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Abstract
Purpose In this study, we aim to investigate gene expression changes in tumor samples obtained from patients with esopha-
geal cancer treated with calcium electroporation. Previously, local treatment with calcium electroporation has been shown 
to induce gene expression alterations, potentially contributing to a more tumor-hostile microenvironment.
Methods In this sub-study of a phase I clinical trial, we included five patients with esophageal cancer treated with calcium 
electroporation. We compared cancer-associated gene expression patterns in tumor samples before and after treatment. 
Furthermore, we used linear support vector regression to predict the cellular composition of tumor samples.
Results Using differential expression analysis, we identified the downregulation of CXCL14 and upregulation of CCL21, 
ANGPTL4, and CRABP2 genes. We also found a decreased predicted proportion of dendritic cells while the proportion of 
neutrophils was increased.
Conclusion This study provides evidence that calcium electroporation for esophageal cancer induces local transcriptional 
changes and possibly alters the cellular composition of the tumor microenvironment. The results are explorative, larger 
studies are needed to confirm and further correlate our findings with clinical outcomes.

Keywords Esophageal cancer · Calcium electroporation · Gene expression changes · Cellular composition · Immunological 
response · Tumor microenvironment

Introduction

Esophageal cancer (EC) is one of the most lethal cancer 
types, with an overall 5-year survival of only 20% (American 
Cancer Society 2022). Close to 40% of the patients have 
metastatic disease already when diagnosed (5-year survival: 
6%) (National Cancer Institute 2020) and are only candidates 
for palliative treatment. Palliative care consists of chemo-
therapy, radiotherapy, and local treatments are important 
in relieving local symptoms. Reversible electroporation 
facilitates the transport of ions and molecules across the 
cell membrane by short electrical pulses. The pulses per-
meabilize the cell membrane and temporarily allow other-
wise impermeable (or poorly permeable) molecules to enter 
the cytosol. This technique is used in electrochemotherapy 
(ECT), in combination with a cytostatic drug (typically bleo-
mycin), and in calcium electroporation (CaEP), a procedure 
involving the injection of calcium into malignant tissue, ena-
bling it to subsequently penetrate permeabilized tumor cells 
and trigger cell death. Our group has previously investigated 
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endoscopic-assisted ECT (Egeland et al. 2018) and CaEP 
Egeland et al. (2022) as local supplemental treatment in 
patients with non-curable EC.

A sufficient immune response is necessary to combat 
cancer by enabling the detection, elimination, and preven-
tion of cancer cells and providing immunological memory 
and adaptability. Enhancing immune responses against 
cancer has been a significant focus in cancer research. It 
has led to the development of immunotherapies that har-
ness and strengthen the immune system's ability to fight 
cancer (Hanahan and Weinberg 2011). Immune checkpoint 
inhibitors that target programmed cell death protein 1 (PD-
1) receptors, such as pembrolizumab and nivolumab, have 
been approved by regulatory authorities for the treatment 
of advanced EC (Doki et al. 2022; Sun et al. 2021). Novel 
strategies use a complementary combination of two different 
therapy forms, for example, irradiation or chemotherapeutic 
drugs and an immunotherapeutic drug. Here, the direct local 
cytotoxic effect, which causes immunogenic cell death, and 
the stimulation or inhibition of immune checkpoints create 
an enhanced effect compared with only applying the treat-
ments separately (Arina et al. 2020; Galluzzi et al. 2020).

From preclinical studies, both ECT and CaEP have been 
shown to give rise to an anticancer immune response and 
to repress distant tumor growth outside of the treated area 
(Calvet et al. 2014; Di Gennaro et al. 2016; Falk 2008, 2017; 
Tremble et al. 2019). ECT is known to induce immunogenic 
cell death by releasing High Mobility Group Box 1 Protein 
(HMGB1), calreticulin, and ATP (Calvet et al. 2014). In 
murine models, ECT has been shown to induce a systemic 
effect and suppress distant metastases (Roux et al. 2008; 
Tremble et al. 2019). In colon cancer mouse models, CaEP 
and ECT created a systemic, long-lasting protective immu-
nity by increasing the release of HMGB1 and the overall sys-
temic level of pro-inflammatory cytokines (Falk 2017) and 
recently, it was shown that the effect of CaEP was further 
potentiated by Interleukin-12 in tumor-bearing mice (Lisec 
et al. 2023).

Despite these preclinical findings, there is still a lack 
of mechanistic understanding and what immunological 
effects can be expected in clinical trials. However, in one 
case report, a patient with disseminated malignant mela-
noma experienced a systemic response after only local 
treatment with ECT and CaEP (Falk 2017). This has led to 
the hypothesis that both the local and the systemic immune 
response can be further enhanced by combing ECT or 
CaEP with immunotherapeutic drugs. Several smaller stud-
ies have investigated ECT in combination with immuno-
therapy in patients with skin cancer with promising results 
(Andersen et al. 2003; Campana et al. 2021; Heppt et al. 
2016; Hribernik et al. 2016; Mozzillo et al. 2015; Theurich 
et al. 2016). Even though CaEP as a monotherapy has been 
investigated in several cancer types (Ágoston et al. 2020; 

Broholm et al. 2023; Egeland et al. 2022; Falk et al. 2018; 
Jensen et al. 2022; Plaschke et al. 2019; Stranzenbach et al. 
2021; Yousra et al. 2021), CaEP in combination with immu-
notherapy has only been reported casuistically. In a case of 
disseminated urothelial cancer, long-term management of 
regional recurring metastases was accomplished by employ-
ing a combination of systemic immunotherapy and local 
treatment utilizing CaEP, despite prior treatment failure 
with pembrolizumab as monotherapy (Vissing et al. 2023).

We hypothesized that local treatment with CaEP in 
patients with EC could lead to favorable changes in the 
tumor microenvironment, which could be associated with 
systemic anti-tumor effects.

Materials and methods

Study design

This is a sub-study of a phase I clinical study which has 
been published previously (Egeland et al. 2022). The study 
was approved by the Danish Medicines Agency (EudraCT 
no.: 2020-005787-58), the Regional Ethics Committee 
(H-20082119), and the Regional Department of Research 
and Innovation. The Good Clinical Practice Unit at Copen-
hagen University Hospital monitored the trial. We conducted 
the trial in accordance with the declaration of Helsinki 
(World Medical Association 2013), and written consent was 
obtained from all participants.

The full method from the clinical trial, including inclu-
sion and exclusion criteria, is described in the published 
paper (Egeland et al. 2022). Briefly, eight patients with non-
curable EC (57–83 years, six males and two females), and no 
other oncological treatment options, were treated with endo-
scopic-assisted CaEP. The electrical pulses were applied to 
the tumor area via an electrode attached to the endoscope, 
and Calcium gluconate (0.23 mmol/l) was injected intratu-
morally. Patients with both adenocarcinomas and squamous 
cell carcinomas were included. All patients had dissemi-
nated disease. After treatment, a visual tumor response was 
seen in five of the seven patients evaluated with an upper 
endoscopy. From the CT evaluation, one patient had a partial 
tumor response, and three patients had stable disease. No 
visual response was seen outside of the treated area.

Sample collection and preparation

If the patient consented, biopsies were taken endoscopically 
from the tumor site before CaEP and again within seven 
days after treatment. The biopsies were immediately put in 
tubes containing RNAlater™ Stabilization Solution (Thermo 
Fisher Scientific, Waltham, MA, United States) and here-
after stored at − 80 °C. An experienced gastrointestinal 
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pathologist assessed all biopsies. By microdissection of 
formalin-fixed paraffin-embedded (FFPE) blocks, non-
malignant mucosa was excluded, and the thin blocks were 
stained with hematoxylin and eosin. Thus, only biopsies 
containing > 50% malignant tissue were selected for analy-
sis. Total RNA was extracted from the samples using the 
High Pure FFPET RNA Isolation Kit (Roche Life Science, 
Penzberg, Germany). Approximately 300 ng of total RNA 
was obtained from each sample for gene expression quanti-
fication. The RNA was quantified using spectrophotometry 
(NanoDrop, Thermo Fisher Scientific, Waltham, MA, United 
States), and a quality assessment was performed (Bioana-
lyzer, Agilent, Glostrup, Denmark). Overnight RNA hybridi-
zation was conducted using the nCounter® IO360 panel for 
the 750 endogenous human transcripts (NanoString, Seattle, 
WA, United States). The complete gene panel is available 
from the manufacturer’s website (Nanostring PanCancer 
Human IO360 Panel Gene List 2023).

Gene expression analysis

Raw data from the nCounter® platform was pre-processed 
through an iterative quality control and normalization frame-
work (Bhattacharya et al. 2021). To evaluate technical sam-
ple quality, principal component analysis (PCA) plots, rela-
tive log expression (RLE) plots, and Spearman correlation 
heatmaps were developed. Raw gene counts were normal-
ized by first running upper quartile normalization, followed 
by variance stabilizing transformation. Unwanted variation 
was estimated using the “RUVg” function from the RUVSeq 
package (v.1.32.0). Samples not passing the iterative quality 
control were excluded from further analysis (outliers with 
their corresponding paired samples). After discarding poor-
quality samples (n = 4), we removed no (n = 0) vectors of 
unwanted variation.

To identify differentially expressed genes (DEGs) before 
and after CaEP treatment, we used Wald significance test 
within the DESeq2 analysis framework (“DESeq” function 
from DESeq2 package (v.1.38.0)) (Love et al. 2014). Dif-
ferential expression (DE) experiment design formula was 
set as =  ~ Patient_ID + Time_point. The threshold require-
ment for significant DEGs was |log2FC|≥ 1 and an adjusted 
p value ≤ 0.05 (Benjamini–Hochberg correction). Log2FC 
value > 1 indicated a higher gene expression after CaEP 
treatment, while a log2FC value < − 1 indicated a lower gene 
expression after treatment. The “EnhancedVolcano” pack-
age (v.1.11.1) and ggplot (v.3.4.0) were used to visualize the 
DEGs (Blighhe et al. 2021).

We used the top (n = 100) most variable features for PCA 
to minimize technical noise and keep only the most informa-
tive features (genes). PCA was performed, and results are 
presented using the “pca” and “biplot” functions from PCA-
tools package (v.2.5.3) (Blighe et al. 2022). To determine 

the features that drive most of the variation in PC space, we 
extracted the most variable features from each PC that fall 
within the top/bottom (n = 20) of each PC loading.

Linear support vector regression [31] was applied for 
cell type deconvolution of the gene expression data. The 
“safeTME” dataset (Danaher et  al. 2022) was filtered 
and adjusted to include signatures for T cells (CD4 + and 
CD8 +), B/Plasma cells, monocytes/macrophages, neutro-
phils, mast cells, dendritic cells, and non-immune cells. The 
algorithm was run with 1000 permutations. The “ggplot2” 
package (v.3.4.0) was used to visualize the predicted propor-
tions of cell types.

Statistical analysis

R was used for all statistical analyses (R Development Core 
Team 2010). To evaluate if numerical variables in the gene 
expression panel were distributed normally, we generated 
distribution histograms and performed a Shapiro–Wilk nor-
mality test. Bar plots were illustrated as the median with 
interquartile ranges (IQR). Boxplots showed as the median 
with the lower and upper hinges corresponding to the first 
and third quartiles (the 25th and 75th percentiles) and whisk-
ers extending from the hinge to the largest/lowest value no 
further than 1.5 * IQR from the hinge. Data input for PCA 
and cell type deconvolution analyses were normalized gene 
counts, while raw counts were used in the DEG analysis. 
Permutational multivariance analysis of variance using dis-
tance matrices (PERMANOVA) was used to qualitatively 
assess group differences in the PCA. All statistical com-
parisons between group differences were made using the 
Wilcoxon rank-sum test unless stated differently. Adjusted 
and un-adjusted p values ≤ 0.05 were considered statistically 
significant.

Results

Sample selection and patient characteristics

In the clinical study (Egeland et al. 2022), we collected biop-
sies from seven of the eight treated patients (2021–2022). 
During patient selection for this sub-study, by iterative 
quality control, two post-treatment samples were identified 
as potential technical outliers (“ID_2_PostT” & “ID_5_
PostT”). To preserve the experimental setup, in which 
we investigate paired sample temporal changes, we also 
removed baseline samples of these two patients (“ID_2_
Baseline” & “ID_5_Baseline”). A study overview, including 
sample selection after quality control, is presented in Fig. 1. 
The iterative quality control process, including raw and nor-
malized data (after excluding patient ID_2 and ID_5), is 
shown in Supplementary Figures S1 and S2. Cumulatively, 
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Fig. 1  Study overview. A 
Clinical phase I study where 
eight patients with non-curable 
esophageal cancer were treated 
with endoscopic-assisted CaEP 
(Egeland et al. 2022). Revers-
ible electroporation was applied 
to the tumor area, followed by 
intratumoral injection of Cal-
cium gluconate (0.23 mmol/l). 
B Biopsies were taken from the 
tumor before and after treatment 
from seven patients. The sam-
ples were assessed by a patholo-
gist, RNA was extracted, and 
after iterative qualitative con-
trol, ten samples were included 
in the final gene expression 
analysis. CaEP = Calcium 
electroporation. This image was 
created with Biorender.com
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Table 1  Characteristics

Baseline characteristics and treatment data for the five included patients in the final gene expression analy-
sis
Adc adenocarcinoma; PostT biopsy post-treatment biopsy; POD postoperative day

Patient ID Gender/Age Tumor Type Disseminated 
disease

Treatment Data PostT biopsy 
obtained

1 Male/76 yr Adc Yes 20 mL (0.23 mmol/l)
calcium gluconate
7 pulses

POD 7

3 Male/59 yr Adc Yes 20 mL
7 pulses

POD 6

4 Male/62 yr Adc Yes 19 mL
12 pulses

POD 6

6 Female/66 yr Adc Yes 19 mL
20 pulses

POD 4

7 Female/72 yr Adc Yes 20 mL
n/a pulses

POD 7

Fig. 2  Calcium electroporation induces changes in gene expression. 
A Volcano plot illustrating differentially expressed genes (DEGs). 
|Log2FC|≥ 1 and an adjusted p value ≤ 0.05 (Benjamini–Hochberg 
correction) were required for significance. Log2FC > 1 indicated an 
upregulated gene expression, while log2FC < − 1 indicated downreg-
ulated gene expression after CaEP. B, C DEGs illustrated as boxplot 

with median, upper and lower quartiles, whiskers extend into a max 
of 1.5 times the IQR, representing the four individual genes statisti-
cally differentially expressed after treatment. CXCL14 was downregu-
lated (B), and CCL21, ANGPTL4, and CRABP2 were upregulated (C) 
after treatment. PostT—Post treatment
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paired samples from five patients (number of samples = 10) 
were included in the downstream analyses. Baseline char-
acteristics and treatment data for the included patients are 
presented in Table 1.

Calcium electroporation induces alterations in gene 
expression patterns

Four genes were identified as statistically differentially 
expressed when comparing samples before and after CaEP 
treatment (Fig.  2A). CXCL14 (Chemokine ligand 14) 
was found to be downregulated (Fig. 2B, Log2FC < − 1, 
adjusted p = 0.023). CXCL14 is associated with the attrac-
tion and maturation of immune cells and the motility of 
epithelial cells. CCL21 (Chemokine ligand 21), ANGPTL4 
(Angiopoietin-like 4), and CRABP2 (Cellular retinoic acid-
binding protein 2) were found to be upregulated (Fig. 2C, 
Log2FC > 1, adj. p = 0.002, adj. p = 0.003, and adj. p = 0.048, 
respectively), after treatment. These genes play a role in the 
attraction of antigen-presenting dendritic cells and T-cells 
(CCL21) and regulation of proliferation, apoptosis, and inva-
sion (ANGPTL4 and CRABP2).

Figure 3 shows the results from the PCA. Principal com-
ponents PC1 and PC2 contributed to 56.1% and 16.4% of the 
total variance, respectively. The PCA shows clear separa-
tion by PC1 between pre-treatment and post-treatment sam-
ples (Fig. 3A, paired PERMANOVA: F = 3.18, p = 0.009). 
The specific genes that are the main features responsible 
for separation in principal component space are shown in 
Fig. 3B. Figure 3C illustrates the difference in both negative 
and positive loading in PC1 and PC2, respectively. Genes 
encoding collagen components (COL5A1 and COL11A1), 
ADAM12 which is associated with stromal factors, and 
CDH2 encoding cadherin-2 protein (associated with malig-
nant cell migration) are the main positive features of PC1 
(upregulated). NOS2, a gene associated with inflammation, 
infection control, and immune regulation, was found to be 
the top negative feature of PC1 (downregulated). On the 
other hand, genes included in PC2 were not statistically sig-
nificantly responsible for sample separation. Genes in PC2 
include, among others, ESR1 (known to be a tumor suppres-
sor gene) and TNFSF18 (associated with the modulation 

of T lymphocytes) (top negative features), and COL11A2, 
encoding collagen components (top positive feature).

Calcium electroporation affects the predicted 
cellular composition of the tumor 
microenvironment

We used linear vector regression to predict cell type abun-
dances consisting of eight different cell types (CIBER-
SORTx workflow) from the gene expression data, Fig. 4A. 
We ran the comparison of the predicted cell type pro-
portions before and after treatment, Fig. 4B. Two of the 
inferred cell type fractions were found to be statistically 
significantly different. The fraction of dendritic cells was 
reduced (p = 0.016), and the fraction of neutrophils was 
elevated (p = 0.032), suggesting a reprogramming of the 
innate immune cell compartment. No changes were found 
in the fractions of predicted T cells (CD4 + and CD8 +) or 
B/Plasma cells, indicating a lack of effect on adaptive immu-
nity. Non-immune cell fraction consisting of malignant and 
non-malignant epithelium was also not affected by the CaEP 
treatment.

Discussion

This is the first study investigating changes in primary tumor 
gene expression patterns in esophageal cancer after treat-
ment with CaEP. Within seven days after treatment, we 
found significant differences in gene expression, and the 
predicted abundance of both dendritic cells and neutrophils 
was altered.

Using differential gene expression analysis, we found 
that CXCL14 was downregulated after treatment. CXCL14 
is normally expressed in high levels in benign cells, but 
the expression is mostly reduced or completely absent in 
malignant cells (Hromas et al. 1999). The role of CXCL14 
is known to be associated with the attraction and maturation 
of immune cells and the local infiltration of dendritic cells 
(Shurin et al. 2005). Dendritic cells are antigen-presenting 
cells that activate T-cells, and an increase in dendritic cells 
is often described as associated with better clinical out-
comes (Huang and Fu 2019). In this study, we found that 
the fraction of dendritic cells decreased after CaEP, possibly 
contributing to the shown downregulation of the CXCL14 
gene. Dendritic cells are believed to be crucial for the effect 
of PD-1 inhibitors (Garris et al. 2018), which is an immu-
notherapeutic drug approved for the treatment of advanced 
esophageal cancer. In theory, the reduction in tumor-infiltrat-
ing dendritic cells could lead to an impaired effect of PD-1 
inhibitors in combination with CaEP. Across studies, the 
results are inconsistent regarding the association between 
CXCL14 expression and cancer survival, and further, this 

Fig. 3  Calcium electroporation affects tumor gene expression. A 
Principal component (PC) analysis based on the top 100 most vari-
able genes from nCounter® IO360 panel. PERMANOVA was used 
to test for statistical significance between time points. B Top 20 genes 
contributed to PC loading in PC1 and PC2, respectively. Component 
loading > 0 indicates positive and component loading < 0 indicates 
negative coefficients of top variables (genes) from which PCs are 
constructed. C Boxplots illustrating up- and downregulated compo-
nents in PC1 (top) and PC2 (bottom), respectively. Wilcoxon rank-
sum test was used to test for statistical significance. PostT post treat-
ment

◂
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Fig. 4  Calcium electroporation alters predicted cell type proportions. 
A Infographic depicting the cell type prediction experiment design. 
B Boxplots with median and IQR of the included cell types. The pre-

dicted proportion of dendritic cells was reduced, and the predicted 
proportion of neutrophils was elevated after CaEP. PostT post treat-
ment. A is created with Biorender.com
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has not been investigated in EC specifically. A high expres-
sion of CXCL14 is associated with better overall survival in 
colorectal, cervix, head and neck, endometrial, and breast 
cancer. At the same time, other studies have found that the 
expression levels positively correlate with a more aggres-
sive type of prostate cancer and poorer patient survival in 
malignant melanoma (Westrich et al. 2020). The conflicting 
results indicate that the role of CXCL14 is highly context-
dependent, and that the protein interacts with various other 
factors in the tumor microenvironment. Hence, the clini-
cal meaning of the downregulation of CXCL14 and reduced 
fraction of dendritic cells after CaEP awaits further eluci-
dation, even though current scientific knowledge links such 
changes in the tumor microenvironment with unfavorable 
outcomes.

CCL21, ANGPTL4, and CRABP2 were upregulated after 
the treatment. CCL21 acts as a ligand to the CC-chemokine 
receptor 7 (CCR7). When the CCR7 receptor is activated, 
it helps to localize and attract antigen-presenting dendritic 
cells and T-cells (Alrumaihi 2022). As mentioned above, 
we found a lower expression level of dendritic cells, while 
no changes were observed in the expression level of T-cells. 
In human colorectal cancer tissue samples, a higher CCR7 
receptor expression level was associated with poorer overall 
survival (Nagasawa et al. 2021). ANGPTL4 gene encodes 
Angiopoietin-like 4 protein (ANGPTL4) that is a part of 
the ANGPTL protein family, and these proteins are known 
to play a role in carcinogenesis and metastases development, 
especially by modulating the angiogenesis (Carbone et al. 
2018). Most evidence points toward ANGPTL4 primarily 
acting as a tumor promoter, disrupting vascular tight junc-
tions and increasing the capillary permeability (Westrich 
et al. 2020), and facilitating vascularizing on which malig-
nant cells are highly dependent. However, other studies sug-
gest that the function of ANGPTL4 is highly tumor-type 
dependent, and the protein might act as an anti-angiogenic 
protein in some cancer types as its role may be altered 
depending on the proteolytic cleavage and posttranslational 
changes (Carbone et al. 2018). ANGPTL4 further seems to 
inhibit other cell death promotors, helping the malignant 
cells avoid apoptosis (Tan et al. 2012). Two clinical stud-
ies have investigated ANGPTL4's specific prognostic role 
in esophageal cancer, including esophageal squamous cell 
carcinoma. Both concluded ANGPTL4 to be associated with 
more aggressive disease (Shibata et al. 2010; Yi et al. 2013). 
Similar results have been published in preclinical trials in 
gastric cancer (Chen et al. 2018). Therefore, the upregula-
tion of CCL21 and ANGPTL4 in this trial might favor more 
aggressive disease and not necessarily benefit tumor sup-
pression. Lastly, CRABP2 encodes for a protein (CRABP2) 
associated with the regulation of proliferation, apoptosis, 
invasion, and metastasis. It is described as both an oncogene 

and a tumor suppressor gene. A single study suggested 
CRABP2 to acts as a tumor inhibitor in esophageal carci-
noma (Yang et al. 2016), while in breast cancer, CRABP2 
can both suppress or promote tumor invasion depending on 
tumor type (Feng et al. 2019). Analyses from esophageal 
tissue samples showed that the expression of CRABP2 was 
lower in malignant tissue than in healthy epithelial tissue. 
No survival difference was found between patients with high 
versus low expression of CRABP2 (Li et al. 2021). These 
findings suggest that the upregulation of the CRAPBP2 gene 
could have a positive, tumor-suppressing effect.

From the PCA, genes encoding collagen components 
were upregulated after treatment. Collagen is one of the 
significant components in the tumor microenvironment as 
it provides structural support to the extracellular space of 
connective tissue and is associated with cancer cell invasion, 
proliferation, and metastases, regulation of intratumoral ves-
sels, and cancer cell death resistance (Xu et al. 2019). One 
study demonstrated that a high expression of COL11A1 in 
patients with EC was associated with poorer overall sur-
vival (Zhang et al. 2018). However,  it is unknown whether 
an increase in gene expression before and after a specific 
treatment (seen in this study) has the same impact as an 
absolute high expression compared with healthy tissue. Fur-
thermore, ADAM12 was part of the top positive features of 
PC1. In human gastric cancer cell lines, ADAM12 enhanced 
tumor cell migration and invasion and inhibited apoptosis, 
which was further correlated with poorer survival (Chung 
et al. 2022). NOS2 was the top negative feature of PC1 and 
is encoding for the protein Nitric Oxide Synthase. NOS2 
has been demonstrated to possess anti-tumoricidal func-
tions and to predict poor patient outcomes in several cancer 
types, including stomach and colon cancer, as it correlates 
with increased vascularization and metastasis (Thomas and 
Wink 2017). Therefore, it has been suggested as a promis-
ing target for cancer therapy. A decrease in the expression 
of NOS2 could indicate a more tumor-hostile environment 
and a potential clinical benefit.

A recently published trial examined the tumor micro-
environment by immunofluorescence staining of immune 
cells in tumor-bearing mice after treatment with CaEP 
and Interleukin-12 (Lisec et al. 2023). The authors found 
a significant increase in infiltration of Natural Killer (NK) 
cells and CD8 + T-cells in both tumor models. In one tumor 
model, there was a significant decline in Ki-67 + cells. The 
Ki-67 + protein is a cellular market for cell proliferation. 
The gene MKI67 (encodes Ki-67 protein) was part of the 
gene panel in this trial but was not statistically altered after 
treatment. We observed no difference in CD8 + T-cell lev-
els, while NK-cells were not part of our final model. On 
the other hand, we found that the fraction of neutrophils 
after treatment increased significantly. Most data during the 
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last decade have indicated that neutrophils support cancer 
growth, while new evidence suggests that their role in can-
cer is dual, where they also exert anticancer effects (Xiong 
et al. 2021).

The current study has limitations. First, the sample size 
is small, with only five paired samples. Because biopsy in 
patients with esophageal cancer requires endoscopy, the 
number of samples will naturally be restricted, and there 
may also be considerations regarding time from the first to 
second biopsy procedure, taking consideration for the patient 
into account. The post-treatment samples were all obtained 
within a short time frame (4–7 days). In the pioneer study 
in mice (Falk et al. 2017a; b), gene expression changes were 
revealed in samples taken three days after treatment. When 
performing gene expression analyses with the nCounter® 
IO360 panel, mRNA expression is measured, not synthe-
sized proteins' level. Due to different posttranslational altera-
tions, mRNA expression does not necessarily correlate with 
protein expression. Furthermore, the function of a protein 
is highly dependent on its binding to specific ligands, which 
were neither examined in this trial. Several protein assays 
exist to quantify the level of functional proteins, which we 
main to integrate in our future follow-up studies together 
with mRNA expression measures to create a more holis-
tic view of the molecular microenvironment. Furthermore, 
we have only examined 750 genes out of the full protein 
coding transcriptome, which could have led to unnoticed 
changes. Lastly, within the cell type prediction model, due 
to the limited amount of cellular markers in the targeted gene 
expression assay, we could not accurately infer some of the 
relevant immune cell types, e.g., NK cells, which would have 
provided valuable insights and their role will be assessed in 
the subsequent experiments.

Conclusions

The present research provides additional evidence confirm-
ing the preclinical findings indicating that CaEP induces cel-
lular and molecular alterations in the tumor microenviron-
ment. CCL21, ANGPTL4, and CRABP2 were upregulated, 
while CXCL14 was downregulated after the treatment. Fur-
thermore, CaEP led to a reduction in the fraction of dendritic 
cells and an increase in the fraction of neutrophils. To fully 
comprehend and assess the clinical significance, larger stud-
ies encompassing outcome and survival data are necessary.
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