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Abstract
Objective To identify key gene in childhood acute lymphoblastic leukemia (ALL) through weighted gene co-expression 
network analysis (WGCNA), and their enriched biological functions and signaling pathways.
Methods Array data of the GSE73578 dataset, involving 46 childhood ALL samples, were acquired from the Gene Expres-
sion Omnibus (GEO) database. Hub modules associated with childhood ALL were screened out by WGCNA. Enriched 
biological functions and signaling pathways were then identified by Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG). Hub genes were selected by overlapping those between down-regulated genes in GSE73578, 
GSE4698 and the hub module. Guilt by association (GBA) was adopted to verify the function of the identified KIF11 gene 
and to predict its target genes. Regulatory effects of KIF11 on the proliferation and cell cycle progression of ALL in vitro 
were determined by cytological experiments.
Results WGCNA showed that the yellow module was the most relevant to childhood ALL treatment, containing 698 genes 
that were enriched in cell division, mitotic nuclear division, DNA replication and DNA repair, cell cycle, DNA replication 
and the P53 signaling pathway. The KIF11 gene was screened out and predicted as a cell cycle mediator in childhood ALL. 
Knockdown of KIF11 in ALL cells inhibited cell proliferation and arrested cell cycle progression in  G2/M phase.
Conclusions The KIF11 gene is critical in the treatment process of childhood ALL, which is a promising therapeutic target 
for childhood ALL.
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Introduction

As a prevalent malignant proliferative disease of the hemat-
opoietic system, leukemia is caused by the blocked differ-
entiation at a certain stage of hematopoietic stem cells (Pui 
et al. 2012; Malard and Mohty 2020). Acute lymphoblastic 
leukemia (ALL) is the most prevalent subtype of childhood 
leukemia, occupying 75% of leukemia cases and 43% of 

pediatric leukemia deaths globally. In China, there are over 
10,000 newly diagnosed cases of ALL annually, the inci-
dence of which has gradually on the rise (Yang et al. 2021). 
With great strides made on oncogene identification and 
immunotherapies, a valuable insight has emerged to guide 
the management of childhood ALL. Although the therapeu-
tic efficacy and prognosis of childhood ALL has sharply 
advanced (Hunger and Mullighan 2015), the extremely high 
incidence and mortality of childhood ALL remain to be a 
huge challenge in the clinical practice (Wang et al. 2021; 
Duault et al. 2021).

Notably, tumorigenesis is a very complicated process 
involving various genes, pathways, and networks that closely 
interact with each other. Weighted gene co-expression net-
work analysis (WGCNA) is a novel biological tool that 
transforms gene expression data into co-expression modules, 
which calculates the correlation coefficient value of gene 
expressions and thus causes a scale-free distribution of the 
network (Gu et al. 2019). It highlights signaling networks 
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of interested clinical traits of a certain disease. Therefore, 
WGCNA provides more information about key genes and 
therapeutic targets through data mining (Liang et al. 2018), 
thus providing scientific references for developing individu-
alized therapy and optimizing anti-cancer management.

In this study, WGCNA on the GSE73578 dataset involv-
ing 46 childhood ALL samples was performed. Hub modules 
associated with treatment of childhood ALL were identified, 
and the biological functions and pathways of genes enriched 
in hub module were analyzed. The KIF11 gene was screened 
out by overlapping those between down-regulated genes in 
GSE73578, GSE4698, and the hub module, which was iden-
tified up-regulated in bone marrow samples of childhood 
ALL patients and corresponding cell lines. Moreover, the 
regulatory effect of KIF11 on cell proliferation and cell cycle 
progression of ALL cells was explored. Our findings provide 
novel diagnostic and therapeutic targets for childhood ALL.

Materials and methods

Data source

Microarray expression profiling of GSE73578 and GSE4698 
was obtained from the National Center for Biotechnology 
Information (NCBI) Gene Expression Omnibus (https:// 
www. ncbi. nlm. nih. gov/ geo/) database. All cohorts met the 
following criteria: (1) large sample size, (2) complete clini-
cal information and microarray data, 3) fresh childhood ALL 
BM tissues for microarray analysis. The GSE73578 dataset 
consisted of gene expression profiling in bone marrow (BM) 
samples of 46 patients with childhood ALL before and after 
treatment using the GPL570 Affymetrix Human Genome 
U133 Plus 2.0 Array. The GSE4698 dataset consisted of 
60 patients with the first relapse of childhood ALL using 
the GPL96 Affymetrix Human Genome U133A Array. The 
clinical information of the patients from GSE73578 dataset 
and GSE4698 dataset is shown in Supplementary Table 1. 
Annotating raw data, generating expression matrixes and 
matching probes targeting gene symbols were performed 
using the R package.

Construction of WGCNA

The affy package (R version 3.4.3) was utilized to pre-pro-
cess raw data of GEO database (.CEL file) (Langfelder and 
Horvath 2008), and they were normalized through the robust 
multi-array average (RMA). Outlier samples were identi-
fied and removed before co-expression analysis. The genes 
with an average normalized expression of 4 and above were 
selected and subjected to WGCNA. A hierarchical cluster-
ing tree (dendrogram) was depicted using the fashClust 
function. The soft-thresholding power was selected by the 

pickSoftThreshold function, which was a standard value in 
the scale-free topology network to ensure the power-law 
distribution of the established network. Through strength-
ening strong correlations and weakening weak correlations 
in a scale-free network feature, the soft-thresholding power 
contributed to eliminate errors as much as possible and made 
the results more characteristic of biological data. The scale-
free topology fit index presented an exponential change. 
Therefore, a well correlation of R2 = 1 indicated a scale-free 
topological distribution of the data network.

Identification of key module association 
with clinical features

The correlation between gene expression profile and mod-
ule eigengene (ME) was defined as the module membership 
(MM), which was used to identify key modules (Ren et al. 
2018). The  log10 transformation of the p value (GS = lgP) 
was considered as gene significance (GS). Module signifi-
cance (MS) was calculated by the mean GS of all genes in 
one module, and that with the highest MS was the most cor-
related one with clinical traits.

Functional enrichment analysis of key module 
genes

GO and KEGG analyses were conducted to reveal biological 
functions and pathways enriched in genes of key module. 
Briefly, we analyzed functional annotation of selected genes 
in key modules using the online tool DAVID (Database for 
Annotation, Visualization and Integrated Discovery, https:// 
david. ncifc rf. gov/). KEGG was analyzed using the online 
tool (https:// www. genome. jp/ kegg/) to illustrate the most 
enriched signaling pathways in the key module (Szklarczyk 
et al. 2017). The top 15 terms with a significant difference 
at p < 0.05 were visualized.

Key gene identification and their validation

To confirm key genes in the hub module, differentially 
expressed genes (DEGs) between very early relapsed 
childhood ALL samples and late relapsed samples in the 
GSE4698 dataset, and those in BM samples before and after 
treatment in the GSE73578 dataset were analyzed using the 
limma R package with  log2FC (fold change) >|2| and adj p 
value < 0.05. A Venn diagram was drawn by the online tool 
jvenn (http:// jvenn. toulo use. inra. fr/ app/ examp le. html) to 
obtain the overlapping genes between downregulated genes 
and the hub module. The validation of key genes at the trans-
lational level was conducted using the Human Protein Atlas 
database (https:// www. prote inatl as. org/).

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
https://www.genome.jp/kegg/
http://jvenn.toulouse.inra.fr/app/example.html
https://www.proteinatlas.org/
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GBA

Putative functions of key genes were analyzed by GBA 
(Huarte et al. 2010). Briefly, Spearman’s rank correlation 
matrix of DEGs was created according to the normalized 
gene expressions of samples (counts per million). Initially, 
common genes associated with KIF11 in the GSE73578 and 
GSE4698 dataset were subjected to GO and KEGG analysis. 
The Pearson relationship between KIF11 and target genes 
was assessed by the Cor R package.

Collection of clinical samples

Bone marrow samples were obtained from pediatric patients 
who were initially diagnosed as ALL and treated in the Chil-
dren’s Hospital of Nanjing Medical University from Janu-
ary 2019 to December 2021. Exclusion criteria: (i) Patients 
with concurrent autoimmune disease, human immunodefi-
ciency virus (HIV) or syphilis; (ii) History of immunosup-
pressive therapy within 1 month. Clinical characteristics of 
ALL were classified and diagnosed according to the guide-
lines of the Morphologic, Immunologic, and Cytogenetic 
and Molecular biologic Classification Technique. Clinical 
samples of controls were obtained from healthy volunteers 
or children who received bone marrow biopsy tests and 
were not diagnosed with hematological system diseases. A 
total of 19 ALL clinical samples (ranging 14–130 months 
of age, with 13 males and 6 females) were enrolled, while 
another cohort of healthy children as controls was labeled 
as control group (ranging 18–141 months of age, with 12 
males and 7 females). The two groups were with gender- and 
age-matched. This study was performed in compliance with 
governmental policies and the Declaration of Helsinki, and 
approved by the Ethics Committee of Children’s Hospital 
of Nanjing Medical University (2016-SRFA-023). Writ-
ten informed consent was obtained from guardians of all 
participants.

Quantitative real‑time PCR

Total RNAs of cells were extracted with TRIzol reagent 
(Invitrogen, Carlsbad, CA, USA), which were subjected 
to reverse transcription. RT-PCR was performed using 
the AceQ qPCR SYBR Green Master Mix Kit (Vazyme, 
China), with GAPDH as an endogenous control. The primer 
sequence of KIF11 was: 5′-TCC CTT GGC TGG TAT AAT 
TCCA-3′ (forward) and 5′-GTT ACG GGG ATC ATC AAA 
CATCT-3′ (reverse).

Cell culture and transfection

Jurkat (T line), Nalm-6 (B line), and 6T-CEM (T line) cell 
lines (Shanghai Cell Bank of Chinese Academy of Medical 

Sciences) were cultured in RPMI 1640 (Gibco, NY, USA) 
containing 10% fetal bovine serum (FBS) and 10% penicil-
lin–streptomycin (Gibco, NY, USA). MAO cells (Kunming 
Cell Bank, Typical Culture Collection Committee, Chinese 
Academy of Sciences) were cultured in RPMI 1640 con-
taining 20% FBS and 10% penicillin–streptomycin. All cells 
were routinely incubated in an incubator containing 5%  CO2 
at 37 °C.

KIF11 shRNAs and negative control were synthesized by 
GeneChem, Shanghai, China. Sequences for shRNAs were 
as follows: shKIF11-1, TAC AGC AGA AAT CTA AGG ATA; 
shKIF11-2, TTG AAT AAG CCT GAA GTG AAT. Briefly, 
cells were transfected with plasmids for 72 h, and then 
incubated with 4 μg/mL puromycin for selection. Effectively 
transfected cells were assessed by fluorescence staining, fol-
lowed by measurement of transfection efficacy via qRT-PCR 
and Western blot.

Western blot

The total cellular protein was extracted using RIPA lysis 
buffer (Beyotime, China). Total proteins were subjected to 
sodium dodecyl sulfate–polyacrylamide gel electrophoresis 
(SDS-PAGE) and transferred onto an immobilon-P transfer 
membrane (Merck Millipore Ltd, Tullagreen, Carrigtwo-
hill, Co. Cork IRELAND). After blockage of non-specific 
antigens, membranes cut into interested sizes and they were 
probed with primary antibodies at 4 °C overnight, and anti-
rabbit or anti-mouse secondary antibodies on the other day. 
KIF11 antibodies were purchased from Proteintech, USA. 
Band exposure was performed using the enhanced chemilu-
minescence reagents (Biosharp, Hefei, China) and normal-
ized to gray values of GAPDH. After image exposure, the 
protein bands were analyzed using Image J software.

CCK‑8 (cell counting kit‑8) assay

Cells were seeded in a 96-well plate with 8 ×  103 cells in 
100 µl of culture medium per well. On day 0, 1, 2, 3, and 4, 
10 µl of CCK-8 solution (APExBIO, Taiwan, China) mixed 
in 90 µl of fresh medium was added in each well at the fixed 
time point. The optical density (OD) was measured 4 h later 
using a microplate reader at 450 nm wavelength.

EdU (5‑ethynyl‑2ʹ‑deoxyuridine) assay

Cells were seeded in a 24-well plate with 3 ×  105 cells/
well, which were incubated with EdU solution (1:3000) 
at 37 °C for 2 h. After 15-min fixation in 4% paraformal-
dehyde, 10-min permeabilization in 0.3% Triton X-100 at 
room temperature, and washing in 3% bovine serum albumin 
(BSA), cells were collected to stain the nuclei by 100 μl of 
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Hochest33342 per well. EdU images were captured using an 
inverted fluorescence microscope (OLYMPUS-IX73).

Flow cytometry

Cells were washed in PBS twice, incubated with RNase A 
and stained with propidium iodide (MULTI SCIENCES, 
China) in the dark. Cell cycle progression was determined 
by flow cytometry using FlowJo software.

Statistical analysis

Statistical analysis was performed by Graphpad prism 9.0 
and R language (version 3.6). Data were presented as the 
mean ± standard deviation ( x±SD) of at least three inde-
pendent experiments. Differences between groups were 
compared by the Student’s t test. Two-sided p < 0.05 was 
considered as statistically significant.

Results

Construction of WGCNA and identification of hub 
module

There were 20,462 genes in the GSE73578 database, and 
those with an average normalized expression of 4 and above 
were subjected to the construction of a co-expression net-
work using the R package. It is shown that the gene expres-
sion data of 46 childhood ALL samples were assigned into 
2 clusters of the dendrogram. The trait heatmap showed that 
the clinical data of all patients were completely documented, 
and these traits could be used for WGCNA (Fig. 1A). The 
network topology of β ranging from 1 to 20 was analyzed. 
To create a hierarchical clustering tree, the power value of 
5 was set as the lowest limit for the scale-free topology to 
ensure the scale independence > 0.85 and mean connectivity 
close to 0 (Fig. 1B). Co-expression modules at MedissThres 
of 0.25 were merged, and the eigengene adjacency heatmap 
demonstrated the relationship between modules (Fig. 2A). 
At last, 16 modules were recognized by the dynamic tree cut 
and labeled with different colors (Fig. 2B). Genes that were 
unable to be included in any modules were put into the gray 
module, which were removed in the subsequent analysis.

Module‑clinical trait correlation

The co-expression similarity of modules was determined by 
calculated and clustered MEs (Fig. 3A, B). It is shown that 
the gene in the yellow module (MEyellow) was the most 
negatively relative module to the treatment (R = − 0.25, 
P = 0.003) and time point (R = − 0.3, P =  4e−4) compared 
with others (Fig. 3C). Accordingly, the yellow module was 

set as the real clinically significant module, which was ana-
lyzed further.

Biological functions of genes in the hub module

To illustrate biological functions of 698 genes in the yellow 
module, we performed GO and KEGG pathway enrichment 
analyses. GO enrichment of BP was conducted by DAVID, 
and the detailed information was given in Supplementary 
Table 3. The results showed that the genes in this module 
were mainly enriched in the biological processes of cell divi-
sion, mitotic nuclear division, DNA replication, and DNA 
repair (Fig. 4A). Based on KEGG database, the genes were 
predominantly enriched in cell cycle progression, DNA rep-
lication, and P53 signaling pathway (Fig. 4B, Supplemen-
tary Table 4).

Key gene identification

To identify key genes in the yellow module, DEGs between 
very early relapsed childhood ALL samples and late relapsed 
samples in the GSE4698 dataset and those in BM samples 
before and after treatment in the GSE73578 dataset were 
screened out and depicted in the heatmap (Fig. 5A, B). A 
Venn diagram was drawn by overlapping downregulated 
genes among GSE4698, GES73578, and the yellow module. 
Finally, the KIF11 gene was screened out (Fig. 5C).

KIF11 is a cell cycle mediator in childhood ALL

We subsequently analyzed KIF11 function based on known 
functions of genes that are co-expressed with it by GBA. 
The Pearson correlations between KIF11 and associated 
genes were computed. 387/1,613 (24%) of KIF11-associated 
genes were shared in the GSE4698 and GSE73578 dataset 
(Fig. 6A). Next, we performed GO and KEGG analysis on 
the common KIF11-associated genes in the GSE4698 and 
GSE73578 dataset. Enrichment analyses revealed that cell 
division and cell cycle pathway were mainly enriched in 
KIF11-associated genes (Fig. 6B, C). Moreover, transla-
tional expressions obtained from the Human Protein Atlas 
database also demonstrated the expression status of KIF11. 
The mRNA and protein expressions of KIF11 in different 
cell cycle phases were measured, and they were upregulated 
in phase S and  G2 (Fig. 6D, E). It is suggested that KIF11 
served as a cell cycle mediator in childhood ALL.

Possible mechanism for KIF11 in regulating 
the development of childhood ALL

To narrow the target genes that regulated by KIF11 in reg-
ulating cell cycle pathways among the 387 genes, the Venn 
diagram method was enrolled in our analysis. Proliferating 
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cell nuclear antigen (PCNA) was the overlapped gene 
among cell cycle, DNA replication, and homologous 
recombination KEGG pathway (Fig. 7A). The Pearson 
analysis revealed a strong positive correlation between 

expression levels of PCNA and KIF11 in the GSE73578 
and GSE4698 datasets (Fig. 7B and C). The same method 
was enrolled to obtain the overlapped genes among cell 
division, DNA replication, and  G1/S phase transition, 

Fig. 1  Clustering dendrogram and determination of soft-threshold-
ing power in the WGCNA. A A cluster of 46 ALL patients from the 
GSE73578 dataset. The top 5000 genes with the highest standard 
deviation values were used for WGCNA. The color intensity was pro-

portional to treatment, time point, sex, age, subtype, and prednisone 
responder. B Analysis of the scale-free fit index for various soft-
thresholding powers (β) and the mean connectivity for various soft-
thresholding powers



15614 Journal of Cancer Research and Clinical Oncology (2023) 149:15609–15622

1 3

and 5 common genes in three biological processes were 
identified (Fig. 7D). Cell division cycle 6 (CDC6), Cell 
division cycle 7 (CDC7), C-terminal domain 1 (CDT1), 
cyclin-dependent kinase 2 (CDK2), and RB-binding pro-
tein 8 (RBBP8) were positively associated with KIF11 in 
both the GES73578 and GSE4698 datasets (Fig. 7E–N). 
It is suggested that KIF11 may influence the treatment of 
childhood ALL via regulating expression levels of PCNA, 
CDC6, CDC7, CDT1, CDK2, and RBBP8.

Knockdown of KIF11 inhibits in vitro cell 
proliferation and arrests cell cycle progression 
in  G2/M phase of ALL cells

To measure the expression of KIF11 in ALL samples, real-
time PCR was performed to detect the mRNA expression of 
KIF11 in BM samples of 19 ALL children and 19 healthy 

volunteers. KIF11 mRNA in ALL patients was significantly 
higher than that in the control group (P < 0.05, Fig. 8A). 
Correlation analysis revealed that KIF11 expression is con-
sistent across different ages, genders, and other prognostic 
factors in ALL. (Supplementary Table 4). Compared with 
that of normal lymphocytes, KIF11 was highly expressed in 
three ALL cell lines (Fig. 8B). Then, we verified the trans-
fection efficiency of two KIF11 shRNAs (shKIF11-1 and 
shKIF11-2) in Jurkat and Nalm-6 cells by qRT-PCR, both 
of them were qualified (Fig. 9C, D). The results of real-time 
PCR and Western blotting indicated that the expression level 
of KIF11 was significantly downregulated by transfection 
of shKIF11-1 or shKIF11-2 (Fig. 8E, F). Later, the regula-
tory effect of KIF11 on the proliferation of ALL cells was 
assessed by CCK-8 and EdU assay. Compared with those 
transfected with shNC, Jurkat and Nalm-6 cells with KIF11 
knockdown presented a significantly lower cell viability 

Fig. 2  Construction of 
co-expression modules by 
WGCNA package in R. A A 
hierarchical clustering of mod-
ule eigengenes that summarized 
the modules found in the clus-
tering analysis. Branches of the 
dendrogram (the meta-modules) 
group together eigengenes that 
were positively correlated. 
B The cluster dendrogram 
of genes in GSE73578. Each 
branch in the figure represented 
one gene, and every color below 
represents one co-expression 
module. Gray module color was 
a reserved one for genes that 
were not part of any module. A 
total of 16 merged co-expres-
sion modules were obtained by 
merging similar modules when 
the MEDissThres was set as 
0.25
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(P < 0.01, Fig. 9A, B) and EdU-positive rate (P < 0.05, 
Fig. 9C, D), suggesting that knockdown of KIF11 inhibited 
the proliferation of ALL cells. Moreover, the flow cytometry 
analysis illustrated that knockdown of KIF11 remarkably 
arrested ALL cells in  G2/M phase (P < 0.01, Fig. 9E, F). 
It is concluded that KIF11 was capable of mediating cell 
proliferation and cell cycle progression of ALL.

Discussion 

Superb than conventional bioinformatic methods analyz-
ing DEGs in disease samples, WGCNA creates a network 
involving gene modules to analyze the correlation between 
their enriched functions and clinical traits. WGCNA, serv-
ing as a newly emerged tool, has been widely applied to 

bioinformatic analyses. Sun Z et al. identified four key 
oncogenes in prostate cancer (PCa) via WGCNA (Sun 
et al. 2021). MAGI2 identified by WGCNA is found to 
mediate cytoskeletal rearrangement of podocytes, the 
loss of which causes proteinuria (Zhou et al. 2019) and 
chronic kidney disease (Zuo et al. 2018). We believed that 
WGCNA is of great significance in searching for key bio-
markers in human diseases, especially cancers.

ALL is the leading cause of pediatric cancer (Malard and 
Mohty 2020; Kadan-Lottick et al. 2003), the cure rate of 
which has been growingly risen with the advanced made 
on contemporary combination chemotherapy and refined 
risk stratification (Hunger et al. 2012). Nevertheless, some 
ALL children are unable to benefit from the treatment. It is 
necessary to develop biomarkers for effectively managing 
childhood ALL.

Fig. 3  Gene modules identified by WGCNA. A Dendrogram of con-
sensus module eigengenes obtained by WGCNA on the consensus 
correlation. B Heatmap plot of the adjacencies of modules. Red rep-
resented positive correlation and blue represented negative correla-
tion. C Relationships of consensus module eignegenes and clinical 
traits. Each row corresponded to a module eigengene. The module 
name was shown on the left side of each cell, each column corre-

sponded to a clinical feature. Each cell line contained the correspond-
ing correlation in the first line and the P value in the second line. The 
table was color-coded by correlation according to the color legend. 
Intensity and direction of correlations were indicated on the right side 
of the heatmap, in which red and green represented a positive and 
negative correlation, respectively

Fig. 4  Functional enrichment analysis for genes in the object module. A GO enrichment analysis of genes in the yellow module. B KEGG 
enrichment analysis of genes in the yellow module
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In the present study, multiple bioinformatic methods 
including WGCNA, functional enrichment analyses, and 
GBA analysis were utilized. The GSE73578 dataset was 
subjected to WGCNA and classified into 16 modules. A 
negative correlation was yielded between the yellow mod-
ule and the treatment of ALL, and genes in which were 

mainly enriched in cell division and cell cycle by GO and 
KEGG analyses. The cell cycle progression contributes to 
influence cell division, differentiation, and death (Liu et al. 
2022; Matthews et al. 2022). In the present study, KIF11 
was identified as the key target for influencing childhood 
ALL, which, analyzed by GBA, was confirmed as a cell 

Fig. 5  Key gene identification. A Heatmap of different genes between 
very early relapsed ALL compared with late relapsed disease in 
GSE4698. B Heatmap of different genes between pre- and post-treat-
ment in GSE73578. Blue and red represented downregulation and 

upregulation, respectively. C Identification of key gene between the 
downregulated genes in GSE73578, in GSE4698 and the yellow mod-
ule by overlapping them

Fig. 6  Inferring the functions of KIF11 by integrative bioinformatics 
analyses. A Venn diagram of the top 1000 positive correlated genes 
with KIF11 in GSE73578 and GSE4698. B GO analysis of genes 
associated with KIF11 in GSE73578 and GSE4698. C KEGG analy-

sis of genes associated with KIF11 in GSE73578 and GSE4698. D 
The mRNA expression of KIF11 in different cell cycle phases. E The 
protein expression level of KIF11 in different cell cycle phases
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cycle mediator. To further predict the possible mechanisms 
of KIF11 in ALL, the correlation between KIF11 and its 
protein-encoding genes in ALL samples was assessed. Some 
previously identified key factors in the development of ALL 
were found strongly correlated with KIF11, including the 
cell cycle regulating factor PCNA, CDC6, CDC7, CDT1, 
CDK2, and RBBP8. KIF11 was upregulated in BM samples 
of childhood ALL patients and corresponding cell lines. 
In vitro experiments further confirmed that knockdown of 
KIF11 in ALL cells inhibited cell proliferation and arrested 
cell cycle progression in  G2/M phase.

KIF11 belongs to the kinesin superfamily that is 
functional in mediating positioning and separation of 

chromosome, bipolar spindle assembly, and facilitating 
mitosis (Hata et al. 2019; Owens 2013; Blangy et al. 1995). 
KIF11 is usually upregulated in malignant tumors (Zhou 
et al. 2019). It is reported that KIF11 is capable of predicting 
poor prognosis of hepatocellular carcinoma, the expression 
level of which is correlated with tumor staging (Shao et al. 
2021). In vitro evidences have validated the role of KIF11 
in mediating migratory capacity and angiogenesis of tumor 
cells. Intracellular localization of KIF11 in interphase cells 
is suggested as a biomarker for predicting the prognosis of 
hormone-naive PCa. Nuclear level of KIF11 indicates a 
poor overall survival and high risk of aggravation in meta-
static castration-resistant PCa. Involved in the  G2/M phase 

Fig. 7  Correlation between the expression of KIF11 and key factors 
in ALL. A Venn diagrams of genes in cell cycle, DNA replication and 
homologue recombination pathways. B, C KIF11 expression is posi-
tively correlated with PCNA in GSE73578 and in GSE4698 respec-
tively. D Venn diagrams of genes in cell division, DNA replication 

and  G1/S phase transition biological progress. KIF11 expression is 
positively correlated with CDC6 (E, F), CDC7 (G, H), CTD1 (I, J), 
CDK2 (K, L), RBBP8 (M, N) in GSE73578 and in GSE4698, respec-
tively
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Fig. 8  Verification of KIF11 expression. A Relative levels of KIF11 
in bone marrow samples of ALL children and negative controls 
(n = 24). B Relative levels of KIF11 in ALL cell lines. C, D Trans-
fection efficacy of shKIF11-1 and shKIF11-2 in Jurkat and Nalm-6 

cells detected by qRT-PCR. E, F Transfection efficacy of shKIF11-1 
and shKIF11-2 in Jurkat and Nalm-6 cells detected by Western blot. 
**P < 0.01, ***P < 0.001, ****P < 0.0001
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transition, KIF11 contributes to influence tumor progression 
by regulating cell cycle checkpoints.

Its prognostic value and functions, however, have 
not been clearly elaborated. Our study found six genes 
(PCNA, CDC6, CDC7, CDT1, CDK2, and RBBP8) that 
were most significantly linked with expression levels of 
key genes and tumor progression. For example, PCNA 
is a ring-shaped homo-trimeric DNA clamp that acts 
on DNA replication and DNA repair (Strzalka and Zie-
mienowicz 2011; Peng et  al. 2019). It is upregulated 
in lung cancer and stimulates malignant phenotypes of 
lung cancer cells by upregulating STAT3 (Wang et al. 
2018). CDC6 and CDC7, members of the cell division 
control protein family, are of significance in cell divi-
sion, cell cycle checkpoint and recombination signaling 
pathways. Recent studies have unveiled their proto-onco-
genic activity and promising novel biomarker and drug-
gable target in cancers (Liu and Huang 2022; Lim and 
Townsend 2020; Montagnoli et al. 2010). CDT1 initiates 
DNA replication, which contributes to genome stability 
via mediating cell cycle progression and DNA damage 
response. Wang et al. (2022) reported the role of CDT1 
in triggering PCa cell metastasis by driving cell cycle 
and EMT via the PI3K/AKT/GSK3β axis. Upregulated 
CDT1 in childhood ALL promotes cell proliferation, 
invasion, and migration through activating EMT (Ding 
et al. 2021). CDK2 is widely involved in cell cycle pro-
gression, which, alongside its regulatory subunits are 
dysregulated, showing tumor-promoting features (Shi 
et al. 2021). CDK2-mediated TNFα upregulation induces 
in vitro apoptosis of TP53-null acute myeloid leukemia 
(AML) and BCR/ABL-positive ALL (Tadesse et  al. 
2020). RBBP8 is reported to be involved in  G2/M cycle 
checkpoints in DNA double-stranded breaks (Mozaffari 
et al. 2021). Through inducing the histone deacetyla-
tion of p21 promoter and inhibiting p21 transcription 
via CtBP and BRCA1, RBBP8 serves a vital regulator in 
gastric cancer (Yu et al. 2020).

KIF11 has been well concerned as a promising tar-
get for mitosis. Many phase I–II clinical trials have 
investigated KIF11-targeting agents (Holen et al. 2011; 
Hansson et al. 2020; Infante et al. 2017). For example, 
filanesib (Arry-520), a KIF11 inhibitor, is validated as 

a promising agent in phase II clinical trials of multiple 
myeloma, which is effective in both monotherapy and 
combination therapy with proteasome inhibitors (Hans-
son et al. 2020; Hernández-García et al. 2017; Algarín 
et al. 2020). Therapeutic efficacy of KIF11 inhibitors has 
been previously reported. SB-743921 is also a specific 
KIF11 inhibitor. Treatment of SB-743921 in clear cell 
renal cell carcinoma cells remarkably inhibits prolifera-
tive and migratory capacity, as well as the EMT process, 
and stimulates cell apoptosis (Jin et al. 2019). Ispinesib 
(SB-715992) is a highly specific KIF11 inhibitor, which 
widely exerts the anti-tumor activity through maintain-
ing the complete response (Myers and Collins 2016). 
Two complete and two partial responses are achieved 
in 6 childhood ALL xenografts intervened by ispinesib 
(Mills et al. 2017). Consistently, our results also indi-
cated the promising application of KIF11 in the treatment 
of childhood ALL.

Through literature review, only one study reported the 
involvement of KIF11 in the development of B-cell leu-
kemia (Hansen and Justice 1999). Its prognostic value 
and functions, however, have not been clearly elaborated. 
We for the first time demonstrated the role of KIF11 as 
a cell cycle mediator in ALL determined by WGCNA, 
which was further confirmed in in vitro experiments. 
Some limitations should be noted. First, clinical data, 
especially the survival data were scant in the GSE73578 
and GSE4698 datasets, which may be attributed to the 
high 5-year event-free survival (Yang et al. 2021). We 
are now collecting follow-up data of ALL patients for 
the following in-depth analysis. Second, we only veri-
fied the in  vitro effects of KIF11 on ALL cells, the 
in vivo functions, however, were not confirmed in ani-
mal models. Thirdly, the exact mechanism underlying 
the regulatory effect of KIF11 on the proliferation and 
cell cycle progression of ALL remained unclear, which 
will be explored in future. In summary, combined with 
the result of bioinformatic analyses and in vitro experi-
ments, our study found that KIF11 exerted a key role in 
the progression of childhood ALL, suggesting that KIF11 
was a potential therapeutic target. Therefore, this study 
offers new ideas for the disease prevention, diagnosis and 
treatment of childhood ALL.
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Conclusions

Taken together, KIF11 is screened out for childhood ALL 
through bioinformatic methods and in vitro experiments, 
which may serve as a viable molecular biomarker or thera-
peutic target in childhood ALL. The mechanism under-
lying the regulatory effect of KIF11 on childhood ALL 
needs to be explored in future.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00432- 023- 05240-w.

Author contributions ZL, CC, and FY conceived the study. ZL, CC, 
and KM participated in method development and validation. CC, KM 
and XY carried out the data analysis. ZL and SX prepared the original 
draft. XY, SX, and FY reviewed and modified the manuscript. All 
authors contributed to the article and approved the submitted version.

Funding This work was supported by the National Natural Science 
Foundation of China under Grant 81903383; Natural Science Founda-
tion of Jiangsu Province under Grant BK20211009; Scientific Research 
Projects of Jiangsu Health Commission under Grant ZDB2020018; 
China Postdoctoral Science Foundation funded project under Grant 
2021M701764; Special Fund for Health Science and Technology 
Development in Nanjing under Grant JQX19008; Nanjing Medical Sci-
ence and Technology Development Project under Grant YKK21149; 
Young Talent Support Project of Children’s Hospital of Nanjing 
Medical University under Grant TJGC2020016, TJGC2020007, 
TJGC2020014.

Data availability statement The datasets used and/or analyzed in the 
current study are available from the corresponding author upon rea-
sonable request.

Declarations 

Conflict of interest The authors declare that there are no conflicts of 
interest.

Ethical statement The studies involving human participants were 
reviewed and approved by the Ethics Committee of Children’s Hospital 
of Nanjing Medical University.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 

need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Algarín EM, Hernández-García S, Garayoa M, Ocio EM (2020) Filan-
esib for the treatment of multiple myeloma. Expert Opin Investig 
Drugs 29(1):5–14

Blangy A, Lane HA, d’Hérin P, Harper M, Kress M, Nigg EA (1995) 
Phosphorylation by p34cdc2 regulates spindle association of 
human Eg5, a kinesin-related motor essential for bipolar spindle 
formation in vivo. Cell 83(7):1159–1169

Ding H, Vincelette ND, McGehee CD, Kohorst MA, Koh BD, Venka-
tachalam A et al (2021) CDK2-mediated upregulation of TNFα as 
a mechanism of selective cytotoxicity in acute leukemia. Cancer 
Res 81(10):2666–2678

Duault C, Kumar A, Taghi Khani A, Lee SJ, Yang L, Huang M et al 
(2021) Activated natural killer cells predict poor clinical progno-
sis in high-risk B- and T-cell acute lymphoblastic leukemia. Blood 
138(16):1465–1480

Gu HY, Yang M, Guo J, Zhang C, Lin LL, Liu Y et al (2019) Identifi-
cation of the biomarkers and pathological process of osteoarthri-
tis: weighted gene co-expression network analysis. Front Physiol 
10:275

Hansen GM, Justice MJ (1999) Activation of Hex and mEg5 by retrovi-
ral insertion may contribute to mouse B-cell leukemia. Oncogene 
18(47):6531–6539

Hansson K, Radke K, Aaltonen K, Saarela J, Mañas A, Sjölund J et al 
(2020) Therapeutic targeting of KSP in preclinical models of 
high-risk neuroblastoma. Sci Transl Med. https:// doi. org/ 10. 1126/ 
scitr anslm ed. aba44 34

Hata S, Pastor Peidro A, Panic M, Liu P, Atorino E, Funaya C et al 
(2019) The balance between KIFC3 and EG5 tetrameric kine-
sins controls the onset of mitotic spindle assembly. Nat Cell Biol 
21(9):1138–1151

Hernández-García S, San-Segundo L, González-Méndez L, Corchete 
LA, Misiewicz-Krzeminska I, Martín-Sánchez M et al (2017) The 
kinesin spindle protein inhibitor filanesib enhances the activity of 
pomalidomide and dexamethasone in multiple myeloma. Haema-
tologica 102(12):2113–2124

Holen KD, Belani CP, Wilding G, Ramalingam S, Volkman JL, Ram-
anathan RK et al (2011) A first in human study of SB-743921, a 
kinesin spindle protein inhibitor, to determine pharmacokinetics, 
biologic effects and establish a recommended phase II dose. Can-
cer Chemother Pharmacol 67(2):447–454

Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-
Broz D et al (2010) A large intergenic noncoding RNA induced 
by p53 mediates global gene repression in the p53 response. Cell 
142(3):409–419

Hunger SP, Mullighan CG (2015) Acute lymphoblastic leukemia in 
children. N Engl J Med 373(16):1541–1552

Hunger SP, Lu X, Devidas M, Camitta BM, Gaynon PS, Winick NJ et al 
(2012) Improved survival for children and adolescents with acute 
lymphoblastic leukemia between 1990 and 2005: a report from 
the children’s oncology group. J Clin Oncol 30(14):1663–1669

Infante JR, Patnaik A, Verschraegen CF, Olszanski AJ, Shaheen M, 
Burris HA et al (2017) Two phase 1 dose-escalation studies 
exploring multiple regimens of litronesib (LY2523355), an Eg5 
inhibitor, in patients with advanced cancer. Cancer Chemother 
Pharmacol 79(2):315–326

Fig. 9  Knockdown of KIF11 inhibits in  vitro cell proliferation and 
arrests cell cycle progression in  G2/M phase of ALL cells. A, B Cell 
viability in Jurkat and Nalm-6 cells detected by CCK-8 assay. C, D 
EdU-positive ratio in Jurkat and Nalm-6 cells. E, F Cell cycle pro-
gression of Jurkat and Nalm-6 cells detected by flow cytometry. Ns, 
no significant difference, *P < 0.05, **P < 0.01, ****P < 0.0001

◂

https://doi.org/10.1007/s00432-023-05240-w
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1126/scitranslmed.aba4434
https://doi.org/10.1126/scitranslmed.aba4434


15622 Journal of Cancer Research and Clinical Oncology (2023) 149:15609–15622

1 3

Jin Q, Dai Y, Wang Y, Zhang S, Liu G (2019) High kinesin family 
member 11 expression predicts poor prognosis in patients with 
clear cell renal cell carcinoma. J Clin Pathol 72(5):354–362

Kadan-Lottick NS, Ness KK, Bhatia S, Gurney JG (2003) Survival 
variability by race and ethnicity in childhood acute lymphoblastic 
leukemia. JAMA 290(15):2008–2014

Langfelder P, Horvath S (2008) WGCNA: an R package for weighted 
correlation network analysis. BMC Bioinform 9:559

Liang JW, Fang ZY, Huang Y, Liuyang ZY, Zhang XL, Wang JL et al 
(2018) Application of weighted gene co-expression network anal-
ysis to explore the key genes in Alzheimer’s disease. J Alzheimers 
Dis 65(4):1353–1364

Lim N, Townsend PA (2020) Cdc6 as a novel target in cancer: onco-
genic potential, senescence and subcellular localisation. Int J Can-
cer 147(6):1528–1534

Liu R, Huang Y (2022) CDC7 as a novel biomarker and druggable 
target in cancer. Clin Transl Oncol. https:// doi. org/ 10. 1007/ 
s12094- 022- 02853-4

Liu J, Peng Y, Wei W (2022) Cell cycle on the crossroad of tumorigen-
esis and cancer therapy. Trends Cell Biol 32(1):30–44

Malard F, Mohty M (2020) Acute lymphoblastic leukaemia. Lancet 
395(10230):1146–1162

Matthews HK, Bertoli C, de Bruin RAM (2022) Cell cycle control in 
cancer. Nat Rev Mol Cell Biol 23(1):74–88

Mills CC, Kolb EA, Sampson VB (2017) Recent advances of cell-
cycle inhibitor therapies for pediatric cancer. Cancer Res 
77(23):6489–6498

Montagnoli A, Moll J, Colotta F (2010) Targeting cell division cycle 
7 kinase: a new approach for cancer therapy. Clin Cancer Res 
16(18):4503–4508

Mozaffari NL, Pagliarulo F, Sartori AA (2021) Human CtIP: a “double 
agent” in DNA repair and tumorigenesis. Semin Cell Dev Biol 
113:47–56

Myers SM, Collins I (2016) Recent findings and future directions for 
interpolar mitotic kinesin inhibitors in cancer therapy. Future Med 
Chem 8(4):463–489

Owens B (2013) Kinesin inhibitor marches toward first-in-class pivotal 
trial. Nat Med 19(12):1550

Peng B, Ortega J, Gu L, Chang Z, Li GM (2019) Phosphorylation of 
proliferating cell nuclear antigen promotes cancer progression by 
activating the ATM/Akt/GSK3β/Snail signaling pathway. J Biol 
Chem 294(17):7037–7045

Pui CH, Mullighan CG, Evans WE, Relling MV (2012) Pediatric acute 
lymphoblastic leukemia: where are we going and how do we get 
there? Blood 120(6):1165–1174

Ren Y, van Blitterswijk M, Allen M, Carrasquillo MM, Reddy JS, 
Wang X et al (2018) TMEM106B haplotypes have distinct gene 
expression patterns in aged brain. Mol Neurodegener 13(1):35

Shao YY, Sun NY, Jeng YM, Wu YM, Hsu C, Hsu CH et al (2021) 
Eg5 as a prognostic biomarker and potential therapeutic target for 
hepatocellular carcinoma. Cells 10(7):1698

Shi HX, Huang SW, Luo WJ, Pan F, Jin HJ, Wei W (2021) Elevated 
expression of CDT1 in childhood acute lymphoblastic leukemia 
promotes cell proliferation, invasion and migration through acti-
vation of EMT. J Biol Regul Homeost Agents. https:// doi. org/ 10. 
23812/ 21- SI1-6

Strzalka W, Ziemienowicz A (2011) Proliferating cell nuclear antigen 
(PCNA): a key factor in DNA replication and cell cycle regula-
tion. Ann Bot 107(7):1127–1140

Sun Z, Mao Y, Zhang X, Lu S, Wang H, Zhang C et al (2021) Identifi-
cation of ARHGEF38, NETO2, GOLM1, and SAPCD2 associated 
with prostate cancer progression by bioinformatic analysis and 
experimental validation. Front Cell Dev Biol 9:718638

Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M 
et al (2017) The STRING database in 2017: quality-controlled 
protein-protein association networks, made broadly accessible. 
Nucleic Acids Res 45(D1):D362–D368

Tadesse S, Anshabo AT, Portman N, Lim E, Tilley W, Caldon CE et al 
(2020) Targeting CDK2 in cancer: challenges and opportunities 
for therapy. Drug Discov Today 25(2):406–413

Wang L, Kong W, Liu B, Zhang X (2018) Proliferating cell nuclear 
antigen promotes cell proliferation and tumorigenesis by up-reg-
ulating STAT3 in non-small cell lung cancer. Biomed Pharmaco-
ther 104:595–602

Wang F, Li Z, Zhou J, Wang G, Zhang W, Xu J et al (2021) SIRT1 
regulates the phosphorylation and degradation of P27 by dea-
cetylating CDK2 to promote T-cell acute lymphoblastic leukemia 
progression. J Exp Clin Cancer Res 40(1):259

Wang C, Che J, Jiang Y, Chen P, Bao G, Li C (2022) CDT1 facilitates 
metastasis in prostate cancer and correlates with cell cycle regula-
tion. Cancer Biomark 34(3):459–469

Yang W, Cai J, Shen S, Gao J, Yu J, Hu S et al (2021) Pulse therapy 
with vincristine and dexamethasone for childhood acute lympho-
blastic leukaemia (CCCG-ALL-2015): an open-label, multi-
centre, randomised, phase 3, non-inferiority trial. Lancet Oncol 
22(9):1322–1332

Yu Y, Chen L, Zhao G, Li H, Guo Q, Zhu S et al (2020) RBBP8/CtIP 
suppresses P21 expression by interacting with CtBP and BRCA1 
in gastric cancer. Oncogene 39(6):1273–1289

Zhou J, Chen WR, Yang LC, Wang J, Sun JY, Zhang WW et al (2019) 
KIF11 functions as an oncogene and is associated with poor out-
comes from breast cancer. Cancer Res Treat 51(3):1207–1221

Zuo Z, Shen JX, Pan Y, Pu J, Li YG, Shao XH et al (2018) Weighted 
gene correlation network analysis (WGCNA) detected loss of 
MAGI2 promotes chronic kidney disease (CKD) by podocyte 
damage. Cell Physiol Biochem 51(1):244–261

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s12094-022-02853-4
https://doi.org/10.1007/s12094-022-02853-4
https://doi.org/10.23812/21-SI1-6
https://doi.org/10.23812/21-SI1-6

	KIF11 serves as a cell cycle mediator in childhood acute lymphoblastic leukemia
	Abstract
	Objective 
	Methods 
	Results 
	Conclusions 

	Introduction
	Materials and methods
	Data source
	Construction of WGCNA
	Identification of key module association with clinical features
	Functional enrichment analysis of key module genes
	Key gene identification and their validation
	GBA
	Collection of clinical samples
	Quantitative real-time PCR
	Cell culture and transfection
	Western blot
	CCK-8 (cell counting kit-8) assay
	EdU (5-ethynyl-2ʹ-deoxyuridine) assay
	Flow cytometry
	Statistical analysis

	Results
	Construction of WGCNA and identification of hub module
	Module-clinical trait correlation
	Biological functions of genes in the hub module
	Key gene identification
	KIF11 is a cell cycle mediator in childhood ALL
	Possible mechanism for KIF11 in regulating the development of childhood ALL
	Knockdown of KIF11 inhibits in vitro cell proliferation and arrests cell cycle progression in G2M phase of ALL cells

	Discussion 
	Conclusions
	Anchor 33
	References




