondria play an important role in the alteration of 
glucose and lipid metabolism in cancer. The key regulatory 
genes of mitochondria must play a key role in ccRCC, a type 
of cancer with obvious metabolic variation. MitoCarta3.0 
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which was published in 2021 is an emerging mitochondrial 
gene database. At present, the database contains a total of 
1136 human mitochondrial pathway genes and 1140 mouse 
mitochondrial pathway genes, which is the most comprehen-
sive gene bank for explaining mitochondrial function, struc-
ture and metabolism in the public database. To screen key 
genes broadly, we decided to include all human mitochon-
drial pathway genes in the initial study, rather than focusing 
on certain key pathways, to ensure maximum refinement of 
the final predictive model's ability to interpret mitochondria. 
The 7 mitochondrial pathway genes with large regulatory 
range ABCB6, ACSL1, ALDH4A1, ATP5MF, BIK, CPT1C 
and GCSH obtained by the final iterative LASSO screening 
also suggests that the final prediction model has a broad 
explanatory ability for mitochondrial function, rather than 
being limited to certain mitochondrial functional pathways. 
After comparison with Mitocarta database and literature 
review, we found that ABCB6, as a regulatory factor of 
ATP binding box, is mainly responsible for the transport of 
metal ions, cofactors and small molecules. ACSL1 is mainly 
responsible for regulating lipid metabolism and fatty acid 
oxidation balance (Quan et al. 2021), while ALDH4A1 and 
GCSH play important roles in amino acid metabolism, and 
are responsible for regulating the production and transport 
of proline and glycine, respectively (Lorenzo et al. 2021). 
ATP5MF is an important component in the regulation of 
oxidative phosphorylation: Complex 5 (Zhang et al. 2022). 
BIK is directly related to mitochondrial apoptosis (Chinna-
durai et al. 2008). CPT1C is mainly responsible for carnitine 
transport and lipid metabolism (Fadó et al. 2023). It can be 
seen that almost most of the genes are related to the changes 
of mitochondria in cancer cells, and it can be considered that 
these genes have a potential regulatory relationship with the 
proliferation and metastasis of cancer cells. A more interest-
ing phenomenon is that most of the genes that were screened 
were concentrated in cellular metabolic functions. For this 
phenomenon, we believe that there are several possibilities: 
1.Gene regulation in cell metabolism: The mitochondrial 
pathway is closely related to cell metabolism. To maintain 
normal biological activities, cells must carry out various 
metabolic processes, such as energy production, organic 
synthesis, decomposition, and so on. Therefore, the enrich-
ment of metabolism-related genes in the mitochondrial 
pathway is expected. 2. The main function of the mitochon-
dria: The mitochondria is an organelle within the cell whose 
main function is to produce the energy required by the cell. 
Mitochondria provide energy through ATP produced dur-
ing cellular respiration. ATP is involved in many metabolic 
pathways in the cell, including fatty acid metabolism, glyco-
lysis, ketone body synthesis, etc. Therefore, gene functions 
associated with these metabolic processes may be highly 
enriched in the mitochondrial pathway. 3. The relationship 
between mitochondrial pathway and metabolic diseases: The 

mitochondrial pathway is closely related to the development 
and progression of many metabolic diseases. In these dis-
eases, gene mutations or functional abnormalities related 
to energy metabolism and cellular respiratory function may 
lead to the occurrence of the disease. Therefore, genes that 
play an important role in metabolic function may receive 
more attention in the functional enrichment of mitochondrial 
pathways.

At present, the construction of prediction models based 
on gene screening is based on model variables such as forest 
map, nomogram and so on. Here, we hope to find different 
model display methods to interpret the model we constructed 
from a new perspective. At present, the large-scale develop-
ment of machine learning has provided great help for the 
construction of clinical prediction models. In this paper, we 
use cox regression and random survival forest, a well-known 
variant of random forest in machine learning algorithms, to 
compare two different model construction methods, and use 
the survex R package to quantify the model (Taylor 2011). 
The results show that the machine learning random forest 
algorithm is ahead of the traditional cox regression algo-
rithm in many aspects, and thanks to the help of survex, the 
former 's complex internal algorithm can be explained glob-
ally and locally through their separate variables, which is 
convenient for more clinicians to understand the significance 
of the prediction model. Survival analysis models typically 
output functions (survival or risk functions) rather than point 
predictions like regression and classification models. This 
makes interpreting these models a challenging task, espe-
cially with Shapley values. To do this, we apply SurvSHAP, 
a new model agnostic algorithm, to interpret survival models 
that predict survival curves. The algorithm is based on find-
ing patterns in the predictive survival curve that will iden-
tify significantly different survival behaviors, and utilizing 
proxy models and SHAP methods to explain these different 
survival behaviors. Experiments on both synthetic and real 
datasets show that SurvSHAP is able to capture the underly-
ing factors of survival patterns. In addition, the SurvSHAP 
results of the Cox proportional risk model are compared 
with the weights of the model to show that we provide a 
more realistic overall explanation and a more refined expla-
nation of subpopulations. Non-linear machine learning sur-
vival models using SurvSHAP can better model the data and 
provide better interpretations compared to linear models.

Conclusion

In this study, we obtained human mitochondrial regulatory 
genes based on MitoCarta database, and conducted initial 
screening and sample clustering based on unsupervised con-
sensus cluster analysis and Boruta algorithm. We explored 
the correlation between these gene expressions and the 
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immune landscape of ccRCC, and found that mitochondrial 
pathways are associated with multiple immune cell infil-
trations in ccRCC and with drug susceptibility to multiple 
clinically targeted drugs. We used the iterative LASSO algo-
rithm to screen genes for several times and constructed COX 
and RSF prediction models at the same time. Comparing the 
prediction performance of the two models, we found that the 
prediction model constructed by random forest algorithm 
was comprehensively superior to the prediction model con-
structed by COX regression algorithm. Our analysis results 
indicate that the mitochondrial pathway has obvious guiding 
value for the clinical therapy of ccRCC.
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