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Abstract
Background Disulfidptosis is a novel type of programmed cell death. However, the value of disulfidptosis-related genes 
(DRGs) in the prediction of breast cancer prognosis is unclear.
Methods RNA-seq data of 1231 patients, together with information on patient clinical characteristics and prognosis, were 
downloaded from TCGA. DRGs were identified between cancerous and non-cancerous tissues. The LASSO algorithm was 
used to assign half of the samples to the training set. Risk scores were used for construction of a prognostic model for risk 
stratification and prognosis prediction, and the clinical applicability was examined using a line diagram. The relationships 
between risk scores, immune cell infiltration, molecular subtypes, and responses to immunotherapy and chemotherapy were 
examined.
Results We identified and obtained four DRG-related prognostic lncRNAs (AC009097.2, AC133552.5, YTHDF3-AS1, and 
AC084824.5), which were used for establishing the risk model. Longer survival was associated with low risk. The DRG-
associated lncRNAs were found to independently predict patient prognosis. The AUCs under the ROCs for one-, three-, and 
5-year survival in the training cohort were 0.720, 0.687, and 0.692, respectively. The model showed that the high-risk patients 
had reduced overall survival as well as high tumor mutation burdens. Furthermore, high-risk patients showed increased 
sensitivity to therapeutic drugs, including docetaxel, paclitaxel, and oxaliplatin.
Conclusion The risk score model was effective for predicting both prognosis and sensitivity to therapeutic drugs, suggesting 
its possible usefulness for the management of patients with breast cancer.
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CIBERSORT  Cell-type identification by estimating rela-
tive subsets of RNA transcripts

ssGSEA  Single-sample gene set enrichment 
analysis

WGCNA  Weighted gene co-expression network 
analysis

ROC  Receiver operating characteristic
AUC   Area under the curve
CNV  Copy number variation
DEGs  Differentially expressed genes
PCA  Principal component analysis
t-SNE  T-distributed stochastic neighbor 

embedding
TAMs  Tumor-associated macrophages
TIDCs  Tumor-infiltrating dendritic cells
TOM  Topological overlap matrix
TOM  Topological overlap matrix
TME  Tumor microenvironment
IC50  Half-maximal inhibitory concentration

Introduction

The global levels of breast cancer are rising steadily. The dis-
ease is associated with high rates of mortality (Siegel et al. 
2018, 2020; DeSantis et al. 2019) together with account-
ing for approximately one-third of new tumors in women 
(DeSantis et al. 2019; Sung et al. 2021). Recent advances in 
new drugs and therapeutic targets have led to improvements 
in both the treatment and prognosis of breast cancer (Crozier 
et al. 2020; Voorwerk et al. 2019; Dirix et al. 2018). Cur-
rent treatment modalities include surgery, radio-, chemo-, 
and hormone therapy, as well as targeted therapy (Esteva 
et al. 2019). The great burden of breast cancer on the global 
economy and healthcare system indicates the urgency of 
understanding its pathogenesis. The ability to rapidly diag-
nose and treat breast cancer would be highly beneficial in 
improving patient outcomes (Rakha and Pareja 2021). Thus, 
the identification of novel markers and the construction of 
models for prognosis prediction would be of great value.

Disulfidptosis is a novel form of programmed cell 
death. Disulfidptosis occurs in cells with low glucose and 
high SLC7A11 levels and is characterized by abnormal 
disulfide bonding between cytoskeletal proteins, spe-
cifically actin. This results in structural damage within 
the cell, ultimately causing the destruction of the actin 
cytoskeleton and cellular death (Zheng et  al. 2023; 
Machesky 2023). This important finding is expected to 
aid the discovery of new prognostic markers to stimulate 
disulfide induction therapy for cancers that are insensitive 
to other treatments and apoptosis-resistant. The elevated 
expression of SLC7A11 suggests the possibility of a thera-
peutic window characterized by the inhibition of glucose 

transporters and disulfide bond formation, which might 
allow the specific treatment of cancer cells without affect-
ing normal cells (Liu et al. 2023).

It appears likely that disulfidptosis is involved in the 
tumorigenesis of various cancers, suggesting its potential 
as a marker for both diagnosis and treatment. However, 
to date, there is no information on disulfidptosis in breast 
cancer. The present study, thus disulfidptosis in breast can-
cer, is focusing especially on the tumor microenvironment. 
LASSO was used for identifying disulfidptosis-related 
genes (DRGs) linked with tumor prognosis, using 1231 
patient samples. A DRG-scoring method was developed 
for the assessment of overall survival (OS), and the effec-
tiveness of the model for assessing immune cell infiltra-
tion, the tumor mutation burden (TMB), mutational status, 
and drug resistance was evaluated.

Materials and methods

Data acquisition

The RNA-seq data of 1118 breast cancer specimens and 
113 normal samples were obtained from TCGA. Data on 
the patient clinical features, mutations, and copy number 
variations (CNVs) were downloaded. These raw data were 
standardized at the level of fragment expression per mil-
lion bases. We removed any patient data that was lack-
ing information on patient survival. We then determined 
expression levels related to DRGs (Ritchie et al. 2015). 
When the data cleaning process was complete, we inte-
grated the data for analysis.

Analysis of DRGs using consensus clustering

We collected 16 DRGs from earlier published articles to 
form a DRG signature (Machesky 2023; Liu et al. 2023); 
these genes are described in Table S1. Unsupervised clus-
tering analysis was used to separate the tumor samples 
into specific molecular clusters according to DRG levels, 
using the ConsensusClusterPlus package in R (Wilker-
son and Hayes 2010). Associations between the DRGs 
and survival were evaluated by Kaplan–Meier curves in 
the “survminer” R package, and CIBERSORT was used 
to assess cell infiltration of the tumor tissue (Meng et al. 
2020; Chen et al. 2018). Enrichment scores for immune 
cells were determined by gene set enrichment analysis 
(GSEA) (Huang et al. 2021) and were linked with clinical 
features. Kaplan–Meier analysis was also used to assess 
OS between different subtypes (p < 0.05).
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Construction of the prediction features 
of disulfidptosis‑associated lncRNAs

The association between DRGs and their corresponding 
lncRNAs was calculated with the “limma” package R 
package. The levels of 125 DRG-associated lncRNAs 
were assessed using correlation coefficients, with 

p < 0.05 as the threshold. LncRNAs related to prognosis 
were identified by univariate Cox regression. The samples 
were randomly allocated to training and validation sets, 
and prognosis-linked lncRNAs were examined by LASSO 
regression and their predictive ability assessed using the 
formula: risk score = (Expi × bi). (Exp: expression level of 
the model gene; b: model gene coefficient).

Fig. 1  Analysis of the levels of 16 DRGs identified from TCGA data. 
A Comparison of levels of 16 DRGs between tumor and control tis-
sues (*p < 0.05, **p < 0.01, ***p < 0.001). B Frequencies of DRG 
mutations in 991 breast cancer patients. C CNV variation sites of 

DRGs on the chromosomes. D Gain-of-function, loss-of-function, 
and neutral CNVs in DRGs. E–M Relationship between nine DRGs 
and OS
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Nomogram construction

We employed the “regplot” package to create a line chart 
based on clinical significance and DRG scores to predict 
overall survival. The line chart model was used to score each 
clinical significance feature, and all individual scores were 
summed to yield the total score. The prediction accuracy of 
the line chart was examined by comparing the AUCs of the 
time-dependent ROC curves of 1-, 3-, and 5-year survival. 
Calibration curves and C-indices were used for assessment 
of the predictive accuracy of the line chart.

GO and KEGG analyses

Patient samples were allocated to high- and low-
risk groups based on the median score. Differentially 
expressed genes (DEGs) were identified using FDR < 0.05 
and |log2fold change (FC) > 1| as the criteria. GO and 

KEGG analyses were performed using the “clusterProfiler” 
package in R. GSEA was used to assess differences in 
enrichment.

The prognostic signature and immune cell 
infiltration

The WGCNA algorithm was used to remove missing values, 
outliers, and redundancy from the data. The expression 
data were extracted, and the newly generated matrix was 
obtained by removing the censored data. Connectivities and 
dissimilarities in the co-expression network constructed 
using soft-threshold parameters were assessed with a 
topological overlap matrix. Co-expressed gene modules 
were discovered using dynamic hybrid cutting, and dynamic 
mixed cutting was used to construct a cluster tree where 
leaves represented individual genes and genes showing 
comparable expression or function were linked to form 

Fig. 2  Association of DRG subtypes with patient clinical and patho-
logical features. A Correlations between DRGs (red indicates positive 
and blue negative correlations, with greater color intensity indica-
tive of stronger correlation). B Consensus matrix heatmap of the two 
clusters (k = 2). C The CDF is the relative change in the area under 

the CDF curve when k = 2–9. D The tracking plot provides cluster-
ing clusters for each sample in cases where the number of clusters is 
k = 2–9. E Levels and clinical pathological characteristics of DRGs in 
different clusters. F Kaplan–Meier curves of different clusters in the 
DRGs
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branches, with branches representing modules. Pearson’s 
correlations between genes characteristic of modules 
(MEs) and infiltrating immune cell types were determined, 
with p values < 0.05 indicating significant associations. 
Subsequently, we intersected 16 color data sets with DRGs 
and found that brown modular immune genes were highly 
correlated with DRGs. The proportions of infiltrating cells 
were estimated using TIMER (Li et al. 2020).

Calculation of the TMB

The TMB is an indicator of the number of mutated per 
million bases and includes all types of mutations, such 
as nonsense, frameshift, and missense. The TMB was 
calculated from the variations in the total human exon 
length per sample using Perl scripts (Chan et al. 2019). 
Waterfall plots were produced using “maftools” in R 

Fig. 3  The disulfidptosis-related gene risk score (DRG-RS) model. A 
Partial likelihood deviance shown by LASSO regression with tenfold 
cross-validation. The vertical dotted lines represent optimal values 
drawn according to minimum and 1-SE criteria. B Four DRG-associ-
ated lncRNAs associated with prognosis. C Forest plot of HRs (95% 
CI) and p values for selected DEGs, identified by univariate analysis. 

D, F PCA of the high- and low-risk groups in the training and vali-
dation cohorts. E, G t-SNE analysis of high- and low-risk groups in 
the training and validation cohorts. H Sankey diagram showing links 
between DRG mRNA and lncRNAs. I Heatmap showing correlations 
between DRGs and lncRNAs
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to determine the point mutation numbers in the samples 
and the associations between TMB and risk (Mayakonda 
et al. 2018). Gistic2.0 was used to analyze the CNV data. 
Chromosomal fragments with significant numbers of 
amplifications and deletions were determined, and CNVs on 
the chromosomal arms were compared. The chromosomal 
positions of genes were visualized with “RCircos” in R.

Genomic variations in the different groups

The TMB of each sample was evaluated according to the 
model score. In addition, we performed an analysis of 
somatic variant and mutation data in breast cancer patients 
using “maftools” (Mayakonda et al. 2018), which was also 
used to assess differences in mutation numbers between the 

Fig. 4  Relationships between prognosis and predictive factors. A 
Kaplan–Meier analysis of OS in the high- and low-risk groups. B, 
C Univariate and multivariate regression indicating the ability of the 
DRG-related risk score to independently predict prognosis in data 

from TCGA. D–F Heatmap showing risk scores, OS, and levels of 
genes in the two groups. G ROC curves for 1-, 3-, and 5-year survival 
in the TCGA dataset (AUC: 0.720, 0.687, 0.692)
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groups. Chi-square tests compared the differences, which 
were visualized using R.

Assessment of drug sensitivity

Chemosensitivity was predicted using data from the 
Genomics of Drug Sensitivity in Cancer database. 
Sensitivity to various drugs, including cisplatin, paclitaxel, 
and gemcitabine, was analyzed using the semi-maximum 
inhibitory concentration index.

Statistical analysis

Data were analyzed using R v.4.2.2. Continuous variables 
were compared by independent t tests. Non-normally distrib-
uted variables were compared by Wilcoxon rank-sum tests 

and Chi-square tests for used for comparison of categorical 
variables. Patient survival was analyzed by Kaplan–Meier 
curves and log-rank tests. p values < 0.05 were considered 
statistically significant.

Results

Identification of DRGs

Sixteen DRGs were identified between 1118 tumor and 
control tissues (Fig. 1A). CNVs, which may lead to the 
activation or inactivation of genes associated with tumo-
rigenesis (Shlien and Malkin 2009; Clifford et al. 2010), 
were analyzed, together with frequencies of gene ampli-
fication and deletion in the DRGs. It was found that 91 
(9.18%) of the 991 samples had DRG mutations, with 
MYH9 showing the highest number (Fig. 1B). Most of 

Fig. 5  Establishment and assessment of the nomogram. A Nomogram 
construction based on risk scores and clinical features. B Calibration 
curve. C ROC curves of the nomogram and clinical features demon-

strating superior prediction of prognosis. D ROC curves for 1-, 3-, 
and 5-year outcomes. E ROC curves for comparison of the predictive 
ability of the model with clinicopathological indicators
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Fig. 6  Functional analysis of DEGs between the high- and low-risk 
groups based on the TCGA-BRCA dataset. A, B Risk scores accord-
ing to DRG-related clustering, showing DEGs between the high- and 
low-risk groups on a GO pathway bar plot. C Bubble plot; D circu-
lar plot. Risk scores according to DRG clusters with DEGs shown on 
KEGG pathway bar plot (E) and bubble plot (F). G GO analysis of 
the high-risk group. H GO analysis of the low-risk group. I KEGG 
analysis of the high-risk group. J KEGG analysis of the low-risk 
group

◂

the DRGs showed high rates of CNV deletion or accu-
mulation. The SLC3A2, NUBPL, IQGAP1, NCKAP1, 
NDUFS1, RAC1, RPN1, SLC7A11, MYL6, and LRP-
PRC genes showed higher numbers of gain-of-function 
mutations, while NDUFA11, GYS1, MYH9, MYH10, and 
ACSL4 were associated with loss-of-function mutations 
(Fig. 1C, D), suggesting their relevance for breast cancer 
tumorigenesis.

Kaplan–Meier analysis demonstrated that increased lev-
els of ACSL4, MYH9, NDUFS1, and NUBPL were linked 
with poor OS, while increased expression of IQGAP1, LRP-
PRC, RPN1, SLC3A2, and SLC7A11 was related to good 
OS (Figure levels and patient OS), suggesting the potential 
of these genes as targets or biomarkers for predicting out-
comes in these patients.

The correlation network picture (Fig. 2A) shows a strong 
correlation between 16 DRGs. Unsupervised consensus 
analysis of DRG co-expression was conducted for further 
exploration of heterogeneity in the genes. Overall, 1231 
genes were assigned to subgroups based on clinical char-
acteristics. It was found that clusters A (n = 754) and B 
(n = 477) had the greatest intra-group and inter-group dif-
ferences (Fig. 2B–D). The heatmap indicates the relation-
ships between specific clinicopathological features and the 
two clusters. The subgroups were found to differ markedly 
in tumor stage and pathological grade (Fig. 2E). However, 
OS showed no significant difference between the subgroups 
(Fig. 2F) nor were differences in OS observed in terms of 
DRG expression. We then further analyzed the lncRNAs 
associated with the DRGs.

Predictive abilities of disulfidptosis‑associated 
lncRNAs

One hundred and twenty-five DRG-associated lncRNAs 
were identified. Overfitting was eliminated by regression 
analysis, which also identified prognosis-associated lncR-
NAs. Half of the 1231 samples were included in the training 
set for model construction. This was termed the disulfidp-
tosis-related gene risk score (DRG-RS) signature and was 
validated with the overall TCGA dataset (Fig. 3A, B). Four 
lncRNAs (AC009097.2, AC133552.5, YTHDF3-AS1, and 
AC084824.5) were associated with prediction. AC009097.2, 
AC133552.5, and AC084824.5 were found to be protective 

and YTHDF3-AS1 was associated with increased risk 
(Fig. 3C). PCA and t-SNE analyses revealed that the DRG-
RS model had good discriminative ability in both sets 
(Fig. 3D–G). In addition, the relationship between DRG-
related lncRNAs was analyzed (Fig. 3H, I). We selected the 
following formula as the risk scoring formula: (− 0.746 * 
AC009097.2 expression) + (− 0.966 * AC133552.5 expres-
sion) + (1.027 * YTHDF3-AS1 expression) + (− 0.909 * 
AC084824.5 expression). Risk scores for individual patients 
were determined using this formula and the median calcu-
lated and used for sample classification according to risk.

Disulfidptosis cell signature for prognosis prediction

Kaplan–Meier analysis of OS in the two groups indicated 
markedly reduced OS in the high-risk group (p < 0.001, 
Figs. 4A, S1). Univariate regression showed that patient 
age, T, N, and M stages, and the risk score model were 
significantly linked with OS, shown in the forest plot 
(Fig. 4B), while multivariate analysis indicates that the 
risk score, age, and stage independently predicted OS 
(Fig. 4C), with poor outcomes markedly related to high-
risk score. There were marked differences in OS and DRG-
RS distribution between the two sets (Figs. 4D–F, S2). The 
AUCs of the 1-, 3-, and 5-year OS in the training set were 
0.720, 0.687, and 0.692, respectively, demonstrating the 
good predictive ability of the model (Figs. 4G, S3).

Prognostic ability of DRG‑RS and nomogram 
construction

A nomogram was constructed to provide a quantitative 
method for assessing likely survival outcomes (1-, 3-, and 
5-year survival) in patients with breast cancer (Fig. 5A). The 
total score for a patient comprised various prognostic fea-
tures, including age, stage, risk score, and N stage. Poor out-
comes were linked to the overall scores of the patients. The 
calibration curve (Fig. 5B) indicated that the observed and 
predicted survival outcomes were strongly consistent in the 
training set. Furthermore, the AUC values were all found to 
be above 0.65, and the nomogram of the C-index was mark-
edly better than others, indicating that the line map based on 
the DRG-RS signature had superior accuracy (Fig. 5C–E).

Functional analysis of DRG‑RS

DEGs were identified between the two groups, and GO 
and KEGG enrichment analyses were conducted. In the 
GO analysis, the biological processes were mostly associ-
ated with “the humoral immune response”, “complement 
activation”, “phagocytosis, recognition”, “complement 
activation”, “the classical pathway”, and “those mediated 
by circulating immunoglobulin” (Fig. 6A–D). Enrichment 
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in the cellular component category was associated with 
“the immunoglobulin complex”, “the external side of the 
plasma membrane”, “the RISC complex”, and “the RNAi 
effector complex”. KEGG analysis showed that the DEGs 
were mostly enriched in pathways related to “microRNAs in 
cancer”, “estrogen signaling”, and “Staphylococcus aureus 
infection” (Fig. 6E, F).

GSEA demonstrated the greatest enrichment in 
pathways associated with “allograft rejection”, “cytokine 
receptors or interaction”, “ECM receptor interaction”, 
“graft versus host disease”, and “systemic lupus 
erythematosus” in association with high risk, while low 

risk was associated with “cardiac muscle contraction”, 
“dilated cardiomyopathy”, “hypertrophic cardiomyopathy 
(HCM)”, “long-term potentiation”, and “tight junctions” 
(Fig. 6G, H). In addition, GO analysis showed enrichment 
in the high-risk group with “the immunoglobulin complex”, 
“circulating immunoglobulin complex”, “antigen-binding”, 
and “immunoglobulin receptor binding” (Fig. 6I), while 
pathways such as “striated muscle adaptation”, “striated 
muscle cell development”, “contractile fibers” “intermediate 
filaments”, and “the intermediate filament cytoskeleton” 
were linked with low risk(Fig. 6J).

Fig. 7  DRG-associated and clinicopathological features of patient 
from the TCGA dataset. A–C Boxplot showing DRG-based risk 
scores in patients with different T, N, and M stages. D Boxplot show-
ing DRG-based risk scores in relation to stage. E–H Distributions and 

percentages of T, N, and M stages in the two groups. I, J Boxplot 
showing DRG-associated risk scores in relation to age and sex. K, L 
Distributions and percentages of age and sex in the two groups
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Clinicopathological features and the candidate 
lncRNAs

The scatter plot (Fig. 7A–D) shows that the high- and low-
risk groups differed in TNM, stage, and risk score. Differ-
ences in the T level were as follows: T1 28% vs 24%, T2 
56% vs 59%, T3 13% vs 12%, and T4 2% vs 5%, respectively. 
Differences in the N level were as follows: N0 48% vs 46%, 
N1 36% vs 31%, N2 9% vs 13%, and N3 6% vs 8%, respec-
tively. Differences in the M level were as follows: M0 79% 
vs 89% and M1 1% vs 3%, respectively), demonstrating that 
high-risk that patients tended to have increased TNM grades 
and stages (Fig. 7E–H). However, age and sex were similar 
in both groups (Fig. 7I–L).

Associations of DRGs with immune cell infiltration

A co-expression module was developed to show the relation-
ship between immune-related genes and sample character-
istics using WGCNA. This involved the compilation of a 
clustering tree, removal of abnormal samples, calculation 
of correlation coefficients between gene pairs, and the con-
struction of a similarity matrix using gene expression data. 
The similarity matrix was then converted into an adjacency 
matrix using the soft threshold rule (16) (Fig. 8A). A scale-
free network and topological overlap matrix (TOM) were 
then constructed to assess the relationships between genes, 
and hierarchical clustering of genes (Fig. 8B) was analyzed 
by a hierarchical clustering tree. Final modules were pro-
duced using the dynamic tree-cutting method (Fig. 8C). The 
resulting 16 modules are shown in different colors: blue, 
salmon, green, light yellow, purple, light green, black, cyan, 
yellow, brown, gray, tan, royal blue, light cyan, magenta, and 

Fig. 8  Co-expression network constructed by WGCNA. A Scale inde-
pendence and mean connectivity analysis for various soft threshold 
powers. B A Hierarchical clustering tree constructed based on RNA-
seq. C Merging of similar functional modules to construct a new hier-

archical clustering tree. D Module–trait relationships. Rows represent 
module eigengenes and columns represent traits. Each cell includes 
the corresponding correlation and p value



16862 Journal of Cancer Research and Clinical Oncology (2023) 149:16851–16867

1 3

gray. A Venn diagram was used for visualization of the over-
lap, finding that genes in the brown module were strongly 
linked to DRGs. In breast cancer, the module–trait corre-
lation heat map showed a high correlation between DRGs 
and naive B cells (R2 = 0.15, p = 2e−07), resting memory T 
cells CD4 (R2 = 0.083, p = 1e−24), monocytes (R2 = 0.083, 
p = 0.005), macrophages M2 (R2 = 0.12, p = 9e−05), and 
resting mast cells (R2 = 0.21, p = 3e−12) (Fig. 8D). This 
suggests that DRGs are highly correlated with immune 
infiltration.

Immune infiltration in the two groups

The relative abundances of 22 immune cell types in rela-
tion to DRG-RS subtype were investigated using CIBER-
SORT. Figure 9A shows the abundances of immune cells 
in the DRG-RS subtypes, while Fig. 9B shows the corre-
lations between immune cell types and the TCGA groups 
(Fig. 9B). The R package “limma” R was used to compare 
the abundance of immune cell subsets and associated func-
tions. Differences were observed in naive B cells, CD8 + T 
cells, resting memory CD4 T cells, activated memory CD4 T 

cells, T follicular helper cells, Tregs, activated NK cells, M0 
and M2 macrophages, and resting mast cells between the two 
groups (p value < 0.05, Fig. 9C). The cell types and func-
tions were associated with greater activity in the high-risk 
group and included aDCs, B cells, CCR, CD8 + T cells, mac-
rophages, T helper cells, iDCs and pDCs, NK cells, Tregs, 
TIL cells, Tfh, Th1, and Th2 cells, and pathways associated 
with APC co-inhibition and co-stimulation, checkpoints, 
T cell co-inhibition and co-stimulation, cytolytic activity, 
and the promotion of inflammation and para-inflammation 
(Fig. 9D). This suggests that the immune processes of the 
high-risk group are relatively more active than those in the 
low-risk group.

Relationship between TMN and DRG‑RS

The TMB is an indicator of mutation numbers and can be 
related to T cell recognition (Pitt et al. 2016; Vinay et al. 
2015; Herbst et al. 2018; Altorki et al. 2019). Therefore, 
we inferred that TMB may be a prognostic indicator that 
should not be ignored in anti-tumor immunotherapy and 
thus investigated relationships between TMBs and risk 

Fig. 9  Immune cell infiltration in relation to the DRG-RS in the 
TCGA dataset. A Relative proportions of 22 immune cell types 
in relation to high and low DRG-RS. B CorHeatmap of infiltrat-
ing immune cells. C Expression heatmap of 22 infiltrating immune 

cell types in tumor and control tissues from TCGA. D Associa-
tion between immune cell types and risk groups (***p < 0.001, 
**p < 0.01, *p < 0.05). E Analysis of immune signatures in high- and 
low-risk groups, shown by GSEA
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scores. Positive associations were seen between the DRG-
RS and TMB (R = 0.14, p = 2.3e−05, Fig. 10E), with TMB 
values being linked with high risk (p = 0.0059, Fig. 10A). 
The immune, stromal, and ESTIMATE scores were assessed 
using ESTIMATE (Fig. 10B) (Yoshihara et al. 2013). The 
associations between the combined TMB and DRG risk 
scores on OS were then assessed, finding that high TMB 
was associated with poorer prognosis and that there was a 
synergistic effect between TMB and the DRG-RS (Fig. 10C, 

D). The waterfall chart indicates the distribution of muta-
tions in the top genes in the groups. The genes showing the 
greatest number of mutations were TP53, PIK3CA, TTN, 
CDH1, GATA3, MUC16, KMT2C, FLG, MAP3K1, and 
HMCN1. In high-risk patients, TP53 (35%) and PIK3CA 
(30%) (Fig.  10F) had greater mutational rates, while 
PIK3CA (32%) was higher in those with low risk (Fig. 10G). 
These results may offer clues for distinguishing relation-
ships between risk and somatic variation in breast cancer 

Fig. 10  Relationship between TMB and DRG-RS. A Violin plot 
of TMB in the high- and low-risk groups. B Immune, stromal, and 
ESTIMATE scores. C TMB and risk scores in the stratified patient 
Kaplan–Meier curves. D Kaplan–Meier curve stratified by TMB 

group and DRG signature. E Correlation between DRG risk and 
TMB scores in the TCGA dataset. Waterfall plot of mutations in the 
high- (F) and low-risk (G) groups
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immunotherapy, as well as assisting the interpretation of the 
immunotherapy response (Jiang et al. 2022).

Drug sensitivity of DRGs in breast cancer

The GDSC database was used for identification of chem-
otherapy drugs for analysis of drug sensitivity. It was 
observed that the IC50 values of 12 chemotherapy drugs 

were considerably reduced in the high-risk group, namely 
5-fluorouracil, irinotecan, oxaliplatin, palbociclib, sorafenib, 
docetaxel, paclitaxel, vinblastine, vincristine, AT13148, 
AZD6738, and GSK1904529A (p < 0.05, Fig. 11A–P). This 
indicates that high-risk patients may benefit the use of these 
drugs and that DRG activation may enhance drug sensitivity 
in breast cancer patients.

Fig. 11  Sensitivity to chemotherapy drugs in the different risk groups
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Discussion

Disulfidptosis results from stress caused by abnormal 
amounts of disulfide bonds in the actin components of the 
cytoskeleton, leading to the collapse of F-actin (Machesky 
2023) and cytotoxicity (Liu et al. 2020; Joly et al. 2020). As 
this form of cell death has only recently been discovered, 
there is minimal information on its role in breast cancer. 
This disease is a significant public health issue, with 
approximately 2.26 million diagnoses (11.7%) annually 
(Sung et al. 2021; Ahmad 2019; Liu et al. 2021). It is now 
the most common female malignancy and its incidence is 
increasing (Hutchinson 2010). Thus, the identification of 
biomarkers for both diagnosis and outcome prediction is 
most important (Weigel and Dowsett 2010; Shi et al. 2022). 
Here, a prognostic risk model was developed according to 
univariate Cox regression and LASSO analyses to elucidate 
the possible association between disulfidptosis and breast 
cancer outcomes.

Significant differences in DRG levels were found between 
cancer tissues and controls (p < 0.05). This led to the 
speculation that DRG levels may assist in the prediction of 
breast cancer prognosis. A DRG signature was identified by 
regression analyses while excluding overfitting effects. This 
signature, together with the clinical features of the patients, 
showed good predictive value for patient survival. The AUCs 
of the ROC curves were used to examine 1-year (0.720), 
3-year (0.687), and 5-year (0.692) survival, demonstrating 
the effectiveness of the model for the prediction of patient 
prognosis. Samples were classified as low or high risk. 
These did not take into account the breast cancer molecular 
subtype. The OS values in high-risk samples were observed 
to be markedly reduced in comparison with low-risk 
samples. It was also found that patients in the high-risk 
group showed greater activity of infiltrating immune cells, 
together with greater numbers of somatic mutations, and 
significantly different drug sensitivities than their low-risk 
counterparts.

Tumorigenesis and tumor development jointly represent 
a complex process. Cancer cells interact dynamically with 
both the immune system and the tumor microenvironment 
(TME) (Chen and Mellman 2017). The function of the 
TME in tumor development, progression, and reduced drug 
sensitivity is well-documented (Sathe et al. 2020; Galvani 
et al. 2020; Huang et al. 2020). Tumor-infiltrating immune 
cells (TIICs) have also been implicated in prognostic 
improvement in breast cancer, as well as in the mediation 
of the response to both immunotherapy and chemotherapy. 
Here, WGCNA analysis showed that DRG signature scores 
were strongly linked with TIIC abundance in tumor samples, 
demonstrating the effectiveness of the DRG-RS model in 
identifying the abundance of 22 TIICs in the TME.

Several TIIC types were observed to be more abundant 
and active in the high-risk group in comparison with the low-
risk group. These included M0, M1, and M2 macrophages, 
resting dendritic cells, naive B cells, CD8 + T cells, and 
resting CD4 memory T cells (p < 0.05). As shown by earlier 
studies, TME-associated cells may both enhance or restrict 
tumor growth (Miguel and Calvo 2020; Yan et al. 2020; Ye 
et al. 2021), dependent on the type of tumor, cell ontogeny, 
and levels associated with both the tumor itself and the body 
overall; all these factors can influence drug sensitivity or 
resistance (Junttila and Sauvage 2013; Klemm and Joyce 
2015; Binnewies et al. 2018). TIICs also induce tumor cell 
invasion (DeNardo and Ruffell 2019; Mantovani et al. 2017), 
which explains the association between increased numbers 
of tumor-associated macrophages (TAMs) and tumor-
infiltrating dendritic cells (TIDCs) with poor outcomes in 
patients with breast cancer. The findings of an earlier study 
confirm our present observations that high risk was linked 
to increased infiltration of TIICs, poor OS, and greater 
resistance to chemotherapy drugs. The DRG-RS model 
could be effective for determining survival prognosis in 
these two patient groups. The identification of additional 
prognostic biomarkers for the model together with the TME 
may lead to the identification of new targets for breast cancer 
treatment.

Chemotherapy is currently a major strategy used in breast 
cancer. It is thus important to discover effective drugs for 
treating this disease (Denkert et al. 2018; Pruneri et al. 2018; 
Ali et al. 2016; Foukakis et al. 2018; Weiss et al. 2018). 
Unfortunately, both tumor heterogeneity and drug resistance 
have resulted in reduced responses to chemotherapy. The 
different DRG-RS risk groups responded differently to drugs 
used in conventional chemotherapy. We, therefore, speculate 
that specifically targeted treatment for different patient 
groups may prove to be more effective. It is worth noting 
that the IC50 values for the frequently used chemotherapy 
drugs docetaxel, paclitaxel, and oxaliplatin were found to 
be lower, resulting in greater sensitivity and thus efficacy 
in high-risk patients. This finding contrasts with the overall 
poor prognosis for high-risk patients, suggesting that patient 
response to drugs is not necessarily key to prognosis. 
According to the findings of this study, we were pleasantly 
surprised to find that disulfidptosis appears to overcome 
the weaknesses of programmed cell death in cancer, which 
may reduce or even reverse the insensitivity of tumor cells 
to chemotherapeutic drugs. We speculate that tumor cell 
sensitivity to disulfidptosis combined with the anticancer 
effect of other drugs may provide a new means to develop 
novel and effective cancer treatments. Of course, this 
hypothesis requires further verification.

Here, the purpose was to examine the possible 
association between DRGs and prognosis in patients 
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with breast cancer and to construct a novel and innovative 
DRG-RS model. Using multi-angle exploration and 
verification, it was found that the resulting DRG-RS model 
has good potential for prognosis prediction. Nevertheless, 
despite the good performance of the model in both cohorts, 
there are still several limitations. First, the data were 
obtained from a single database and may thus be subject 
to data bias and also be lacking in some important clinical 
details, such as grade classification, adjuvant chemotherapy, 
and other patient information; thus, the effects of these 
factors could not be explored. Second, the DRG-RS model 
requires verification using a prospective, multicenter study 
with a larger sample size. Third, high-quality multicenter 
randomized controlled trials are necessary, with large 
sample sizes and full follow-up information for additional 
verification and clarification of the mechanism underlying 
the role of DRGs in breast cancer.

Conclusion

Here, the functions of DRGs in the prognosis of breast 
cancer were systematically analyzed, and the associations 
between the TMB, TME, and clinical characteristics were 
used for the establishment of a prognostic model. Further-
more, the effectiveness of the DRG signature as a marker of 
likely therapeutic response was evaluated. In summary, the 
findings reveal the clinical importance of DRGs and provide 
a foundation for future research.
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