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Abstract
Purpose A high postoperative recurrence rate seriously impedes colon cancer (CC) patients from achieving long-term sur-
vival. Here, we aimed to develop a Treg-related classifier that can help predict recurrence-free survival (RFS) and therapy 
benefits of stage I–III colon cancer.
Methods A Treg-related prognostic classifier was built through a variety of bioinformatic methods, whose performance was 
assessed by KM survival curves, time-dependent receiver operating characteristic (tROC), and Harrell’s concordance index 
(C-index). A prognostic nomogram was generated using this classifier and other traditional clinical parameters. Moreover, 
the predictive values of this classifier for immunotherapy and chemotherapy therapeutic efficacy were tested using multiple 
immunotherapy sets and R package “pRRophetic".
Results A nine Treg-related classifier categorized CC patients into high- and low-risk groups with distinct RFS in the mul-
tiple datasets (all p < 0.05). The AUC values of 5-year RFS were 0.712, 0.588, 0.669, and 0.662 in the training, 1st, 2nd, and 
entire validation sets, respectively. Furthermore, this classifier was identified as an independent predictor of RFS. Finally, a 
nomogram combining this classifier and three clinical variables was generated, the analysis of tROC, C-index, calibration 
curves, and the comparative analysis with other signatures confirmed its predictive performance. Moreover, KM analysis 
exhibited an obvious discrepancy in the subgroups, especially in different TNM stages and with adjuvant chemotherapy. 
We detected the difference between the two risk subsets of immune cell sub-population and the response to immunotherapy 
and chemotherapy.
Conclusions We built a robust Treg-related classifier and generated a prognostic nomogram that predicts recurrence-free 
survival in stage I–III colon cancer that can identify high-risk patients for more personalized and effective therapy.
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Introduction

Colon cancer accounted for the third most new cancer cases 
globally in 2020 and was the second leading cause of cancer-
related deaths (Sung et al. 2021). Surgery and chemotherapy 
are currently the primary treatment methods for stage I–III 
colon cancer. The American Joint Commission on Cancer 
(AJCC) tumor-node-metastasis (TNM) staging system is 
also the primary basis for evaluating the prognosis after 
the radical operation and determining the follow-up treat-
ment plan (Wang et al. 2019a, b). However, due to the high 
heterogeneity of tumors, the prognosis of patients with the 
same stage or clinical characteristics differed distinctively. 
Therefore, a better prognostic indicator or predictive model 
is needed to identify colon cancer behavior.
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Colon cancer is the outcome of genomic instability 
caused by the accumulation of numerous oncogene muta-
tions or the inactivation of tumor-suppressor genes (Lin et al. 
2021). With our ongoing knowledge of tumors, cognition is 
continuously evolving. The tumor microenvironment, the 
environment in which cancer develops, has also received 
significant attention. Immunologically, TME is mainly com-
posed of tumor promoting components such as cancer-asso-
ciated fibroblasts (CAFs), tumor blood vessels, M2 tumor-
associated macrophages (TAMs), T helper-2 (Th2) cell 
factors, and tumor inhibiting components such as T cells, 
natural killer (NK), M1 TAMs, Th1, cytokines and other 
components (Thakkar et al. 2020). When the tumor promot-
ing components are overwhelming in quantity and function, 
TME shows a profound immunosuppressive state (Ma et al. 
2020). Previous studies indicated that the immune response 
within the tumor microenvironment has an important effect 
on the occurrence and development of colon cancer and the 
response to immunotherapy, including exploration of Treg 
(regulatory T cells) cell function (Orhan et al. 2020). Treg 
is a kind of T cell subset essential to control self-tolerance 
and inflammatory response, divided into CD4 + Treg and 
CD8 + Treg (Tanaka et al. 2017). Immunosuppression and 
immune incompetence are the two functional characteristics 
of Treg cells (Wing et al. 2019). The role of Treg in tumo-
rigenesis and development involves the regulation of tumor 
immunity (Dees et al. 2021), angiogenesis (Kajal et al. 2021) 
and tumor cell proliferation (Thakkar et al. 2020), and inter-
acts with various components in tumor microenvironment. 
Several recent studies demonstrated that Treg components 
in patients’ peripheral blood or local tumors increased sig-
nificantly in liver cancer (Li et al. 2014), ovarian cancer 
(Winkler et al. 2015), breast cancer (Wang et al. 2019a, b), 
acute and chronic lymphocytic leukemia (Niedzwiecki et al. 
2019), and nasopharyngeal carcinoma (Liu et al. 2021). In 
the study of colorectal cancer, it was found that the periph-
eral blood Tregs of patients with advanced cancer were 
significantly higher than those of patients with early stage 
(Krijgsman et al. 2019). Previous studies showed that Treg 
is associated with poor prognosis in cervical cancer (Punt 
et al. 2015), lung cancer (Shimizu et al. 2010), breast cancer 
(Wang et al. 2019a, b), melanoma and other tumors (Shang 
et al. 2015); however, its role in colon cancer and its impact 
on the prognosis remain unclear.

In this study, we integrated five cohorts from TCGA 
(The Cancer Genome Atlas) and GEO (Gene Expression 
Omnibus) to explore the potential role of Treg cells in colon 
cancer using bioinformatics models. Weighted gene co-
expression network analysis (WGCNA) was performed to 
identify the most significant module and candidate genes 
related to Tregs. Furthermore, we developed a novel Treg-
related classifier and constructed a robust nomogram to 
predict recurrence-free survival in colon cancer patients 

with stage I–III. Moreover, we found differences in immune 
cell sub-population and immunotherapy and chemotherapy 
response between the two risk subsets, which may explain 
for the disparity in RFS between the two subsets.

Materials and methods

Dataset source and processing

A total of 1194 stage I–III CC patients with clinical data of 
TNM stage I–III, RFS (recurrence-free survival) and RFS 
status were retrieved from different platforms. We down-
loaded the microarray dataset GSE39582 from GEO (http:// 
www. ncbi. nlm.nih.gov/geo/) as the training set. This dataset 
was produced by a Affymetrix Human Genome U133 Plus 
2.0 Array and included 485 stage I–III CC patients meet-
ing the standard. The first validation set included datasets 
GSE37892, GSE33113, and GSE17536 from the same 
chip platform (GPL570, Affymetrix HG-U133 Plus 2.0 
Array) and contained a total of 392 stage I–III CC patients 
who fulfilled inclusion criteria. The batch effects of the first 
validation set (1st validation set) were removed using Com-
Bat method by R package “sva” (Leek et al. 2012). RNA-
sequencing data of 317 stage I–III CC patients as the second 
validation set (2nd validation set) were obtained from The 
Cancer Genome Atlas (TCGA).

Estimation of immune‑infiltrating cells

We used CIBERSORTx (https:// ciber sortx. stanf ord. edu/) 
to estimate the levels of 22 tumor-infiltrating immune cells 
using the mRNA expression data. This online tool uses a 
deconvolution algorithm to impute gene expression profiles 
and estimates the type and abundance of immune cells.

Construction of the co‑expression network

We used the R package “WGCNA (Weighted Correlation 
Network Analysis)” (Langfelder et al. 2008) to construct a 
weight co-expression network with the 16,393 gene expres-
sion values in the training cohort. The purpose of this 
analysis method was to find the gene modules that were co- 
expressed, and to explore the relationship between the mod-
ules and Tregs, as well as the target genes in the modules.

The levels of 22 immune-infiltrating cells were used as 
sample traits. When setting the index of scale-free topologies 
as 0.90, a scaleless network was successfully developed with 
an optimal soft-threshold power (β = 8). We then divided 
genes with similar expression patterns into the same mod-
ule (minimum size = 100) using the “dynamic tree cutting” 
algorithm. Furthermore, to select the remarkable modules, 
Pearson’s test was used to evaluate the relationship between 

http://www.ncbi.nlm
http://www.ncbi.nlm
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the module eigengenes and the level of the 22 immune cell 
types. Finally, the “regulatory T cells (Tregs)” subtype was 
selected and further study of the Treg-related module was 
conducted.

Construction and verification of the prognostic 
Treg‑related gene prediction model

Univariate Cox regression and KM survival analyses were 
performed to estimate the hazard proportions for genes with 
the highest correlation with Tregs (grey module). To fur-
ther screen the prognosis of Treg-related genes with the best 
predictive performance, the “glmnet” R package (Friedman 
et al. 2010) was used to perform the LASSO regression anal-
ysis with tenfold cross-validation. Based on the AIC (Akaike 
information criterion) value on the prognosis of Treg-related 
genes, the bi-directional stepwise multivariate Cox regres-
sion was used for choosing the ones that minimize the AIC 
to obtain the best model fit. A prognostic Treg-related risk 
score model for CC patients was then established based on 
the combination of the multiplication of the multivariate 
Cox regression coefficient by its corresponding normalized 
mRNA expression value. The risk score = ∑ (the multivari-
ate Cox coefficient of Treg-related genes × matching normal-
ized expression level of these genes). We computed the risk 
scores of each CC patient. Then, we divided them into high- 
and low-risk subsets according to the cutoff value deter-
mined via ROC curve analysis using the R package “sur-
vminer”. The KM curve was then performed to estimate the 
disparity in RFS between low- and high-risk subsets using 
the log-rank test. The prognostic ability of the Treg-related 
classifier was explored with analysis of the C-index and the 
ROC curve. We also used the similar methods to verify the 
prognostic performance of the classifier constructed by the 
training cohort in the 1st, 2nd, and entire validation cohorts.

Furthermore, based on univariate Cox regression and 
multivariate Cox regression analyses, we further confirmed 
whether the predictive performance of the Treg-related clas-
sifier could be an independent prognostic factor compared 
to other clinic factors for CC patients in multiple cohorts. 
Finally, following the multivariate Cox regression analysis, 
risk score and traditional clinical factors were used to gener-
ate the nomogram using “rms,” “foreign,” and “survival” R 
packages. C-index, tROC curve, and calibration plots of the 
nomogram for 1-, 3-, and 5-year RFS plotted were applied 
to elucidate the accuracy of actual observed rates with the 
predicted survival probability. The “timeROC” R package 
was utilized to perform the tROC analyses.

Construction and validation of nomogram model

Based on the risk score with traditional clinical parameters 
including age, gender, and stage, a prognostic CC nomogram 

model was constructed by the “rms” R package to apply the 
clinical application of Treg-related genes. The ROC analy-
sis, C-index, and calibration were used to evaluate and com-
pare the accuracy of the nomogram.

Functional enrichment analysis

To probe underlying functions of differentially expressed 
Treg-related genes and risk model and screen the critical 
altered signaling pathways, the R package “clusterPro-
filer” (Yu et al. 2012) was utilized to perform Gene Ontol-
ogy (GO), Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways analysis and Gene Set Enrichment Anal-
ysis (GESA) between the two subsets in the 2nd validation 
cohort from the TCGA-COAD project. The “c2.cp.kegg.
v7.0.symbols.gmt” KEGG gene set was acquired from 
MSigDB (The Molecular Signatures Database). The thresh-
olds were the nominal p value (NOM-P) for gene sets < 0.05, 
the absolute normalized enrichment score |NES|> 1.7 and 
the false discovery rate (FDR) < 0.1.

Prediction of immunotherapy and chemotherapy 
efficacy

The cytotoxic activity (CYT) (Rooney et al. 2015), T cell-
inflamed gene expression profile (GEP) (Cristescu et al. 
2018), and the Tumor Immune Dysfunction and Exclusion 
(TIDE) algorithm (Jiang et al. 2018) were applied to predict 
immunotherapy efficacy between the different risk groups 
in the entire validation dataset. Moreover, we abstracted 
RNA-seq expression and clinical data from three online 
available sets of patients receiving anti-PD-1/PD-L1 anti-
body therapy, including IMvigor210 set (advanced urothe-
lial cancer, n = 348), GSE135222 set (advanced non-small 
cell lung carcinoma, n  = 27), and GSE162137 set (cutane-
ous T cell lymphoma, n = 64), to evaluate the prognostic 
value of Treg-related classifier in predicting immunotherapy 
response. Data of IMvigor210 set was obtained from “http:// 
resea rch- pub. gene. com/ IMvig or210 CoreB iolog ies” via the 
“IMvigor210CoreBiologies” R package and the data of 
GSE135222 set and GSE162137 set were download from 
the GEO database. We then divided patients into two risk 
groups according to our Treg-related classifier and the sur-
vival difference and response rate between these two risk 
groups were evaluated. More than that, the drug sensitivity 
to chemo-agents was predicted using the R package “pRRo-
phetic version 0.5” to count the half-maximal inhibitory con-
centration (IC50) of six common chemotherapy (cisplatin, 
gemcitabine, paclitaxel, docetaxel, doxorubicin, and rapa-
mycin) in the training cohort (Geeleher et al. 2014). The 
difference in IC50 of these drugs between risk groups was 
conducted using the Wilcoxon rank-sum test.

http://research-pub.gene.com/IMvigor210CoreBiologies
http://research-pub.gene.com/IMvigor210CoreBiologies
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Statistical analysis

Software R (version 4.1.0) was used to performed all data 
analyses. Wilcoxon and Chi-square tests assessed the rela-
tionship between the risk score and clinical parameters. 
The Kaplan–Meier (KM) survival analysis was performed 
using the log-rank test. Two-tailed p < 0.05 was consid-
ered statistically significance. The detailed versions of R 
packages included in this article were followed: sva (ver-
sion 3.42.0), WGCNA (version 1.72–1), glmnet (version 
4.1–7), rms (version 6.7–0), foreign (version 0.8–84), 
survival (version 3.5–5), timeROC (version 0.4), cluster-
Profiler (version 4.9.0.002), IMvigor210CoreBiologies 
(version 1.0.0) and pRRophetic (version 0.5).

Results

Identification of Hub Treg‑related module 
by WGCNA

The study design and workflow are depicted in Fig. 1. 
As mentioned above, we collected 1194 patients diag-
nosed with colon cancer with TNM stage range from I to 
III from the GEO and TCGA databases. A total of 485 
colon cancer patients from the GES39582 set were set as 
the training cohort, 392 CC patients from 3 microarrays 
sets (GSE37892, GSE33113, and GSE17536) from GEO 
were integrated into the first (1st) validation set, 317 CC 
patients from TCGA-COAD project were grouped into 
the second (2nd) validation set, and the total CC patients 
(n = 1194) were merged as the entire validation set. A 
combat method was applied to remove batch effects from 
these merged sets (Supplementary Fig. 1).

We then extracted the training cohort's mRNA gene 
expression profiles for 485 CC samples. The abundance 
of 22 tumor-infiltrating immune cell subtypes for these 
CC tissues was next counted using the CIBERSORT algo-
rithm. The expression profiles of the 16,393 genes were 
then used to build the gene co-expression network of CC 
via WGCNA method. The training cohort grouped sam-
ples based on the Pearson’s correlation coefficients and 
average linkage values. Our scale-free network was con-
structed using β = 8 with scale-free R2 = 0.9 (Supplemen-
tary Fig. 2A–B). Then, ten gene modules were conducted 
by hierarchical clustering tree (Supplementary Fig. 2C). 
The result showed that the grey gene modules including 
4813 genes were strongly related to T cells regulatory 
(Tregs, R2 = 0.34, P = 3e−15) (Supplementary Fig. 3).

Establishment of the prognostic Treg‑related 
classifier in the training dataset

In the training set of 485 CC stage I–III patients, 84 Treg-
related genes were significantly linked with recurrence-free 
survival (RFS) after performing univariate Cox regression 
and Kaplan–Meier survival analysis in 4813 genes of the 
grey module. These RFS-associated Treg-related genes were 
filtered into an analysis of Lasso penalized Cox regression 
(Fig. 2A, B) and multivariate Cox regression (Fig. 2C). 
We derived a Treg-related classifier based on the nine 
most likely RFS-associated Treg-related genes to count the 
risk score of each CC patient. The formula of risk score 
based on the regression coefficients of the nine mRNAs 
weighted by their expression levels was followed: risk 
score = (0.637 × level of SESN2 expression + 0.541 × level 
of RGL2 expression + 1.055 × level of TP53BP1 expres-
sion + 0.388 × level of PLXNB3 expression + 0.321 × level 
of SPRY4 expression − 0.185 × level of GZMB expression 
− 0.509 × level of RAB15 expression − 0.673 × level of 
SP140L expression − 1.587 × level of SLC4A5 expression) 
(Fig. 2D). The optimal cutoff score (3.600) was computed 
by the “survminer” package in the training set. The cutoff 
score then classified CC patients in the training dataset into 
high-risk-and low-risk subsets. The rates of recurrence-free 
survival (RFS) for patients within the high-risk subset were 
56.0% at 3 years, 51.2% at 5 years, and 46.2% at 7 years, 
compared with 83.3%, 80.1%, and 76.0% in patients within 
the low-risk subset, respectively (log-rank P = 2.664e−12, 
Fig. 3A). After adjusting the clinicopathological features 
by analysis of univariate and multivariate regression, the 
risk score based on the nine Treg-related genes found to be 
an independent factor for predicting RFS (all HR > 1 and p 
value < 0.05) in the training dataset (Fig. 3C, D). Further-
more, a 5-year RFS ROC curve analysis was performed to 
measure the predictive performance of the Treg-related 
classifier. We found our signature exhibited the highest 
AUC value of 0.712, which was better than that of gender 
(AUC = 0.549), age (AUC = 0.476), T stage (AUC = 0.541), 
TNM stage (AUC = 0.634), location (AUC = 0.513), and 
chemotherapy (AUC = 0.563), suggesting that the power-
ful prediction of recurrence than the other clinical variables 
(Fig. 3B).

Verification of the Treg‑related signature 
in the validation datasets and the entire dataset

To confirm the predictive ability of our Treg-related clas-
sifier, we utilized the 1st validation set (n = 392 patients), 
the 2nd validation set (n = 317 patients), and the entire set 
(n = 1194 patients), including the training set and other two 
validation sets, to test the reliability of the predictive capac-
ity of the signature.
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Fig. 1   HYPERLINK "sps:id::fig1||locator::gr1||MediaObject::0" The study design and workflow
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Using the above Treg-related classifier, the risk scores 
of CC patients from the validation sets were counted. Then, 
in the 1st validation set, 135 patients were divided into a 
high-risk subset and 257 patients into a low-risk subset, and 
the patients from the 2nd validation set were grouped as a 
high-risk subset (n = 186) and a low-risk subset (n = 131) 
based on the above cutoff point. In the 1st validation set, the 
rates of RFS for patients from high-risk group were 72.4% 
at 3 years, 61.0% at 5 years, and 61.0% at 7 years, compared 
with 80.2%, 76.7%, and 76.7% in patients from the low-risk 
group, respectively (log-rank p = 9.535e−03, Fig. 4A). In 
the 2nd validation set, the rates of RFS for patients from 
the high-risk group were 67.7% at 3 years, and 56.9% at 
5 years, compared with 79.6%, and 72.3% in patients from 
the low-risk group, respectively (log-rank p = 2.034e−02, 
Fig. 4C). After adjusting the clinicopathological features 

by analysis of univariate and multivariate regression, the 
risk score based on the nine Treg-related genes was found 
to be an independent factor for predicting RFS (all HR > 1 
and p value < 0.05) in all validation datasets (Fig. 5A–D). 
Moreover, we found that AUC points for the 5-year RFS 
of our signature were 0.588 and 0.669, respectively, which 
ranked as the second and first predictive accuracy among 
the other clinical variables in the 1st and 2nd validation sets 
(Fig. 4B, D).

Following the same analyses as above, the Treg-related 
risk signature yielded similar results. A total of 1194 patients 
from the entire set were separated into the low-risk group 
(n = 580) and high-risk group (n = 614) with significantly 
distinct RFS (Fig. 4E). The classifier constructed with the 
nine Treg-related genes also proved to be an independ-
ent factor for predicting RFS (HR > 1 and p value < 0.05, 

Fig. 2  Construction of Treg-related genes signature. A Tenfold cross-
validation with minimum criteria for tuning parameter selection (λ) in 
the LASSO model. B LASSO coefficient profiles of the Treg-related 
genes. The dotted line indicates the value chosen by threefold cross-

validation. C Multivariable Cox regression analysis of these Treg-
related genes adopted in the signature. D The coefficient of these 
Treg-related genes using multivariable Cox regression analysis
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Fig. 5E, F). The Treg-related risk model showed the highest 
prediction accuracy (AUC value = 0.662) among the other 
clinical variables (Fig. 4F), indicating that our Treg-related 
signature has a powerful and robust predictive accuracy for 
predicting RFS.

Comprehensive insights into the Treg‑related 
classifier involved in colon cancer

To elucidate the clinical impact of the Treg-related classifier 
in CC patients, we analyzed the association of the classifier 
with clinical variables in the training set. The Treg-related 
signature was significantly associated with recurrence-free 
survival status, N status, T stage, and TNM stage, except for 
age, gender, and adjuvant chemotherapy (Fig. 6A). We fur-
ther analyzed the risk scores in different subsets grouped by 

recurrence-free survival status, N status, T stage, and TNM 
stage. Compared to the non-recurrence group, patients with 
recurrence had elevated risk scores (Fig. 6B). Regarding N 
status, the risk scores in the negative group were lower than 
those in the positive group (Fig. 6C). Patients with T3 + 4 
exhibited a higher score than those with T1 + 2 (Fig. 6D). 
Based on the stage of TNM, the risk scores increased in the 
stages II and stage III compared to stage I (Fig. 6E). These 
findings indicated that the risk score was positively related 
to aggressive clinicopathological subtypes (such as positive 
lymph node metastases and higher T stage). We then inves-
tigated the prognostic effects of our Treg-related signature 
in different subsets grouped by clinicopathological variables. 
Patients with high-risk scores had decreased RFS in both 
age subsets (Supplementary Fig. 4A, B, p < 0.001). Simi-
lar significant findings were revealed in the gender groups 

Fig. 3  Kaplan–Meier (KM), time-dependent ROC (tROC) and cox 
regression analysis of the Treg-related risk score model in the train-
ing set. A KM curve of the Treg-related signature for recurrence-free 
survival (RFS). B ROC analysis of the Treg-related signature for 

5-year RFS. C Univariate Cox regression analysis of the Treg-related 
signature. D Multivariate Cox regression analysis of the Treg-related 
signature
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Fig. 4  KM and ROC analysis of the Treg-related signature in validation sets. A, B KM and ROC curve of the signature in the 1st validation set. 
C, D KM and ROC curve of the signature in the 2nd validation set. E, F KM and ROC curve of the signature in the entire validation set
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Fig. 5  Univariate and multivariate Cox regression analyses of the 
Treg-related signature in validation sets. A, B Univariate and multi-
variate Cox regression analyses of the signature in the 1st validation 

set. C, D Univariate and multivariate Cox regression analyses of the 
signature in the 2nd validation set. E, F Univariate and multivariate 
Cox regression analyses of the signature in the entire validation set
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Fig. 6  The correlation between the Treg-related signature and clinical 
variables. A The heatmap revealed the association of the Treg-related 
signature and the clinical variables (chemotherapy, IDH status, radi-

otherapy, grade, gender, age and survival status) in the training set. 
B–E The box plots displayed the relationship between risk score and 
clinical features
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(Supplementary Fig. 4C, D, p < 0.001), distal and proximal 
groups (Supplementary Fig. 4E, F, p < 0.001), negative node 
metastasis and positive node metastasis groups (Supplemen-
tary Fig. 4G, H, p < 0.0001), T stage subtypes (Supplemen-
tary Fig. 4I, J, p < 0.0001), and different TNM stages (Sup-
plementary Fig. 4K, M, p < 0.05).

Due to the inadequate response to adjuvant therapy fol-
lowing radical surgery, the survival duration of certain 
patients tends to be shorter. Thus, we investigated whether 
our Treg-related signature possesses the potential to pre-
dict the response to clinical intervention in colon cancer. 
The findings derived from the training cohort revealed 
an unexpected observation, suggesting a remarkable link 
between high-risk scores and therapy resistance to adjuvant 
chemotherapy, even among distinct TNM stages (Fig. 7A–C, 
p < 0.05). Furthermore, when focusing on particular thera-
peutic approaches, our analysis revealed that patients within 
the high-risk group exhibited significantly lower responsive-
ness 5-Fluorouracil (5-FU, Fig. 7D, p = 0.127) and Fluoro-
uracil and Leucovorin (FUFOL, Fig. 7E, p = 0.022).

Constructing a prognostic nomogram for recurrence

We constructed a prognostic nomogram to predict the 
1-, 3-, and 5-year RFS probability of CC patients in the 
training dataset by combining the Treg-related classi-
fier with three clinicopathological variables shared in the 

training dataset and the other validation datasets (Fig. 8A). 
The AUC points of the nomogram for 5-, 6-, and 7-year 
RFS predictions were 0.725, 0.746, and 0.762, respec-
tively (Fig.  8B). The C-index indicated that the nomo-
gram had the highest predictive accuracy of RFS than 
other clinicopathological parameters (Fig.  8C). Moreo-
ver, the calibration curves also confirmed a good consist-
ency between predicted and observed scores in terms of 
probabilities of 1-, 3-, and 5-year RFS (Fig. 8D). Similar 
results of calibration curves of nomogram were also found 
in the 1st, 2nd, and entire validation datasets (Fig. 8E-G).  
Together, our nomogram was clinically suitable for clinical 
practice based on these findings.

A comparative analysis of prognostic signatures 
for RFS in stage I–III colon cancer

To compare the performance of nomogram and Treg-
related classifier with other signatures, we comprehen-
sively extracted genes from 11 relevant models, with or 
without corresponding coefficients. However, after inter-
secting 16,352 common genes in the datasets of this article 
with genes included in these signatures, only 4 signature’s 
genes were all expressed in these datasets, and retained for 
further analysis (Supplement Table 1). We first assessed 
whether these signatures have statistical significance in all 
datasets using unicox analysis. The findings of univariate 

Fig. 7  Adjuvant chemotherapy (AC) benefits stratified by different 
TNM stage. KM survival curves for CC patients receiving with AC 
subset, which were stratified by different TNM stage. A TNM stage 

II + III; B TNM stage II; C TNM stage III; D TNM stage II + III 
with 5-FU; E TNM stage II + III with FUFOL. 5-FU 5-Fluorouracil, 
FUFOL Fluorouracil and Leucovorin
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Cox regression showed that only our risk score counted 
by Treg-related classifier, nomogram constructed by inte-
grated risk, age, gender, and TNM stage, and 4-gene sig-
nature of Teodoro V had consistent statistical significance 
in the training, 1st validation, 2nd validation, and entire 
validation sets (Supplement Table 2). Afterwards, we use 
the C-index to compare the predictive power for predicting 
RFS between our signatures and other signatures. Notably, 
our nomogram exhibited superior accuracy than the other 

models in all sets, revealing the robustness of the nomo-
gram (Fig. 9A–D).

Pathway enrichment and functional annotation 
analysis

To investigate the biological function of the Treg-related 
signature, the analyses of GO, KEGG, and GSEA were con-
ducted. The heatmap showed 185 differentially expressed 
genes (DEGs), selected by the R package “limma”, between 

Fig. 8  A nomogram was constructed to predict the RFS. A A nomo-
gram for predicting 1-, 3- and 5-year RFS with risk levels and three 
clinical variables. B 5-, 6- and 7-year ROC curves of the nomogram 
for RFS predictions. C The C-index of the nomogram, risk signature 
and other clinical variables. D Calibration plots of nomogram for pre-
dicting probabilities of 1-year, 3-year, and 5-year RFS of CC patients 
in the training dataset. E Calibration plots of nomogram for predict-

ing probabilities of 1-year, 3-year, and 5-year RFS of CC patients in 
the 1st validation dataset. F Calibration plots of nomogram for pre-
dicting probabilities of 1-year, 3-year, and 5-year RFS of CC patients 
in the 2nd validation dataset. G Calibration plots of nomogram for 
predicting probabilities of 1-year, 3-year, and 5-year RFS of CC 
patients in the entire validation dataset. The blue line indicates actual 
survival
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risk groups (Fig. 10A). Enriched biological processes (BPs) 
were mainly concentrated in homophilic cell adhesion via 
plasma-membrane adhesion, molecules cornification, and 
cell–cell adhesion via plasma-membrane adhesion. In cellu-
lar components (CCs) analysis, these DEGs were enriched in 
the growth cone, site of polarized growth, and collagen-con-
taining extracellular matrix. The molecular functions (MFs) 
indicated these DEGs were associated with receptor–ligand 
activity, signaling receptor activator activity, and growth factor 
activity (Fig. 10B). The KEGG pathways that were enriched 
in these DEGs were PI3K − Akt signaling pathway, calcium 
signaling pathway and Wnt signaling pathway (Fig. 10C). 
Then, a functional enrichment analysis of these DGEs was 
performed between risk groups. GSEA indicated that the path-
ways profoundly enriched in the high-risk group were ECM 
receptor interaction, focal adhesion, notch signaling pathway, 
hedgehog signaling pathway, regulation of actin cytoskeleton, 
TGF-beta signaling pathway, and WNT signaling pathway, 

while no significant pathways concentrated in the low-risk 
group (Fig. 10D). A complete list of enriched pathways can 
be found in Supplementary Table 3.

Correlation between Treg‑related classifier 
and tumor‑immune microenvironment (TIME) 
and treatment responses

Due to the close relationship between Treg-related clas-
sifiers and immunomodulators (such as co-inhibitors, co-
stimulators, ligands, and receptors), immune cells have a 
profound impact on the prediction of clinical outcomes 
and treatment effectiveness (Fridman et al. 2017; Thors-
son et al. 2018). We further examined the difference and 
relationship between immunomodulators and these immune 
cells with risk groups. In terms of immunomodulators, 
the expression of co-stimulators (CD80), co-inhibitors 
(BTN3A1, BTN3A2, CD274, and SLAMF7), ligands (IL1B, 

Fig. 9  Comparison of prognos-
tic signatures for RFS in stage 
I–III colon cancer. C-index 
analysis risk score and nomo-
gram and 4 published signatures 
in the training set (n = 485), 
1st test set (n = 392), 2nd test 
set (n = 317), and total set 
(n = 1194). Statistic tests: two-
sided z-score test. Ns not sig-
nificant; *P < 0.05; **P < 0.01; 
***P < 0.001; ****P < 0.0001
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IL12A, INFG, CXCL9, CXCL10, and CCL5), and recep-
tors (TNFRSF9,  TIGIT, LAG3, IL2RA, ICOS, CTLA4, 
and CD40) was elevated in the low-risk group, whereas 
the expression of CD276, IL4, IL13, and CXCL1 was sig-
nificantly downregulated in the low-risk group, compared 
with those in the high-risk group (Fig. 11A–C). The CIB-
ERSORT results revealed that the abundance of Tregs (T 
cells regulatory) was significantly higher in the high-risk 
group compared with those in the low-risk group. We also 
found that the fractions of other immune cells, including 
Mast cells activated, monocytes, dendritic cells resting, 
B cells memory, and macrophages M2 were significantly 
increased in high-risk patients than in low-risk patients, 
whereas the expression levels of B cells naïve, T cells CD4 
memory activated, T cells follicular helper, T cells gamma 

delta, NK cells activated, macrophages M1, and eosinophils 
were significantly lower in the high-risk group (Fig. 11D). 
Furthermore, the risk score was positively associated with 
subpopulations of Mast cells activated, dendritic cells rest-
ing, B cells memory, monocytes, macrophages M2, and 
Tregs, while negatively related to subpopulations of B cells 
naive, eosinophils, T cells gamma delta, NK cells activated, 
T cells follicular helper, macrophages M1, and T cells CD4 
memory activated (Supplementary Fig. 5).

Several analyses were performed to test the significance 
of our Treg-related classifier in predicting the efficacy of 
immunotherapy and chemotherapy. We first conducted the 
correlation between the risk groups and two promising 
biomarkers (GEP and CYT) to predict the effectiveness of 
immunotherapy. Our results revealed that patients within the 

Fig. 10  Analysis of pathway enrichment and functional annotation 
between high- and low-risk subsets. A Volcano plot of DEGs between 
the two risk subsets. B Gene ontology annotated for Treg-related clas-

sifier. C Enrichment analysis of KEGG pathway. D GSEA between 
high- and low-risk subpopulations
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Fig. 11  Correlation between Treg-related classifier and tumor-immune microenvironment (TIME). A–C The comparison of immunomodulators 
between risk groups was visualized in bar plot. D The bar plot revealed the 22 immune cell subpopulations between different risk groups
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low-risk group in the entire validation cohort had signifi-
cantly higher CYT and GEP scores than those in the high-
risk group (Fig. 12A, B). Moreover, the TIDE algorithm 
was also conducted to predict the response to immunother-
apy. The results showed that patients in the high-risk group 
had elevated TIDE scores than those in the low-risk group, 
which might have lower immunotherapy efficacy (Fig. 12C).

Next, the association between Treg-related classifier 
and ICI (immune checkpoint inhibitor) therapeutic effi-
cacy were performed in IMvigor210 set, GSE135222 set, 
and GSE162137 set. We applied our Treg-related classi-
fier to count risk score of each patient among these sets, 
then divided them into high-risk group and low-risk group 
according to the optimal cutoff value calculated by ROC 
curve. In IMvigor210 set, we found that patients in the low-
risk group were significantly correlated with a better OS for 
patients with PD-1/PD-L1 blockade therapy and a higher 
percentage of CR/PR than those in the high-risk group 
(Fig. 12D–F). Similarly, the response rate of low-risk group 
was higher than high-risk group in GSE135222 set (56.0% 
vs. 27%, P = 0.035; Fig. 12G, H). Moreover, survival anal-
ysis revealed that low-risk group patients had longer PFS 
(P = 0.091; Fig. 12I). In addition, we assessed the chemo-
therapy response of CC patients with different risk groups. 
Our results indicated that patients in the low-risk group had 
significantly lower IC50 values of six chemotherapy agents 
compared to those in the high-risk group (Fig. 12J–O). Over-
all, the Treg-related classifier exhibited a promising predic-
tive ability for selecting patients which could benefit from 
ICI therapy and chemotherapy.

Discussion

Colon cancer is one of the leading causes of cancer mortal-
ity worldwide. When patients receive an initial diagnosis, 
approximately 60% are in local advanced stages (stage II/
III), and even after successful resection, there is a 20–30% 
risk of recurrence (Ju et al. 2019). Therefore, accurate risk 
stratification for stage I–III colon cancer patients is the key 
to the postoperative treatment strategy. The results showed 

that general-stage ladders could not fully predict prognosis 
for some colon cancers. The TNM staging cannot clearly 
distinguish the prognosis of patients with stage I–III colon 
cancer, especially in patients receiving adjuvant chemo-
therapy. Their 5-year overall survival is 50–90% (Brenner 
et al. 2014).

Targeting immune-infiltrating cells has recently gained 
significant attention as opposed to the direct killing of tumor 
cells. Intra-tumoral Treg is a heterogeneous cell population 
in colon cancer, which has a potential impact on the progno-
sis of patients (Zhang et al. 2015). There is some evidence 
that the immunosuppressive properties of Treg may facilitate 
the escape of tumor cells from anti-tumor immunity in the 
early stages of inflammation-related tumors. Treg can hinder 
the occurrence and development of tumors by inhibiting the 
inflammatory response (Erdman et al. 2005). However, the 
role of Tregs in the prognosis of colon cancer has been con-
troversial. Nakagawa et al. (Nakagawa et al. 2015) revealed 
that Treg is associated with an optimal prognosis, while oth-
ers have shown that Tregs in tumors indicate a poor prog-
nosis (Saito et al. 2016; Sideras et al. 2018). As a result, a 
Treg-related risk model has been developed as a novel tool 
to predict recurrence-free survival after stage I–III colon 
cancer diagnosis.

We abstracted five cohorts from TCGA and GEO in this 
study that included a total of 1,194 patients with stage I–III 
CC. The patients were divided into a training cohort, two 
validation cohorts, and an entire validation cohort. First, 
22 types of immune cell fractions were evaluated using the 
CIBERSORT web portal, and then we verified a significant 
grey module and 4813 candidate genes related to Treg using 
WGCNA analysis. A nine Treg-related gene signature was 
constructed using univariate Cox, Lasso, and multivariate 
Cox analyses. The model could divide CC patients into high- 
and low-risk groups with distinct recurrence-free survival 
in multiple cohorts (all p < 0.05). We also observed that the 
risk scores were significantly associated with several clini-
cal factors, including recurrence status, N status, T stage, 
and TNM stage. As recurrence after postoperative, positive 
lymph node metastasis, higher T stage, and TNM stage were 
common prognostic indicator for poor clinical outcomes 
of colon cancer (Babcock et al. 2018; Huang et al. 2021a, 
b; Huang et al. 2021a, b; Bananzadeh et al. 2022), we can 
speculated that these factors would associated with higher 
risk scores, which is consistent with our results. To enhance 
its use in clinics, a nomogram including traditional clinical 
parameters and risk signatures was developed for CC. A 
ROC, C-index, and calibration curve demonstrated its robust 
predictive ability. Meanwhile, KM analysis revealed a signif-
icant difference in the subgroup analyses' survival, especially 
in different TNM stages and with adjuvant chemotherapy.

According to the National Comprehensive Cancer Net-
work (NCCN) and Chinese Society of Clinical Oncology 

Fig. 12  Correlation between Treg-related classifier and immuno-
therapy and chemo-agents therapeutic response. A–C The differ-
ence of CYT, GEP, and TIDE scores between risk groups. KM sur-
vival curves of different risk groups in IMvigor 210 cohort (D) and 
GSE13522 (I). The Waterfall plot of Treg-score for different thera-
peutic response groups in IMvigor 210 set (E) and GSE16137 set 
(G). Rate of therapeutic response to anti PD-1/PD-L1 immunother-
apy in high- or low-Treg-score subsets in the (F) IMvigor210 cohort 
and (H) GSE13522 (Chi-square test, P < 0.05). The comparison of 
IC50 of six common chemotherapies (J cisplatin; K gemcitabine; L 
paclitaxel; M docetaxel; N doxorubicin; O rapamycin) between risk 
groups

◂
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(CSCO) guidelines, adjuvant chemotherapy is a standard 
treatment for part of stage II and III patients (Diagnosis et al. 
2019; Benson et al. 2021). However, some patients were 
still unable to benefit from adjuvant chemotherapy, result-
ing in rapid recurrence and metastasis. This Treg-related 
classifier demonstrates the ability to predict the recurrence-
free survival (RFS) not only for patients with postopera-
tive colon cancer patients, but also for patients with varying 
TNM stages I–III during subgroup analysis. Furthermore, 
this model possesses the capability to discern the specific 
demographic that is more inclined to derive advantages 
from adjuvant therapy, as anticipated. Consequently, our 
studies indicated that this prognostic nomogram predicts 
recurrence-free survival in stage I–III colon cancer, which 
could assist in identifying high-risk colon cancer patients 
who need more aggressive treatment.

Furthermore, GO enrichment analysis revealed that the 
prognostic Treg-related genes were mainly involved in criti-
cal cellular processes, such as cell adhesion, receptor–ligand 
activity, and growth factor. For the KEGG pathway analysis, 
the Wnt, Notch, Hedgehog (HH), and TGF-BETA signaling 
pathways were included in the KEGG-enriched pathways. 
The imbalance of the Wnt pathway is one of the important 
reasons for the occurrence and development of colon cancer 
(Malki et al. 2021). Its activated downstream proliferation 
signal is involved in the deterioration of colon cancer (Cheng 
et al. 2019). Several studies have demonstrated that the Wnt 
pathway regulates cancer adaptation and innate immunity in 
the tumor microenvironments. Infiltration and function of T 
cells were considered suppressed by Wnt signaling (Luke 
et al. 2019; Cane et al. 2021). Van et al. (2013) showed that 
the immunosuppressive function of Treg cells was limited 
by Wnt-β-catenin signaling inhibiting Foxp3 transcriptional 
activity via TCF-1-dependent manner. The NOTCH pathway 
is highly conserved and is widely involved in the occur-
rence and development of malignant tumors, including colon 
cancer (Vinson et al. 2016). The Notch pathway is involved 
in tumor development and regulates T cell development, 
maintenance, and activation (Tsukumo et al. 2004; Samon 
et al. 2008; Auderset et al. 2013). Optimal T-cell-mediated 
anti-tumor immunity requires NOTCH signaling (Tchekneva 
et al. 2019). TMEs and tumor cells resist T-cell-mediated 
killing by inhibiting the Notch signaling pathway. The effect 
of the Notch pathway on TME is reflected mainly in the 
reduction of the sub-population of myeloid-derived sup-
pressor cells (MDSCs), TAMs and Tregs after inhibiting the 
activity of the Notch pathway (Mao et al. 2018). Bertrand 
et al. (2012)summarized that crosstalk exists between WNT, 
Notch, Hedgehog and TGF-BETA in colon cancer. TGF-β 
signaling promotes EMT through WNT, HH, and Notch. The 
Hedgehog signaling plays a vital role in intestinal carcino-
genesis and its TME. A strong body of research indicates 
that cancer-associated fibroblasts (CAFs) and inflammatory 

factors in the TME, such as interleukin 6 (IL-6) and 
interferon-g (IFN-g), macrophages, and T cell-dependent 
immune responses, affected tumor growth through the HH 
signaling pathway (Zhang et al. 2021). These results sug-
gest that a Treg-related classifier is associated with cancer 
occurrence, progression, and immune response and may be 
a potential biomarker to predict clinical outcomes.

The tumor-immune microenvironment is crucial in can-
cer biology (Hanahan et al. 2011). Several studies report 
that tumor-infiltrating immune cells (TILs) are important 
in the development, progression, and chemotherapeutic 
efficacy of colon cancer. Evidence shows that high Treg 
infiltration is associated with a poor prognosis in multi-
ple cancers, including colon cancer (Takeuchi et al. 2016; 
Soo et al. 2018). Given our classifier based on Treg-related 
genes, the Treg-related classifier produced a risk score 
consistent with expectations and positively related to the 
quantity of Tregs. Moreover, patients within the high-risk 
group were associated with poor RFS, and the infiltration 
levels of Tregs were significantly higher in the high-risk 
group. Furthermore, we found that some cancer-promoting 
TILs, such as M2 macrophages, monocytes, and mast cells, 
increased in the high-risk group. For example, substantial 
evidence suggests that colorectal cancer patients with higher 
M2-Macrophages have poorer clinical outcomes (Yin et al. 
2017; Wei et al. 2019; Xue et al. 2021). Lan et al. reported 
that exosomes secreted by M2 macrophages contributed to 
colorectal cancer cells’ migration and invasion in vivo and 
in vitro (Lan et al. 2019). Furthermore, low-risk patients 
possessed a higher fraction of some tumor-suppressor TILs 
(such as NK cells activated, Macrophages M1 (Chanmee 
et al. 2014), and T cells CD4 memory activated (Tay et al. 
2021)), associated with improved RFS. NK cells exert their 
cytotoxic function against cancer cells and their abundance 
is correlated with improved clinical outcomes (Eckl et al. 
2012). M1 macrophages performed their anti-tumor ability 
via releasing cytokines and chemokines (Mantovani et al. 
2015; Mantovani et al. 2017; Parisi et al. 2018), and the 
higher abundance of M1 macrophages predicted favora-
ble survival (Ma et al. 2010). These data suggest that the 
Treg-related classifier risk score was positively linked with 
subpopulations of inhibitory immunity cells (such as Treg 
and M2 macrophage), whereas it was negatively correlated 
with immune-activated subpopulations (M1 macrophages 
and NK cells activated), indicating the immunosuppressive 
condition of the high-risk subset with matching inferior 
RFS. Moreover, three well-known algorithms (CYT, GEP 
and TIDE) were employed to assess the predictive ability 
of Treg-related classifier in immunotherapy. Our findings 
suggest that patients in the low-risk group trend to benefit 
from immunotherapy. These findings were well verified in 
the three immunotherapy cohorts. Namely, low-risk patients 
had an obviously better clinical outcome than high-risk 
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patients, indicating that they may benefit from immune 
checkpoint immunotherapy. Moreover, we observed that 
low-risk patients were more likely to sensitive to these six 
common chem-agents.

We have constructed a Treg-related risk model with 
good predictive ability for RFS for colon cancer stage 
I–III. There are also some limitations to this study. First, to 
incorporate more data into our research, we have selected 
as many data sets as possible in the GEO database. Fusing 
multiple data may increase the possibility of over-correc-
tion in data processing. In addition, we only repeatedly 
verified the effectiveness of the model through several 
queues, but further experimental validation is required to 
determine whether these genes represented in the model 
are involved in the progression of stage I–III CC and how 
they alter the phenotypes of Treg cells. These results of 
this study are valuable and promising for future research.

Conclusions

In summary, based on the multiple data sets, we con-
structed a risk prediction model correlated to Tregs in 
patients with stage I–III CC through various bioinformatic 
methods. Furthermore, our study was more effective and 
accurate as numerous training and validation queues were 
designed, particularly in different databases. A nomogram 
was developed using the signature and traditional clinical 
parameters, to predict clinical outcomes and assist in clini-
cal procedures. Our findings indicate that this classifier 
may indicate immunotherapy and chemotherapy response, 
allowing for a more targeted selection of patients who may 
benefit from these treatments.
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