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Abstract
G protein-coupled receptors (GPRs) are one of the largest surface receptor superfamilies, and many of them play essential roles 
in biological processes, including immune responses. In this study, we aim to construct a GPR- and tumor immune environment 
(TME-i)-associated risk signature to predict the prognosis of patients with endometrial carcinoma (EC). The GPR score was gen-
erated by applying univariate Cox regression and the Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression 
in succession. This involved identifying the differentially expressed genes (DEGs) in the Cancer Genome Atlas-Uterine Corpus 
Endometrioid Carcinoma (TCGA-UCEC) cohort. Simultaneously, the CIBERSORT algorithm was applied to identify the protec-
tive immune cells for TME score construction. Subsequently, we combined the GPR and TME scores to establish a GPR-TME 
classifier for conducting clinical prognosis assessments. Various functional annotation algorithms were used to conduct biologi-
cal process analysis distinguished by GPR-TME subgroups. Furthermore, weighted correlation network analysis (WGCNA) was 
applied to depict the tumor somatic mutations landscapes. Finally, we compared the immune-related molecules between GPR-TME 
subgroups and resorted to the Tumor Immune Dysfunction and Exclusion (TIDE) for immunotherapy response prediction. The 
mRNA and protein expression of GPR-related gene P2RY14 were, respectively, validated by RT-PCR in clinical samples and HPA 
database. To conclude, our GPR-TME classifier may aid in predicting the EC patients’ prognosis and immunotherapy responses.
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Introduction

Endometrial carcinoma (EC) is the sixth most prevalent 
cancer in women, with over 400,000 new diagnoses made 
in 2020, according to global cancer statistics (Sung et al. 
2021). Though many early-stage EC cases are cured with 
surgery alone, there are a notable number of women with 
aggressive variants whose prognosis remains dismal (Cros-
bie et al. 2022; Oaknin et al. 2022a). Traditionally, EC was 
subclassified into two types based on its clinical and patho-
logical features. Type I ECs are more common and result 
from unopposed estrogenic stimulation of the endometrium 
(Bokhman 1983). The histotypes of type I ECs are mostly 
endometrioid with indolent biological behavior, accom-
panied by PTEN and KRAS mutations and microsatellite 
instability (MSI) status aberrance (Huvila et al. 2021). In 
contrast, type II ECs are aggressive phenotypes and are high-
grade carcinomas. This subtype is primarily identified by 
p53 mutations and is considered the cause of relapse and 
death. (Brinton et al. 2013).

In 2013, The Cancer Genome Atlas (TCGA) Research 
Network proposed molecular subtypes of EC based on 
genomic profiles. These subtypes are the POLEmut group, 
MMRd (hypermutated/microsatellite unstable) group, SMP 
(no specific molecular profile) group, and p53abn (serous-
like) group (Kandoth et al. 2013). Other than significant 
molecular abnormalities, these molecular subtypes differ 
in terms of genetic and environmental risk factors, progno-
sis, and response to hormonal therapy (Huvila et al. 2021). 
Surrogate markers for these molecular subtypes have been 
developed and successfully implemented in clinical practice 
(Talhouk et al. 2015, 2017; Stelloo et al. 2016). However, 
challenges remain in current EC classification systems, par-
ticularly in prognostic and therapeutic evaluation (McAlpine 
et al. 2018). Thus, new molecular patterns defining prog-
nosis and therapeutic response in EC are urgently needed.

The G protein-coupled receptors (GPRs) family, a large 
superfamily of cell-surface signaling proteins, is involved in 
a variety of biological processes, including cell adhesion and 
motion (Orduna-Castillo et al. 2022), metabolites signaling 
transduction (Uranbileg et al. 2022; Brown et al. 2020; Pillai 
et al. 2022), and even immune responses (Ge et al. 2020). 
Aberrant GPR expression has been observed in various can-
cers (Bar-Shavit et al. 2016). Recent GPRs function research 
has highlighted mechanisms related to metabolites among 
these carcinous patterns. As a metabolic response to acid 
stress, the acid-sensing GPR (GPR68) has been reported to 
mediate lipogenesis in cancer cells, thereby promoting lipid 
droplet accumulation and enhancing viability under acidic 
stress (Pillai et al. 2022). In human hepatocellular carci-
noma (HCC), S1P lyase (SPL) converts sphingolipids into 
glycerophospholipids (LPI and LPG). These subsequently 
combine with GPR55 and activate the p38/MAPK pathway, 
contributing to tumor progression (Uranbileg et al. 2022). 
Other metabolite-related GPRs, including lactate receptor 
(GPR81) (Brown et al. 2020), succinate receptor‑1 (GPR91) 
(Kuo et al. 2022), neurokinin-1 receptor (Zhang et al. 2022), 
and purinergic receptor (Wang et al. 2020), were extensively 
investigated in cancer research. In ECs, estrogenic trans-
membrane receptor (GPR30) has been extensively studied 
over the decade (He et al. 2009). Numerous evidence has 
already revealed that estrogen-mediated GPR signaling 
played a critical role in gaining malignant phenotypes (He 
et al. 2012; Zhang et al. 2019). In light of the preceding, it 
is necessary to propose a novel GPR molecular set that can 
shed light on EC prognosis and biological behavior.

Interestingly, numerous GPRs have been studied for 
their immunological functions. Activation of A2A recep-
tors (A2AR), a typical GPR with a high affinity for aden-
osine, has been shown to promote the immune escape of 
cancer cells in tumor niche (Sun et al. 2022). The lactate 
receptor (GPR81) in breast cancer nidus promotes tumor 
growth through a paracrine mechanism involving dendritic 
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cell (DCs) function impairment. This paracrine mechanism 
is complementary to an autocrine mechanism by which 
lactate induces programmed cell death ligand 1 (PD-L1) in 
tumor cells via activation of GPR81; therefore, inhibition 
of GPR81 signaling may provide a novel cancer immuno-
therapy strategy (Brown et al. 2020). Activated by low pH, 
proton-sensing GPR has been reported to promote PD-L1 
expression in tumor cells (Mori et al. 2021). GPR87 expres-
sion is positively correlated with immune infiltration in lung 
adenocarcinoma (LUAD), suggesting potential benefits 
from immune checkpoint inhibitors (ICIs) (Bai et al. 2022). 
Another GPR, lysophosphatidic acid receptor 6 (LPAR6), 
was excluded from the immune infiltration evaluation (He 
et al. 2022, 2021). Therefore, given that ICIs agents are 
widely investigated for treating ECs (Ott et al. 2017; Mak-
ker et al. 2019), a series of biomarkers linking GPRs and 
immune features are ready for clinical application.

Materials and methods

Data sources and available analysis platforms

The current study enrolled 533 EC samples with RNA 
sequencing data and clinical information from TCGA (https://​
portal.​gdc.​cancer.​gov/). Moreover, single-cell RNA (scRNA) 
sequencing data with cell reannotation of 1 microsatellite 
instability-high/mismatch repair-deficient (MSI-H/MMR-d) 
EC was obtained from GSE193430 (https://​www.​ncbi.​nlm.​
nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE19​3430) to visualize 
GPR scores in each immune cell (Guo et al. 2022). Exter-
nal validation was performed on an EC database comprised 
of 95 patients from the Clinical Proteomic Tumor Analysis 
Consortium (CPTAC) as described by Li et al. (three were 
excluded for data deficient) (Dou et al. 2020; Li et al. 2023). 
Another Gene Expression Omnibus (GEO) dataset for dif-
ferentially expressed genes (DEGs) seeking was obtained 
from GSE17025 (https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​
acc.​cgi) (Day et al. 2011). The extended analysis utilized four 
of the available analysis platforms. The Metascape (https://​
metas​cape.​org) was applied for gene set annotation analysis 
(Zhou et al. 2019); Tracking Tumor Immunophenotype (TIP; 
http://​biocc.​hrbmu.​edu.​cn/​TIP/) for immune evolutionary 
analysis (Xu et al. 2018); Tumor Immune Dysfunction and 
Exclusion (TIDE; http://​tide.​dfci.​harva​rd.​edu/) for immuno-
therapy response prediction (Jiang et al. 2018); and Proteo-
maps (https://​www.​prote​omaps.​net/) for depicting the protein 
composition of different subgroups (Liebermeister et al. 2014). 
Lastly, the Human Protein Atlas (HPA) (https://​www.​prote​inatl​
as.​org) was searched for P2YR14 immunohistochemical (IHC) 
staining assessment between normal and EC tissues (Liu et al. 
2021a).

GPR‑related genes and tumor immune 
microenvironment cells quantification

A compendium of 872 GPR-related genes was acquired 
from the Molecular Signatures Database (MSigDB; http://​
www.​gsea-​msigdb.​org/​gsea/​msigdb) (Liberzon et al. 2015). 
Expression of all GPR-related genes was extracted from the 
Cancer Genome Atlas-Uterine Corpus Endometrioid Carci-
noma (TCGA-UCEC) cohort. The CIBERSORT algorithm 
(https://​ciber​sort.​stanf​ord.​edu/) (Chen et al. 2018) was applied 
to quantify 22 immune cells based on the transcriptomes of the 
TCGA-UCEC cohort for tumor immune microenvironment 
(TME-i) cells.

Establishment of GPR score, TME score, 
and GPR‑TME classifier

DEGs of GPR between ECs and normal uterine tissue were 
first extracted for subsequent analysis (“limma” package, ver-
sion 3.50.3; Log (FC) > 1 or <  − 1, P < 0.05 were regard as 
the cutoff). The prognostic assessment of GPR-related genes 
and TME-i cells was further narrowed by univariate Cox 
regression analysis in the TCGA-UCEC cohort (“survminer” 
R package; version 0.4.9; with a cutoff of P < 0.05). Five pro-
tective immune cells were isolated for TME score construc-
tion, and 20 GPR-related genes were identified using the Least 
Absolute Shrinkage and Selection Operator (LASSO) regres-
sion model to generate a GPR risk signature (GPR score). An 
advanced algorithm, “bootstrap,” was applied to stabilize the 
coefficient generated from LASSO in both the GPR and TME 
score constructions. Simply, the GPR score was assigned by.

GPRscore =
∑20

i=1
Xi × Yi.

Likewise, the TME score was given by.
TMEscore =

∑5

j=1
Xj × Yj.where Xi is the relative 

expression value of each selected gene, Yi is the coefficient 
modified by the “bootstrap” algorithm; Xj is the relative 
expression value of each selected immune cell, and Yj is 
the coefficient modified the same algorithm. The GPR and 
TME scores were then integrated to develop the GPR-TME 
classifier. Subsequently, EC samples were divided into the 
following subgroups: GPR_high + TME_low, intermediate 
mixed (GPR_high + TME_low and GPR_low + TME_low), 
and GPR_low + TME_high based on the mean value of GPR 
score and TME score in TCGA-UCEC cohort.

Single‑sample gene set enrichment analysis 
and fast gene set enrichment analysis

The “clusterProfiler” package (version 4.4.4) was used for 
single-sample gene set enrichment analysis (ssGSEA) to 
clarify the pathways enriched in different subgroups based on 
the expression level of GPR or TME-i cells (Liu et al. 2020). 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE193430
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE193430
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://metascape.org
https://metascape.org
http://biocc.hrbmu.edu.cn/TIP/
http://tide.dfci.harvard.edu/
https://www.proteomaps.net/
https://www.proteinatlas.org
https://www.proteinatlas.org
http://www.gsea-msigdb.org/gsea/msigdb
http://www.gsea-msigdb.org/gsea/msigdb
https://cibersort.stanford.edu/
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After combining the intermediate subgroups, the “fgsea” (ver-
sion 1.20.0) and the “msigdbr” (version 7.5.1) packages were 
applied for fast GSEA analysis.

Comprehensive analysis of GPR score in a scRNA 
sequencing set

A unique sample of scRNA sequencing data (MSI‑H/MMR‑d 
EC) containing only immune cells was enrolled for GPR 
expression analysis among these infiltrative cells. The “Seu-
rat” (version 4.3.0), “tidyverse” (version 1.3.2), and other 
subordinate packages were used to visualize the abundance 
of GPR scores in TME-i cells. Furthermore, the “CellChat” 
package (version 1.6.1) was used to outline intercellular 
communication.

Weighted correlation network analysis based 
on GPR‑TME classifier

Weighted correlation network analysis (WGCNA) can be used 
to identify clusters of highly correlated genes and summarize 
them using the module eigengene or an intramodular hub 
gene (Langfelder and Horvath 2008). Thus, the “WGCNA” R 
package (version 1.71) was used to generate distinct modules 
(sft value was set as 0.90; Supplementary Fig. 1A). Then the 
desired module (marked “yellow”) was identified, and the gene 
clusters belonging to this module were submitted to Metascape 
for functional analysis.

Tumor somatic mutation, functional annotation, 
and TIP analysis

Somatic mutation data was available in the TCGA- UCEC 
database. The top 20 mutation genes were obtained using 
the “maftools” package (4.1.2) and then compared between 
GPR-TME subgroups. Hub genes with significant differ-
ences among GPR-TME subgroups were then extracted and 
analyzed. As described previously (Liu et al. 2022), each EC 
case's tumor mutation burden (TMB) score was also calcu-
lated. DEGs analysis was repeated before submitting to Pro-
teomaps for functional annotation. Ten cases of each GPR-
TME subgroup (including the mix subgroup) were randomly 
sampled to generate a matrix before TIP analysis. The returned 
online tool data were then visualized using the “pheatmap” R 
package (version 1.0.12).

Quantitative real time PCR

Tissue RNA Purification Kit PLUS (EZBiosciences, China) 
was utilized to extract RNA from EC tissue samples (twelve 
pairs). After extraction, NanoDrop 2000 spectrophotometer 
(Thermo Scientific, USA) was used to detect RNA quan-
tity and concentration. Hifair® III Reverse Transcriptase Kit 
(YEASEN, China) was subsequently designed for reverse 
transcription of total RNA to cDNA. Quantitative real time 
PCR (qRT-PCR) was conducted using the Taq Pro Universal 
SYBR qPCR Master Mix Kit (Vazyme, China). Record the 
cycling threshold (Ct) for P2RY14 and calculate the P2RY14 
mRNA expression in cancer and paracancerous tissues with 
the 2−ΔΔCt method. All steps of the qRT-PCR were performed 
according to the reagent instructions and all experiments were 
repeated three times. The primers used in qRT-PCR protocol 
are presented in Table 1.

Statistical analysis

All statistical analysis was performed in R (version 4.1.0). 
Standard tests included the Student’s t test, Wilcoxon rank-sum 
test, and Kruskal–Wallis test. Spearman correlation analysis 
(“ggcorrplot” R package; version 0.1.4) was used to determine 
the relationship between the GPR-related genes/TME-i cells. 
The log-rank test and Cox regression were used to investigate 
related independent patients’ prognosis classifiers. P < 0.05 
was considered statistically significant.

Results

Development of the GPR score based on GPR‑related 
genes in TCGA‑UCEC and validation in CPTAC​

The schematic diagram of the entire study is depicted in Fig. 1. 
To develop a method indicative of GPR expression, 533 EC 
cases from TCGA-UCEC were enrolled. Figure 2A depicts a 
preliminary screen of DEGs and prognostic genes (univari-
ate Cox analysis, FDR < 0.05). Then, the LASSO regression 
analysis was performed to narrow down the most robust prog-
nostic genes among the candidate genes by evaluating their 
risk prediction contributions (Fig. 2B, C). Additional results of 
principal component analysis (PCA) also demonstrate the dif-
ferent clusters based on the selected risk genes (Supplementary 
Fig. 1D, E). As shown in Fig. 2D, a multivariate Cox analy-
sis of these genes revealed that 20 GPR-related genes were 
ultimately involved in GPR score construction. Based on the 

Table 1   The primers used in 
qRT-PCR

Gene Forward (5′–3′) Reverse (5′–3′)

P2RY14 AGC​TGA​ACG​TGT​TTG​TGT​GC GGA​ACA​GCA​AGG​AGG​AGC​AT
GAPDH GAC​TTC​AAC​AGC​AAC​TCC​CAC​ TCC​ACC​ACC​CTG​TTG​CTG​TA
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Fig. 1   Schematic diagram portraying the establishment and compre-
hensive analysis of the GPR-TME classifier. TCGA-UCEC the Cancer 
Genome Atlas-Uterine Corpus Endometrioid Carcinoma, DEGs dif-

ferentially expressed genes, GPR G protein-coupled receptor, GEO 
Gene Expression Omnibus
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Fig. 2   Development of the GPR score based on GPR-related genes 
in TCGA-UCEC. A Heatmap shows DEGs and prognostic genes 
candidates for GPR score construction. B Selection of the optimal λ 
in the LASSO analysis. C LASSO coefficient profiles of 20 genes in 
TCGA-UCEC cohort. D Forest plot shows a multivariate Cox analy-
sis of these enrolled genes. E K–M curves for the OS of EC patients 
in the low- and high-risk subgroups based on the GPR score. F ROC 
curves demonstrate the predictive efficiency of the GPR score in the 
TCGA cohort. G Validation of the predictive role of GPR score in 
CPTAC cohort. H ROC curves demonstrate the predictive efficiency 

of the GPR score in the CPTAC cohort. I, J GSEA identifies the phe-
notype differences between the GPR score high and GPR score low 
subgroups. Significance: *P < 0.05; **P < 0.01. GPR G protein-cou-
pled receptor, TCGA-UCEC the Cancer Genome Atlas-Uterine Cor-
pus Endometrioid Carcinoma, DEGs differentially expressed genes, 
LASSO Least Absolute Shrinkage and Selection Operator, K–M 
Kaplan–Meier, OS overall survival, EC endometrial carcinoma, ROC 
receiver operating characteristic curves, CPTAC​ Clinical Proteomic 
Tumor Analysis Consortium, GSEA gene set enrichment analysis
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mean value of the GPR score in the TCGA-UCEC cohort, two 
subgroups of EC patients were identified. Statistically, patients 
with low GPR scores had a longer survival rate than patients 
with high GPR scores (Fig. 2E). The receiver operating char-
acteristic (ROC) curves demonstrated the value of survival 
prediction with a total area under the curve (AUC) of 0.664 
(Fig. 2F). Considering the limited prognostic data regarding 
ECs, the recognized phenotype “myometrial invasion” was 
applied for prognostic assessment. In an external cohort, the 
GPR score was validated as a risk factor for myometrial inva-
sion in ECs (Fig. 2G); and its predictive role for myometrial 
invasion in the CPTAC cohort was comparable to the former 
(Fig. 2H; AUC = 0.673 vs. AUC = 0.664). EC samples with 
higher GPR scores were also significantly enriched for the 
proliferative phenotype (Fig. 2I, J). In this section, a GPR 
score for predicting the prognosis of TCGA-UCEC patients 
was developed, and the underlying function of GPR molecules 
in ECs was examined.

Development of the TME score and correlation 
between GPR score and TME cells

The CIBERSORT algorithm was applied to quantify 22 
immune cells based on transcriptomes of the TCGA-UCEC 
cohort to generate a TME-based signature. Subsequently, five 
types of immune cells were identified for their protective roles 
in overall survival (OS) based on their respective optimum cut-
off value. These immune cell types include CD8 T cells, mem-
ory-activated CD4 T cells, activated natural killer (NK) cells, 
follicular helper T (Tfh) cells, and plasma cells (Fig. 3A–E). 
Figure 3F depicts the multivariate Cox analysis of these 
immune cells. Contrary to the GPR score, patients with high 
TME scores showed statistically longer survival than patients 
with low TME scores (Fig. 3G). GSEA further identified the 
potential differences between the TME subgroups, implying 
intercellular communication is more vibrant among the TME 
high tumors (Fig. 3H). The correlation analysis illustrates the 
connections between GPR expression and immune infiltra-
tions (Fig. 3I). To further delineate the GPR score status in 
single cell clusters, scRNA sequencing data of MSI-H/MMR-d 
EC was enrolled (extra data are available in Supplementary 
Fig. 2). Figure 3J depicts the immune landscape of MSI‑H/
MMR‑d EC. In contrast, Fig. 3K depicts the GPR score of each 
immune cell cluster, with plasmacytoid DCs (pDCs) and NKT 
presenting a seemingly higher level of GPR expression. This 
section established a TME score and clarified the relationship 
between the GPR score and immune cells.

Prognostic value and functional annotation 
of the established GPR‑TME classifier

Based on the findings, we questioned whether it would be 
possible to combine the GPR and TME scores to construct 

a GPR-TME classifier for joint assessment. After combi-
nation, four subgroups were generated: GRP_low + TME_
high, GPR_low + TME_low, GPR_high + TME_high, and 
GPR_high + TME_low. The GPR-TME classifier presented 
a statistically different prognosis in the TCGA-UCEC cohort 
(Fig. 4A). Notably, EC cases in the GRP_low + TME_high 
subgroup had the best prognosis compared to cases from the 
other three subgroups. The predictive ability of the GPR-
TME classifier on OS was evaluated using time-dependent 
ROC curves. The AUC was 0.769 for three years, 0.790 for 
five years, and 0.889 for seven years, as shown in Fig. 4B. 
To further elucidate the significant differences in survival, 
WGCNA was applied for exploring the gene variations 
among these subgroups (Supplementary Fig. 1). The “blue” 
and “yellow” modules were then distinguished for the most 
significant variations between GPR_high + TME_low and 
GRP_low + TME_high subgroups (Fig.  4C). The gene 
clusters representing “blue” and “yellow” modules were 
then submitted to the online tool Metascape for functional 
annotation. Cell pre-filtration-related items were enriched 
in the GPR_high + TME_low subgroup, while immune cell 
activation-related items were gathered in GRP_low + TME_
high subgroups (Fig. 4D, E). To determine whether GPR 
status could affect the function of immune cells, we analyzed 
intercellular communication. Based on the findings derived 
from Fig. 3K, pDCs, and NKT cells were selected for anal-
ysis. The number of interactions and interaction strength 
of intercellular communication are depicted in Fig. 4F, G, 
respectively. Figure 4H, I demonstrate that immune cells 
(pDCs and NKT cells) with high expression of GPR have 
less intercellular signaling activation. Overall, for this sec-
tion, a GPR-TME classifier was constructed by combining 
GPR and TME scores. Then by using multiple bioinformat-
ics tools, the functional differences between four subgroups 
were investigated.

Simplification of the GPR‑TME classifier 
and association between GPR‑TME classifier 
with clinical features

To simplify the GPR-TME classifier for clinical applica-
tion, GPR_low + TME_low and GPR_high + TME_high 
subgroups were merged due to their less divergence. Fig-
ure 5A depicts the K-M curves for the OS of EC patients 
after combination. As shown in Fig. 5B, C, the GPR-TME 
classifier exhibited a significant correlation with the OS 
of EC patients (HR 2.60, 95% confidence interval (CI) 
1.72–3.80; P < 0.001; refer to multivariate Cox analy-
sis). These findings suggest that the GPR-TME classi-
fier, constructed using the TCGA-UCEC cohort, was an 
independent prognostic factor for EC patients. Interest-
ingly, the simplified GPR-TME classifier exhibited a 
quite decent predictive efficacy regardless of age, tumor 
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Fig. 3   Development of the TME score and correlation analysis for 
GPR score and TME cells. K–M curves for the OS of EC patients 
in low- and high-CD8 T cell A memory activated CD4 T cell B acti-
vated NK cell C follicular helper T cell D, and plasma cell E sub-
groups. F Forest plot shows a multivariate Cox analysis of these 
immune cells. G K-M curves for the OS of EC patients in the low- 
and high-TME score subgroups. H GSEA identifies the phenotype 
differences between the TME score high and TME score low sub-
groups. I Correlation analysis shows the relationship between the 

GPR and TME score components. J Immune cell clusters of MSI-H/
MMR-d EC. K GPR score counted in each immune cell cluster. TME 
tumor environment, GPR G protein-coupled receptor, K–M Kaplan–
Meier, OS overall survival, EC endometrial carcinoma, CD cluster of 
differentiation, NK natural killer, GSEA gene set enrichment analysis, 
MSI-H/MMR-d microsatellite instability-high/mismatch repair-defi-
ciency, pDCs plasmacytoid DCs, NKT natural killer T, Treg regula-
tory T cell
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grade, and stage (Fig. 5D). Fast GSEA for simplified sub-
groups revealed significant differences in biological pro-
cess enrichment (Fig. 6A), which is similar to the Metas-
cape functional annotation. TIP analysis was performed 
on an expression matrix containing ten cases from each 
subgroup to track the tumor immunophenotype. The TIP 

analysis results were then visualized using a heatmap, as 
shown in Fig. 6B. Fourteen immune cells infiltration atlas 
for individual patient (N = 30) are presented in Fig. 6C. 
We simplified the GPR-TME classifier for clinical use and 
clarified the relationship between the GPR-TME classifier 
and clinical characteristics.

Fig. 4   Prognostic value, cellular signaling pathways, and intercel-
lular communication analysis based on GPR-TME classifier. A K–M 
curve for the OS of EC patients in the GRP_low + TME_high, GPR_
low + TME_low, GPR_high + TME_high, and GPR_high + TME_low 
subgroups. B Time-dependent ROC curves demonstrate the predic-
tive efficiency of the GPR-TME classifier. C Gene modules derived 
from WGCNA show the different clusters among four subgroups. D 
Top 20 annotations collected for GPR_high + TME_low subgroup. E 
Top 20 annotations collected for GRP_low + TME_high subgroup. F 

The number of interactions for intercellular communication analysis. 
G The interaction strength of intercellular communication analysis. H 
pDCs with high GPR score compromise activation of the cell chat-
ting pathway. I NKT cells with high GPR score compromise activa-
tion of the cell chatting pathway. GPR G protein-coupled receptor, 
TME tumor environment, K-M Kaplan–Meier, OS overall survival, 
EC endometrial carcinoma, ROC receiver operating characteristic, 
WGCNA weighted correlation network analysis, pDCs plasmacytoid 
DCs, NKT natural killer T, AUC​ area under the curve
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Differential patterns of tumor somatic mutations 
in patients among GPR‑TME subgroups

We next examined the tumor somatic alterations among 
different GPR-TME subgroups. The top 20 variant muta-
tions in the TCGA-UCEC cohort were identified (Fig. 7A, 
B). The tumor somatic mutation landscapes differ between 
groups. TP53, PIK3CA, and PTEN mutations rank top 
three in the GPR_high + TME_low subgroup; while PTEN, 
ARID1A, and PIK3CA mutations rank top three in the 

GPR_low + TME_high subgroup. Compared to Fig. 7A, B, 
the GPR_low + TME_high subgroup was distinguished by 
a higher somatic mutation. Similarly, as depicted in Fig. 6C, 
the TMB in the GPR_low + TME_high subgroup was sig-
nificantly higher than those in GPR_high + TME_low and 
Mixed subgroups. Further examination of the most prevalent 
mutations among subgroups revealed that PIK3CA expres-
sion varied among these subgroups (Fig. 7C). Detailed anal-
ysis was performed using K-M curves mixed with TMB (or 
PIK3CA status) and GPR-TME subgroups. However, neither 

Fig. 5   Simplification of the GPR-TME classifier for clinical appli-
cation. A K–M curve for the OS of EC patients in the GRP_
low + TME_high, Mixed, and GPR_high + TME_low subgroups. 
B Forest plot of univariate analysis shows the simplified GPR-TME 
classifier possesses a better-predicting efficacy than clinical parame-
ters. C Forest plot of multivariate analysis shows the simplified GPR-

TME classifier is an independent prognostic factor for EC patients. 
D K-M curves for the simplified GPR-TME classifier present statisti-
cally significant discriminations regardless of age, tumor grade, and 
stage. Significance: *P < 0.05; ***P < 0.001. GPR G protein-coupled 
receptor, TME tumor environment, K–M Kaplan–Meier, OS overall 
survival, EC endometrial carcinoma
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TMB nor PIK3CA status could successfully optimize the 
predictive efficacy of the GPR-TME classifier (Fig. 7D).

Distinct immune response profile in tumors 
among GPR‑TME subgroups

The immune response-associated genes among different 
subgroups were further investigated (Liu et al. 2021a). 
The GPR_low + TME_high subgroup had a higher expres-
sion of most of the inhibitory immune markers (including 
CTLA4, LAG3, and PDCD1; Fig. 8A) and human leu-
kocyte antigen (HLA) markers (Fig. 8B) than the GPR_
high + TME_low and Mixed subgroups. Given these find-
ings, we tested whether the GPR-TME classifier could 

predict clinical responses in immunotherapies patients. 
TIDE for predicting immunotherapy response was used to 
solve this interrogatory. As depicted in Fig. 8C, the GPR_
low + TME_high subgroup had the highest percentage 
(31%) of patients with therapeutic response to an immune 
checkpoint blockade (ICB), while the GPR_high + TME_
low subgroup had only 3%. Patients with EC responding 
to ICB therapy showed statistically lower GPR scores 
(Fig. 8D). Similar patterns of Proteomaps are observed in 
the GPR_low + TME_high subgroup and ICB responder 
(Fig. 8E). These findings may suggest that the pretreat-
ment GPR-TME classifier can depict the tumor immune 
microenvironment, thereby enhancing the EC patient's 
therapy responses prediction.

Fig. 6   Immune characteristic of GPR-TME classifier demonstrated in 
different subgroups. A Fast GSEA for the simplified GPR-TME clas-
sifier. B TIP analysis for the simplified GPR-TME classifier. C Four-
teen immune cells infiltration atlas of individual patient (n = 30) from 

TIP analysis. GPR G protein-coupled receptor, TME tumor envi-
ronment, GSEA gene set enrichment analysis, TIP Tracking Tumor 
Immunophenotype
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Fig. 7   Association between tumor somatic mutations and GPR-TME 
classifier. The OncoPrint was constructed by the top 20 mutation 
genes between GPR_high + TME_low A and GPR_low + TME_high 
subgroups B. Each EC from an individual patient was represented in 
each column (TCGA-UCEC). C Comparison of TMB, TP53, PTEN, 
and PIK3CA expression among defined subgroups according to GPR-
TME classifier. D K–M curves of EC patients divided by TMB (or 

PIK3CA status) and GPR-TME classifier. GPR G protein-coupled 
receptor, TME tumor environment, TCGA-UCEC the Cancer Genome 
Atlas-Uterine Corpus Endometrioid Carcinoma, TMB tumor muta-
tional burden, TP53 tumor protein 53, PTEN phosphatase and tensin 
homolog, PIK3CA phosphatidylinositol-4,5-bisphosphate 3-kinase 
catalytic subunit alpha
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Fig. 8   Comparison of immune-related markers in three subtypes and 
therapy response prediction based on GPR-TME classifier. A Com-
parison analysis of the inhibitory immune molecules among sub-
groups based on the GPR-TME classifier. B Comparison analysis of 
the HLA molecules among subgroups based on the GPR-TME classi-
fier. C The different percentages of ICB responder among subgroups 

based on the GPR-TME classifier. D Comparison of GPR scores 
among patients with different ICB immunotherapy response status. 
E Functional analysis in GPR_high + TME_low (left) and responder 
(right) of patients under ICB immunotherapy illustrated using Pro-
teomaps. GPR G protein-coupled receptor, TME tumor environment, 
HLA human leukocyte antigen, ICB immune checkpoint blockade
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Clinical validation for mRNA and protein expression 
of GRP‑related gene

To further explore the potential GPR-related targets regu-
lating the process of EC, the GEO dataset (GSE17025) 
was enrolled for crossed DEGs filtration. Interestingly, 
the purinergic receptor encoding gene P2RY14 presents 
significantly downregulated in EC tissues compared to 

normal endometrium tissues (Fig. 9A, B). qRT-PCRT’s 
results derived from twelve pairs of EC tissues and its 
paracancerous endometrium tissues also shows the similar 
results suggested by the crossed DEGs (Fig. 9C). In terms 
of protein level, HPA database was applied for inspecting 
the different protein expression of P2RY14. Conformably, 
the IHC staining from HPA database presents quite weak 
P2RY14 expression in EC glandular tissues compared to 
normal endometrium glandular (Fig. 9D).

Fig. 9   GEO filtration for DEGs of GPR-related genes and validation 
in clinical tissue samples. A Heatmap of DEGs of GPR-related genes 
from a GEO cohort (GSE17025). B Volcano plot of DEGs of GPR-
related genes intersected by TCGA-UCEC and GEO (GSE17025) 
cohorts. C qRT-PCR of P2RY14 gene expression in EC samples 
(cancers vs. paracancerous, n = 12). D Protein expression of P2RY14 

in EC and normal endometrium in the HPA database. Significance: 
*P < 0.05; ***P < 0.001. GEO Gene Expression Omnibus, DEGs dif-
ferentially expressed genes, GPR G protein-coupled receptor, TCGA-
UCEC the Cancer Genome Atlas-Uterine Corpus Endometrioid 
Carcinoma, qRT-PCR quantitative real time PCR, EC endometrioid 
carcinoma, the HPA the Human Protein Atlas
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Discussion

The explosion of research on GPR and TME enhances 
our understanding of the possibility of combining these 
factors to predict cancer patients' prognosis and therapies 
(O’Hayre et al. 2014). However, few studies have inte-
grated GPR and TME signatures to predict prognosis and 
therapeutic responses (Zhao et al. 2022). Signatures based 
on the combination of GPR and TME may enable clinical 
classification and therapeutic strategy optimization when 
targeting GPR combined with immunotherapy for EC 
treatment. Here, we systematically utilized the TCGA-
UCEC cohort to assess the prognostic and therapeutic 
value of the GPR-TME classifier.

In this study, twenty GPR-related genes were enrolled 
in our risk signature, including adrenoceptor, prostaglan-
din receptors, vasoactive intestinal peptide (VIP) recep-
tors, dopamine receptors, lysophosphatidic acid receptors, 
corticotropin-releasing hormone (CRH) receptors, puriner-
gic receptors, bradykinin receptors, among others. Many 
of these novel targets have been studied in EC research. 
Dopamine receptor D2 (DRD2) overexpression in EC 
was significantly associated with grade, serous histology, 
stage, and worse progression-free survival and overall 
survival. While antagonizing DRD2 with ONC201 exhib-
ited significant anti-tumorigenic effects in EC cells and an 
EC transgenic mouse model (Pierce et al. 2021). DRD2 
was reported to promote malignant tumor progression 
by activating the oxygen-independent hypoxia-inducible 
factor-1α (HIF-1α) pathway in response to psychologic 
stress (Liu et al. 2021b). Similarly, CRHR1 was identified 
as an independent prognostic factor for EC in disease-free 
survival (DFS) and OS (Sato et al. 2014). A subfamily of 
adhesion GPRs in EC was recently thoroughly analyzed, 
and ADGRF1 was highlighted for its dual role in prognosis 
prediction and immune infiltrating evaluation (Lei et al. 
2022). Purinergic receptors, the most common GPRs in 
the current model, play critical roles in various cancers. 
Purinergic receptor P2Y2 (P2RY2) activation has been 
reported to promote tumor cell proliferation via multiple 
downstream signaling pathways (Zaparte et al. 2021; Dong 
et al. 2022). The P2RY2 enhancer RNA (P2RY2e) has 
been validated as an estrogen-responsive eRNA and has 
been involved in the development of breast cancer and the 
progression of bladder cancer (Ding et al. 2018). Given 
that EC is an estrogen-related malignancy, we suggested 
that enhanced expression of P2RY2 induced by unopposed 
estrogenic stimulation may also promote the progression 
of EC. Conversely, down-regulation of P2RY14 in head 
and neck squamous cell carcinoma (HNSC) patients was 
associated with poor prognosis and reduced immune infil-
tration, indicating a conversion from immune-dominant 

to metabolic-dominant status (Li et al. 2021). The down-
regulation of P2RY14 in TME of EC needs further inves-
tigation, as confirmed by the GEO dataset and clinical 
tissue samples (Fig. 9). Many GPRs in the galectin (GAL) 
subfamily were associated with immune suppression and 
regulated cytotoxicity T cell fate (Cagnoni et al. 2021; 
Yang et al. 2021), highlighting potential therapeutic tar-
gets for cancer immunotherapy. GPR132 mediates tumor-
macrophage interactions to promote the alternatively acti-
vated M2-like phenotype by detecting lactate in the acidic 
tumor microenvironment. This facilitates cancer cell adhe-
sion, migration, and invasion (Chen et al. 2017). Overall, 
research focusing on GPR functions and their interaction 
with tumor immune microenvironment has the potential to 
broaden the horizons of cancer immunology.

For the other part of the classifier, the TME score also 
exerts its critical role in cancer control. This model identi-
fied CD8 T cells, memory-activated CD4 T cells, activated 
NK cells, Tfh cells, and plasma cells as EC TME protec-
tors. The anti-cancer effect of CD8 T cells, activated CD4 T 
cells, and activated NK cells have been verified in multiple 
cancers. Since in-depth research has been conducted on anti-
tumor immunity, the function of Tfh cells and plasma cells 
in TME has emerged gradually. Tfh cells not only function 
in shaping B cell response during germinal center formation 
(Hollern et al. 2019) but also exert an antitumor immune 
effect in a CD8+-dependent manner. Tfh cells restore the 
exhausted T cells’ cytotoxic functions by producing inter-
leukin-21 (IL-21), thereby enhancing the anti-PD-L1/PD-1 
efficacy (Niogret et al. 2021). Plasma cells secrete specific 
antibodies into tumor niche as executors of humoral immu-
nity. A recent study in EC has demonstrated that polymeric 
immunoglobulin receptor (pIgR) dependent, antigen-inde-
pendent IgA occupancy triggers the activation of interferon 
(IFN) and tumor necrosis factor (TNF) signaling pathway 
in tumor cells. This activation is accompanied by apoptotic 
and endoplasmic reticulum stress downstream while hinder-
ing the DNA repair mechanisms (Mandal et al. 2022). After 
reannotating the EC scRNA sequencing dataset with MSI‑H/
MMR‑d (Guo et al. 2022), the GPR score was significantly 
elevated in pDC and NKT cells. The intercellular commu-
nication analysis revealed impaired cell-chatting function in 
these GPR-elevated cells. Jiang et al. recently depicted that 
single-cell profiling of the immune atlas of tumor-infiltrating 
lymphocytes (TILs) in EC (Jiang et al. 2022). There was a 
cluster of NKT cells in their TILs atlas; however, the specific 
functions of this cluster have not been thoroughly analyzed 
yet.

Throughout the study, EC patients in the GPR_
low + TME_high subgroup exhibited the most favorable 
prognosis and clinical responses to ICB treatment. The 
time-dependent ROC curves confirmed the sensibility 
and specificity of this risk signature. When merged for 
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simplification, the GPR-TME classifier was identified as an 
independent prognostic factor for EC patients. This classi-
fier’s OS predictive value was independent of the patient’s 
age, tumor grade, and stage, indicating a stable prediction 
efficiency. Moreover, multiple algorithms methods for 
functional annotation revealed different biological process 
enrichment among GPR-TME subgroups. This may imply 
that the host tumor profiles of the various GPR-TME sub-
groups share certain common characteristics. The results of 
tumor somatic mutations analysis revealed subtle correla-
tions between the molecular subtyping of EC and the GPR-
TME subgroup. The frequent TP53 mutations observed in 
the GPR_high + TME_low subgroup suggest a large body 
of copy number high (CN-H) molecular subtyping in this 
cluster. This corresponds to higher cell proliferation poten-
tials and poor prognosis (Kandoth et al. 2013; Talhouk et al. 
2015). Conversely, the GPR_low + TME_high subgroup 
indicated more common PTEN and ARID1A mutations sug-
gesting potential association with other molecular subtypes 
(Kandoth et al. 2013; Stelloo et al. 2016). Further studies are 
needed to elucidate this vague relationship.

Immunotherapy has presented clinical efficacy in some 
patients with gynecological malignancies (Taha et al. 2020), 
primarily employed for advanced and recurrent cases that 
have failed conventional treatment. Among the three major 
gynecological malignancies, EC is the most curable. Cur-
rently, the evidence of ICIs application in advanced/recur-
rent EC mainly comes from the KEYNOTE series clinical 
trials of Pembrolizumab (KEYNOTE-016, KEYNOTE-158, 
KEYNOTE-028) (Ott et al. 2017; Le et al. 2015; O'Malley 
et al. 2022). The objective response rate (ORR) for Pem-
brolizumab in EC patients with MSI-H/dMMR ranged from 
53.0% to 57.1% in the KEYNOTE trials. Similarly, the ORR 
for Nivolumab and Dostarlimab-gxly in EC patients with 
dMMR was over 40% in the EAY131 (Azad et al. 2020) 
and GARNET (Oaknin et al. 2022b) studies. These stud-
ies provide additional support using PD-1/PD-L1 mAbs in 
previously treated patients with MSI-H/dMMR advanced/
recurrent EC. Notably, MSI-H/dMMR patients are the pri-
mary recipients of ICIs. However, only approximately 25% 
of EC patients have MSI-H/dMMR aberrance (Stelloo et al. 
2016). This indicates that it is unclear whether immuno-
therapy will benefit the remaining patients. In our GPR-TME 
classifier, over 30% of patients in the GPR_low + TME_high 
subgroup were successfully predicted to benefit from immu-
notherapy regardless of the molecular subtyping. In con-
trast, merely 3% of GPR_high + TME_low patients were 
predicted to respond to ICB treatment, which is discouraged 
for immunotherapy.

Finally, we acknowledge certain limitations to this study. 
Firstly, the lack of survival data for EC necessitates the 
inclusion of more cohorts, particularly the in-house cohort, 

to further assess the performance of this classifier. Secondly, 
the GPR-TME signatures require additional validation using 
experimental methods.

Conclusions

To our knowledge, this is the first comprehensive study con-
ferring GPRs on a novel role in EC immune infiltration. 
In our study, depicting the integrated GPRs and immune 
cell landscape signatures within the TME may benefit the 
prediction of the EC patients’ prognosis and immunother-
apy responses. It might be a potential method for progno-
sis assessment and stratification of EC patients for clinical 
management in practice.
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