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Abstract
Purpose There are undetectable levels of fat in fat-poor angiomyolipoma. Thus, it is often misdiagnosed as renal cell 
carcinoma. We aimed to develop and evaluate a multichannel deep learning model for differentiating fat-poor angiomyolipoma 
(fp-AML) from renal cell carcinoma (RCC).
Methods This two-center retrospective study included 320 patients from the First Affiliated Hospital of Sun Yat-Sen 
University (FAHSYSU) and 132 patients from the Sun Yat-Sen University Cancer Center (SYSUCC). Data from patients at 
FAHSYSU were divided into a development dataset (n = 267) and a hold-out dataset (n = 53). The development dataset was 
used to obtain the optimal combination of CT modality and input channel. The hold-out dataset and SYSUCC dataset were 
used for independent internal and external validation, respectively.
Results In the development phase, models trained on unenhanced CT images performed significantly better than those trained 
on enhanced CT images based on the fivefold cross-validation. The best patient-level performance, with an average area under 
the receiver operating characteristic curve (AUC) of 0.951 ± 0.026 (mean ± SD), was achieved using the “unenhanced CT 
and 7-channel” model, which was finally selected as the optimal model. In the independent internal and external validation, 
AUCs of 0.966 (95% CI 0.919–1.000) and 0.898 (95% CI 0.824–0.972), respectively, were obtained using the optimal model. 
In addition, the performance of this model was better on large tumors (≥ 40 mm) in both internal and external validation.
Conclusion The promising results suggest that our multichannel deep learning classifier based on unenhanced whole-tumor 
CT images is a highly useful tool for differentiating fp-AML from RCC.
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Introduction

Renal angiomyolipoma (AML) is a form of benign solid 
tumor that is composed of fat, smooth muscle, and abnormal 
blood vessels in varying proportions. Because fat can show 
negative attenuation values on unenhanced computed 
tomography (CT) images, AML can be accurately diagnosed 
by detecting fat within tumors (Nelson and Sanda 2002; 

Jinzaki et al. 2014). However, fat-poor angiomyolipoma 
(fp-AML), a special type of AML, contains undetectable 
levels of fat or may be devoid of fat altogether, and is often 
misdiagnosed as renal cell carcinoma (RCC) (Fujii et al. 
2008; Takahashi and Kawashima 2012; Jinzaki et al. 2014; 
Park 2017).

In practice, patients with fp-AML are always treated 
as RCC. Some patients with fp-AML that did not require 
nephrectomy were misdiagnosed as RCC and underwent 
radical nephrectomy; some patients with small fp-AML that 
did not require surgery underwent partial nephrectomy. A 
report from the Cleveland Clinic suggested that 55% of 219 
patients with AML who underwent surgery were suspected 
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to have RCC by the preoperative imaging examination (Lane 
et al. 2008). Patients with fp-AML could avoid unnecessary 
surgery, especially radical nephrectomy, if an accurate 
diagnosis can be obtained prior to surgery (Schachter et al. 
2007; Campbell et  al. 2021). Consequently, there is an 
urgent need to develop a novel strategy to accurately identify 
fp-AML before surgery.

Artificial intelligence (AI), including machine learning 
and deep learning, has become the focus of the medical field 
to assist diagnosis and provide clinical decision support 
(Oh and Jung 2004; Schmidhuber 2015; Tandel et al. 2019; 
Rezaeijo et al. 2022; Taghizadeh et al. 2022). Currently, 
AI has been increasingly applied in the analysis of medical 
images, and their potential has been demonstrated not only 
for disease screening (Long et al. 2017; Xia et al. 2018; Fu 
et al. 2020; Jahangirimehr et al. 2022), but also for the diag-
nosis and treatment of difficult cases (Anthimopoulos et al. 
2016; Lu et al. 2018; Kavur et al. 2020; Castillo et al. 2022; 
Cui et al. 2022; Salmanpour et al. 2023). However, there are 
few studies using AI to assist in the identification of fp-AML 
and RCC (Hodgdon et al. 2015; Lee et al. 2017, 2018; Feng 
et al. 2018; Cui et al. 2019; Yang et al. 2020). Reviewing 
these previous studies, they have limitations such as small 
sample size, low accuracy, or lack of external validation.

The purpose of this study was to develop a multichan-
nel deep learning model, which is trained using CT images 
of whole tumors, to classify fp-AML and three common 
pathological subtypes of RCC: clear cell renal cell carci-
noma (ccRCC), papillary renal cell carcinoma (pRCC), and 
chromophobe renal cell carcinoma (chRCC).

Methods

Patient cohort

We reviewed the medical records of patients with solid 
renal masses that were histologically diagnosed as AML, 
ccRCC, pRCC and chRCC at the First Affiliated Hospital 
of Sun Yat-Sen University (FAHSYSU) from January 2014 
to August 2021 and at the Sun Yat-Sen University Cancer 
Center (SYSUCC) from January 2017 to June 2020. The 
data imbalance between patients with ccRCC and patients 
with the other pathological categories might affect the 
training of the model. Thus, data from the patients with 
ccRCC at both institutions were randomly downsampled 
by approximately 20%. Patients were excluded using the 
following criteria: (1) incorrect anatomic specimen location; 
(2) no available preoperative CT; (3) incomplete 4-phase 
CT scanning (unenhanced, corticomedullary, nephrographic, 
and excretory phases); (4) CT slice thickness > 1  mm; 
(5) poor image quality (such as motion artifacts or metal 
artifacts); and (6) more than 2 primary tumors. For the 

fp-AML group, patients with macroscopic fat within the 
tumor were excluded. For the RCC group, patients were 
excluded if the target lesion was primarily cystic. Finally, 60 
fp-AML patients and 260 RCC patients (ccRCC, 135; pRCC, 
62; chRCC, 63) from FAHSYSU and 31 fp-AML patients 
and 101 RCC patients (ccRCC, 58; pRCC, 24; chRCC, 19) 
from SYSUCC were enrolled in this study (Fig. 1a, b). The 
study was approved by the Ethics Committee of the First 
Affiliated Hospital of Sun Yat-Sen University (IIT-2022-
678), and the requirement for individual consent for this 
retrospective analysis was waived.

CT image preprocessing and labeling

All patients underwent CT examination using multi-slice 
spiral CT scanners (FAHSYSU: Aquilion 64, Toshiba, 
Tokyo, Japan; SYSUCC: Somatom Force, Siemens Health-
ineers, Forchheim, Germany). The unenhanced and corti-
comedullary enhanced CT slices from each patient were 
downloaded in digital imaging and communications in medi-
cine (DICOM) format and converted to joint photographic 
experts group (JPEG) data with a resolution of 512 × 512 
and a window of 40 × 300 (level × width) before labeling. CT 
slices without a target renal mass were excluded.

We cropped out the region of interest (ROI), a rectan-
gular box, at the tumor location in each CT image, ensur-
ing that the border of the rectangular box was close to the 
tumor. The boundary of the rectangular box was determined 
by two experienced radiologists, and a third radiologist was 
consulted in the case of disagreement. Once the boundary 
of the rectangle was determined, the image was assigned 
an ID, and the coordinates of the rectangular box and the 
pathological type of the tumor were recorded.

Deep learning model development

The FAHSYSU dataset was divided into a development data-
set (n = 267) and a hold-out dataset (n = 53). The develop-
ment dataset was used to evaluate the model performance 
with different numbers of input channels and different CT 
modalities. The hold-out dataset was used for independent 
internal validation (Fig. 1c).

Our deep learning model was an end-to-end multichannel 
convolutional neural network (CNN) based on Xception 
architecture (Chollet 2017). We established 10 models with 
different numbers of input channels, from 1 to 10 channels. 
These models with different numbers of input channels 
were trained on enhanced and unenhanced whole-tumor 
CT images. Hence, there were 20 combinations of input 
channels and CT modalities. Fivefold cross-validation was 
used for training and validation for each combination. Here, 
the development dataset was split into five partitions before 
training, keeping the fp-AML and RCC labels balanced 
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Fig. 1  Flow chart of patient recruitment for the First Affiliated Hospital of Sun Yat-Sen University cohort (a) and Sun Yat-Sen University 
Cancer Center cohort (b), and the design for model development and validation (c)
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between partitions. In each iteration of cross-validation, 
one partition was utilized for validation, while the other 
four partitions were used for model training. Training and 
validation sets were always split on the patient level so 
that no CT slices from the same patient were ever part of a 
training set and a validation set.

The input to the CNN model was composed of single 
or multiple consecutive CT slices from whole tumors 
depending on the number of input channels. A patient’s 
whole-tumor CT slices were processed by the model to 
obtain multiple image-level predictions. Using these image-
level predictions, we calculated a patient-level score for each 
patient, as shown in Fig. 2. The patient-level scores helped 
us to divide patients into two defined clinical categories: 
fp-AML and RCC. The optimal classification threshold was 
determined by receiver operating characteristic (ROC) curve 
analysis in a manner that maximized the Youden index.

The performance of the model was evaluated at the image 
level and the patient level. The categorical accuracy (ACC) 
metric was used to evaluate the model at the image level. 
The area under the ROC curve (AUC), sensitivity and speci-
ficity were used to evaluate the patient-level performance of 
the model. In fivefold cross-validation, the average of the 
evaluation metrics across all five folds represents the overall 
performance.

All models were trained on a GeForce RTX 2080 Ti 
(NVIDIA) graphics processing unit and built using Python 
3.7 and PyTorch 1.7. The input resolution of Xception 
was reduced from a matrix size of 299 × 299 to 171 × 171. 
Following the application of Xception, the softmax func-
tion was used to create a probability distribution over two 
classes; the class with the higher probability was selected 
as the output. The cross-entropy function was selected as 
the loss function. For data augmentation, we augmented 
the training samples by randomly flipping and scaling the 
images. Based on numerous preliminary experiments, train-
ing was performed using the Adam optimizer for 50 epochs, 
with a batch size of 120 and a learning rate of 0.01. The 

dropout probability before the final fully connected layer was 
set as 0.2. In each batch of training, CT images of fp-AML 
were dynamically oversampled to strike a balance between 
the RCC samples and the fp-AML samples. In each fold 
of training, the weights were saved as the best-performing 
weights if the ACC performed best in the validation set.

Independent internal validation and external 
validation

In the model development stage, the optimal combination 
of input channel number and CT modality was obtained 
according to the performance of the model at the patient 
level in cross-validation. Keeping the other hyperparam-
eters the same as in the development phase, the model was 
trained using all patients in the development dataset without 
any tuning. Then, the model was validated with 53 unseen 
patients from the hold-out dataset. Furthermore, we exter-
nally validated the model using subjects from the SYSUCC 
cohort to evaluate the generalizability of the model. Again, 
we evaluated the performance of the model using ACC at 
the image level and the ROC curves, AUC, sensitivity, and 
specificity at the patient level.

Statistical analysis

All statistical analyses were performed with SPSS software 
(version 22.0, SPSS, Inc., Chicago, IL, U.S.A.) and R 
statistical software (version 3.5.6, The R Foundation for 
Statistical Computing). The Pearson chi-square test or 
Fisher’s exact test was used to assess the distribution of 
categorical variables, and the independent T test was used 
for continuous variables. With the number of input channel 
as the pairing factor, the paired T test was conducted to 
compare the performance of the model based on enhanced 
CT images and unenhanced CT images in the fivefold cross-
validation. The threshold for statistical significance was set 

Fig. 2  Overview of whole-
tumor CT images processed by 
the deep learning model
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as p < 0.05. In addition, 95% confidence intervals for AUC 
values were obtained via bootstrapping with 1000 iterations.

Results

Patient characteristics

This retrospective study included a total of 320 individu-
als from FAHSYSU and 132 individuals from SYSUCC. 
Patient characteristics are shown in Table 1. The proportion 
of patients with fp-AML, approximately 20%, was similar in 
both cohorts (FAHSYSU: 19%; SYSUCC: 23%). The RCC 
group included a mixture of ccRCC (42% vs. 44%), pRCC 
(19% vs. 18%) and chRCC (20% vs. 15%), with proportions 
well balanced amongst the two cohorts. In terms of age, sex, 
tumor size, location, or appearance, there were no significant 
differences between the two cohorts.

Development phase and cross‑validation

Table 2 shows the fivefold cross-validation results of the 
20 combinations in the model development phase. As 
shown in Fig. 3a, b, scatter plots were used to show the 

model's performance at the image-level and patient-level 
in each fold. The paired T test was used to compare the 
mean values of image-level ACC and patient-level AUC of 
models trained on different CT modalities in the fivefold 
cross-validation (Fig. 3c, d). Overall, the models trained on 
unenhanced CT images performed better than those trained 
on enhanced CT images, both at the image level (p < 0.001) 
and at the patient level (p < 0.001).

In terms of image-level performance, the worst ACC of 
the unenhanced CT models was 0.886 ± 0.021, while the best 
ACC of the enhanced CT models was only 0.858 ± 0.025. 
In the unenhanced CT models, ACC increased with the 
increase in the number of input channels, while ACC was 
unstable in the enhanced CT models.

In terms of patient-level performance, the unenhanced CT 
models also outperformed the enhanced CT models, espe-
cially in terms of AUC and specificity. The lowest AUC of 
the unenhanced CT models was 0.897 ± 0.046, while the 
highest AUC of the enhanced CT models was 0.806 ± 0.071. 
Among all model combinations, the “unenhanced CT and 
7-channel” model achieved the best AUC of 0.951 ± 0.026 
with a sensitivity of 0.903 ± 0.026 and a specificity of 
0.960 ± 0.049. Based on the AUC performance, we finally 
selected the “unenhanced CT and 7-channel” model as the 
optimal combination of our multichannel deep learning 
model for independent internal and external validation.

Independent internal validation and external 
validation

In independent internal validation (hold-out dataset), the 
image-level ACC of the “unenhanced CT and 7-channel” 
model was 0.921. At the patient level, the AUC reached 
0.966 [95% confidence interval (CI) 0.919–1.000] with a 
sensitivity of 0.930 and a specificity of 1.000. In external 
validation (SYSUCC dataset), the image-level ACC was 
0.865. At the patient level, the AUC was 0.898 (95% CI 
0.824–0.972), with a sensitivity of 0.802 and a specificity of 
0.903 (Fig. 4a). Compared with internal validation, both the 
image-level performance and the patient-level performance 
of the model decreased in external validation.

Furthermore, we compared the performance of the 
model when the maximum tumor diameter was < 40 mm 
and ≥ 40 mm. As shown in Table 3, the “unenhanced CT 
and 7-channel” model performed better when the maxi-
mum tumor diameter was ≥ 40 mm in both internal valida-
tion (AUC 1.000 [95% CI 1.000–1.000] vs. 0.942 [95% CI 
0.863–1.000]) and external validation (AUC, 0.973 [95% 
CI 0.932–1.000] vs. 0.873 [95% CI 0.776–0.970]). The con-
fusion matrix for the independent internal validation and 
external validation is shown in Fig. 4b.

In addition, we applied t-distributed stochastic neighbor 
embedding (t-SNE) to visualize the basis of classification. 

Table 1  Patient characteristics of the FAHSYSU cohort and 
SYSUCC cohort

FAHSYSU First Affiliated Hospital of Sun Yat-Sen University, SYS-
UCC  Sun Yat-Sen University Cancer Center, SD standard deviation, 
fp-AML fat-poor angiomyolipoma, ccRCC  clear cell renal cell car-
cinoma, pRCC  papillary renal cell carcinoma, chRCC  chromophobe 
renal cell carcinoma

Characteristic FAHSYSU 
(n = 320)

SYSUCC (n = 132) p

CT slices, n 26,256 10,403
Subtype, n (%) 0.454
 fp-AML 60 (19) 31 (23)
 ccRCC 135 (42) 58 (44)
 pRCC 62 (19) 24 (18)
 chRCC 63 (20) 19 (15)

Age, y, mean ± SD 51 ± 15.8 51 ± 11.4 0.810
Sex, n (%) 0.542
 M 184 (58) 80 (61)
 F 136 (42) 52 (39)

Maximum tumor 
diameter, mm, 
mean ± SD

36.1 ± 15.8 38.6 ± 18.1 0.16

Location, n (%) 0.388
 Left 167 (52) 63 (48)
 Right 153 (48) 69 (52)

Appearance, n (%) 0.177
 Exophytic 294 (92) 126 (95)
 Endophytic 26 (8) 6 (5)
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The t-SNE visualization showed that the dots in the 
SYSUCC dataset were significantly more scattered than 
those in the hold-out dataset, which was consistent with the 
performance of the model on the image-level ACC (Fig. 5a, 
b). Furthermore, one case of fp-AML (Fig. 6a) and one case 
of RCC (Fig. 6b) from the SYSUCC dataset were selected 
to demonstrate the diagnostic performance of the model. 
According to the class activation mapping (CAM) images 
of the ROI, the region of high predictive value was located 
in the center of the tumor, whether fp-AML or RCC. This 
indicates that information about the central region of the 
tumor was critical for the model to discriminate between 
fp-AML and RCC.

Discussion

In this study, we collected CT data from 91 patients with 
fp-AML and 361 patients with RCC from two centers. The 
multichannel deep learning model based on whole-tumor 
unenhanced CT images developed in our study achieved 
an AUC of 0.966 (95% CI 0.919–1.000) in independent 
internal validation. We further evaluated the generalization 
performance of the model with an external dataset and 

obtained an AUC of 0.898 (95% CI 0.824–0.972). Moreover, 
our model performed better with large tumors (≥ 40 mm) 
than with small tumors (< 40 mm) in both internal and 
external validation. This indicates that larger tumors can 
provide more CT slices and thus provide more useful 
information to our multichannel deep learning model.

To our best knowledge, our study enrolled a larger num-
ber of patients and achieved higher accuracy than any previ-
ous study (Hodgdon et al. 2015; Lee et al. 2017, 2018; Feng 
et al. 2018; Cui et al. 2019; Yang et al. 2020). Also, the 
present study is the first to evaluate the generalizability of 
the model using a dataset from an external center. In terms 
of algorithms, deep learning was used in this study, while 
machine learning was used in previous studies. The use of 
end-to-end training and prediction removes the need for deep 
learning algorithms, such as CNNs, to involve burdensome 
feature engineering. These engineering features are mainly 
hidden in numerous layers of a CNN, and learned from data 
using a general-purpose learning procedure. Another advan-
tage of deep learning is its ability to better fit large datasets. 
Therefore, facing the growing amount of medical data, deep 
learning has great potential.

It is noteworthy that unenhanced CT images were 
more suitable for distinguishing fp-AML from RCC than 

Table 2  The cross-validation 
results of 20 models with 
different combinations

a The data are reported as the mean ± SD based on fivefold cross-validation
SD standard deviation, ACC  accuracy, AUC  area under the receiver operating characteristic curve

CT modality Number of 
input channel

Evaluation metrics

Image-level ACC a Patient-level

Sensitivitya Specificitya AUC a

Unenhanced CT 1c 0.879 ± 0.026 0.949 ± 0.017 0.880 ± 0.117 0.924 ± 0.056
2c 0.886 ± 0.021 0.963 ± 0.024 0.880 ± 0.075 0.929 ± 0.058
3c 0.889 ± 0.024 0.968 ± 0.018 0.900 ± 0.089 0.943 ± 0.049
4c 0.890 ± 0.024 0.917 ± 0.048 0.940 ± 0.080 0.949 ± 0.040
5c 0.892 ± 0.021 0.931 ± 0.026 0.900 ± 0.063 0.932 ± 0.042
6c 0.895 ± 0.024 0.945 ± 0.037 0.920 ± 0.075 0.947 ± 0.039
7c 0.892 ± 0.026 0.903 ± 0.026 0.960 ± 0.049 0.951 ± 0.026
8c 0.894 ± 0.022 0.922 ± 0.028 0.900 ± 0.089 0.933 ± 0.044
9c 0.898 ± 0.022 0.940 ± 0.043 0.860 ± 0.049 0.925 ± 0.030
10c 0.898 ± 0.027 0.954 ± 0.033 0.840 ± 0.102 0.897 ± 0.046

Enhanced CT 1c 0.850 ± 0.011 0.880 ± 0.058 0.680 ± 0.117 0.795 ± 0.061
2c 0.847 ± 0.019 0.802 ± 0.115 0.800 ± 0.063 0.806 ± 0.071
3c 0.845 ± 0.022 0.785 ± 0.125 0.740 ± 0.224 0.772 ± 0.132
4c 0.847 ± 0.010 0.843 ± 0.097 0.700 ± 0.167 0.763 ± 0.108
5c 0.843 ± 0.011 0.908 ± 0.052 0.620 ± 0.204 0.747 ± 0.129
6c 0.848 ± 0.020 0.830 ± 0.057 0.680 ± 0.147 0.755 ± 0.067
7c 0.848 ± 0.011 0.889 ± 0.054 0.640 ± 0.120 0.741 ± 0.086
8c 0.855 ± 0.015 0.908 ± 0.077 0.660 ± 0.150 0.783 ± 0.088
9c 0.858 ± 0.025 0.885 ± 0.060 0.660 ± 0.174 0.758 ± 0.109
10c 0.851 ± 0.026 0.940 ± 0.052 0.520 ± 0.117 0.709 ± 0.100
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enhanced CT images, according to the results of fivefold 
cross-validation in the development phase. Compared with 
tri-phase enhanced scans, the measurements acquired from 
unenhanced scans are more stable. The quality of enhance-
ment CT imaging is often affected by a variety of factors, 
including renal function, the concentration of the contrast 
medium, and the scanning protocol used. Collectively, these 
factors make it difficult to reproduce results derived from 
enhancement measurements and have even led to different 
conclusions in the earlier literature (Kim et al. 2004; Zhang 
et al. 2007; Yang et al. 2013).

In practice, it is noticed that radiologists always need to 
consider the continuity between adjacent slices when ana-
lyzing CT images. The multichannel CNN was designed to 
simulate the behavior of radiologists reading CT images. By 
increasing the number of input channels of the CNN, we can 
input multiple continuous CT images into the model at the 

same time. Several studies have confirmed that deep learning 
models based on multi-slice CT images perform better than 
those based on single-slice CT images (Zhang et al. 2018; 
La Greca Saint-Esteven et al. 2022; Takao et al. 2022). Our 
study also confirms the correctness of the above view that 
appropriately increasing the number of input channels can 
improve the performance of the model. This may benefit 
from the structure of the multichannel model, which allows 
us to deliver more effective information to the CNN in one 
input. However, as the number of input channels increases, 
the computational load of the model also increases. There-
fore, the number of input channels should be within a rea-
sonable range to avoid excessive computational load.

Furthermore, whole-tumor CT images were used to 
train the model in this study. In some early CT image-
based AI studies (Yan et al. 2015; Feng et al. 2018), only 
one or several representative CT slices of each tumor were 

Fig. 3  The performance of models trained on different CT modalities in the fivefold cross-validation. Scatter plots of the model's the image-level 
(a) and patient-level (b) performance in each fold. The paired T test of the mean values of image-level ACC (c) and patient-level AUC (d)
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Fig. 4  Comparison of performance of the “unenhanced CT and 
7-channel” model in independent internal and external validation. a 
The receiver operating characteristic (ROC) curves for patient-level 

performance on the hold-out dataset and Sun Yat-Sen University 
Cancer Center (SYSUCC) dataset. b The confusion matrix for the 
independent internal validation and external validation
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used for feature extraction and model training. The process 
of CT slice selection is clearly subjective and could lead 
to instability. Critical information may be missed in the 
selected slices, thus affecting the performance of the model. 
Here, the use of whole-tumor CT slices allowed us to avoid 
such problems while also making our dataset suitable for the 
training needs of multichannel CNN.

The performance of our model decreased in the exter-
nal validation compared to the internal validation in this 
study. In our opinion, both the hardware and software of the 
CT scanner have an impact on model performance. Model 
performance may also be affected by different CT scanning 
protocols. What's more, the number of samples may not be 
sufficiently representative of the whole population, espe-
cially in the case of rare categories. As there may be other 
reasons for the degradation of the model performance in the 
external dataset, this is a further interesting and worthwhile 
topic to be investigated.

While promising results have been obtained from our 
multichannel deep learning model, there do exist several 
limitations. Firstly, CT images of the nephrographic and 

excretory phase were not used for model training in this 
study. This is mainly due to the long-time span of cases 
that we reviewed. In most of the early cases, the image 
quality of nephrographic and excretory phase is far inferior 
to that of the corticomedullary phase in terms of the 
thickness of the reconstruction, tumor scan integrity, and 
scan timing. Secondly, the use of whole-tumor CT slices 
can make the labeling of ROIs burdensome. Developing 
an accurate and stable automatic segmentation method 
for tumor ROIs will help to improve the practicability 
of our classification model. Moreover, a larger multi-
center validation study will be needed to further assess 
the robustness of the model across populations. Also, 
given the retrospective nature of this study, a prospective 
study may be required to evaluate the clinical value of our 
model.

In conclusion, the present study demonstrated that a 
multichannel deep learning model based on whole-tumor 
unenhanced CT images represents a highly useful tool for 
differentiating fp-AML from RCC. This tool may improve 
the accuracy of preoperative diagnosis for patients with 

Table 3  Performance of 
the “unenhanced CT and 
7-channel” model on the hold-
out and SYSUCC datasets

a The data in parentheses are the numbers of patients
b The data in parentheses are 95% confidence interval
SYSUCC  Sun Yat-Sen University Cancer Center, ACC  accuracy, AUC  area under the receiver operating 
characteristic curve

Dataset Image-level ACC Patient-level

Sensitivitya Specificitya AUC b

Hold-out dataset 0.921 0.930 (40/43) 1.000 (10/10) 0.966 (0.919, 1.000)
 < 40 mm – 0.880 (22/25) 1.000 (8/8) 0.942 (0.863, 1.000)
 ≥ 40 mm – 1.000 (18/18) 1.000 (2/2) 1.000 (1.000, 1.000)

SYSUCC dataset 0.865 0.871 (88/101) 0.807 (25/31) 0.898 (0.824, 0.972)
 < 40 mm – 0.796 (43/54) 0.833 (20/24) 0.873 (0.776, 0.970)
 ≥ 40 mm – 0.957 (45/47) 0.714 (5/7) 0.973 (0.932, 1.000)

Fig. 5  The t-SNE visualization was performed with image-
level samples randomly selected from the hold-out dataset (a) 
and SYSUCC dataset (b). The red dots representing fat-poor 

angiomyolipoma (fp-AML) are mainly concentrated in the lower left 
of the coordinate system, and the blue dots representing renal cell 
carcinoma (RCC) are in a cord-like distribution on the right side
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renal masses and therefore facilitate the clinical decision-
making process.
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Fig. 6  Representative example predictions from Sun Yat-Sen 
University Cancer Center (SYSUCC). a An unenhanced CT image 
from a 50-year-old woman who was preoperatively diagnosed with 
renal carcinoma but eventually confirmed by pathology as fat-poor 
angiomyolipoma (fp-AML). Due to a misdiagnosis of the tumor, 
she underwent a radical nephrectomy and lost the chance to preserve 

her right kidney. Our model successfully identified this tumor as 
fp-AML. b An unenhanced CT image from a 54-year-old woman who 
underwent a partial nephrectomy and was pathologically confirmed 
as clear cell renal cell carcinoma (ccRCC). Our model successfully 
identified this tumor as renal cell carcinoma (RCC). ROI region of 
interest, CAM class activation mapping



15837Journal of Cancer Research and Clinical Oncology (2023) 149:15827–15838 

1 3

the article's Creative Commons licence and your intended use is not 
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copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.
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