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Abstract
Background Lung adenocarcinoma (LUAD), the most common subtype of lung cancer, is the primary contributor to cancer-
linked fatalities. Dysregulation in the proliferation of cells and death is primarily involved in its development. Recently, 
tetraspanins, a group of transmembrane proteins, have gained increasing attention for their potential role in the progression 
of LUAD. Hence, our endeavor involved the development of a novel tetraspanin-based model for the prognostication of 
lung cancer.
Methods A comprehensive set of bioinformatics tools was utilized to evaluate the expression of tetraspanin-related genes 
and assess their significance regarding prognosis. Hence, a robust risk signature was established through machine learning. 
The prognosis-predictive value of the signature was evaluated in terms of clinical application, functional enrichment, and 
the immune landscape.
Results The research first identified differential expression of tetraspanin genes in patients with LUAD via publicly available 
databases. The resulting data were indicative of the value that nine of them held regarding prognosis. Five distinct elements 
were utilized in the establishment of a tetraspanin-related model (TSPAN7, TSPAN11, TSPAN14, UPK1B, and UPK1A). 
Furthermore, as per the median risk scores, the participants were classified into high- and low-risk groups. The model was 
validated using inner and outer validation sets. Notably, consensus clustering and prognostic score grouping analysis revealed 
that tetraspanin-related features affect tumor prognosis by modulating tumor immunity. A nomogram based on the tetraspanin 
gene was constructed with the aim of enhancing the poor prognosis of high-risk groups and facilitating clinical application.
Conclusion Through machine learning algorithms and in vitro experiments, a novel tetraspanin-associated signature was 
developed and validated for survival prediction in patients with LUAD that reflects tumor immune infiltration. This could 
potentially provide new and improved measures for diagnosis and therapeutic interventions for LUAD.
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Introduction

Globally, lung cancer exhibits the highest mortality rate and 
ranks second in terms of its incidence rate. The 5-year sur-
vival rate for this disease is only 26% (Ganti et al. 2021). 
Among non-small cell lung cancer (NSCLC) subtypes, lung 
adenocarcinoma (LUAD) emerges as the most common, 
contributing to more than 40% of all lung cancer cases (Kim 
et al. 2020). Despite considerable advancements in therapeu-
tic measures, such as surgical interventions, radiotherapy, 
and chemotherapy, individuals with LUAD still exhibit unfa-
vorable prognoses. In recent years, the advent of immune 
checkpoint inhibitor (ICI) therapy has revolutionized the 
treatment of cancer by targeting immune checkpoints (Lin 
et al. 2019). Nonetheless, it must be noted that merely a 
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small proportion of diseased individuals have benefited from 
ICI treatment.

To improve the prognosis and treatment of LUAD, iden-
tifying more potential indicators that can serve as novel 
therapeutic targets is crucial in this period of individualized 
therapy. Classical clinical models premised on tumor exten-
sion, TNM staging, performance status, and pathological 
staging indicators, for predicting the prognosis of LUAD 
individuals. However, the heterogeneity of LUAD hinders 
their performance, limiting their ability to attain satisfactory 
results (Zuo et al. 2019). Hence, the development of new 
models becomes imperative for enhancing the therapeutic 
measures and prognostic performance of LUAD.

The protein family, tetraspanins, is distinct due to the 
presence of four transmembrane segments, a large extracel-
lular loop, and a small extracellular structural domain (Cha-
rin et al. 2014; Florin and Lang 1140). The small intracel-
lular domains comprise palmitoylated cysteines and N- and 
C-terminal tails. Moreover, the homology between isoforms 
is highly conserved, with the exception of a small variable 
domain present within the large extracellular loop (Seigneu-
ret et al. 2001). Tetraspanin proteins are highly conserved 
across species, with 33 of the 34 four-transmembrane pro-
teins found in mammals also being present in humans (Beck-
with et al. 2015). A notable link has been noted between the 
transmembrane tetraspanin proteins and various processes, 
including those involved in cancer, immunity, fertility, and 
infectious diseases. In oncogenesis, the gene family tetraspa-
nin is known to impact the growth of tumors by influencing 
processes such as immune function, platelet coagulation, 
angiogenesis, and infection (Hemler 2008).

The current prevailing theory suggests that the prognosis 
of patients with LUAD is strongly linked to their immune 
infiltration and microenvironment. Although several stud-
ies have established the link of tetraspanins to the immune 
function of cancer, their ability to influence the prognosis 
of individuals with LUAD is yet to be elucidated (Hemler 
2008). Hence, exploring the prognostic role of tetraspanin-
related genes in LUAD may be critical.

Herein, five tetraspanin-related genes (TPRGs) associ-
ated with LUAD prognosis were identified. These findings 
may facilitate the development of therapeutic and diagnostic 
measures for individuals with LUAD.

Methods

Collection and processing of LUAD datasets

The respective websites, TCGA (https:// portal. gdc. cancer. 
gov/) and the University of California Santa Cruz Xena, 
were searched to obtain the RNA sequencing (HTSeq-
Counts) and copy number variation (CNV) information of 

LUAD. Individuals who lacked survival data were excluded 
from further analyses. To ensure that the samples were com-
parable, the HTSeq-Count data underwent normalization to 
transcripts per kilobase million (TPM) values. Furthermore, 
log2TPM transformation of the data was executed for sub-
sequent analysis (Wagner et al. 2012).

The GEO database (https:// www. ncbi. nlm. nih. gov/ geo/) 
was searched to obtain the microarray data. Specifically, 
the datasets GSE30219 (n = 83) and GSE50081 (n = 127) 
from the GPL570 platform were utilized. They contained the 
matrix files of the complete clinical information and gene 
expression data. The transcriptomic data of the GEO cohort 
underwent log2-transformation. To address any possible 
batch effects arising from non-biological technical biases 
the “SVA” “ComBat” algorithm was utilized.

Gene set variation analysis

The LUAD metabolic heterogeneity was explored through 
enrichment analysis by means of gene set variation analy-
sis (GSVA) across various groups or patterns using the R 
“GSVA”. The resulting data were illustrated in the heat-
map (Hänzelmann et al. 2013). The database MSigDB was 
searched to acquire the files “c2.cp. Kegg.v2022.1.Hs.sym-
bols” and “c5.go.v2022.1.Hs.symbols” for GSVA. As per 
the adjusted P-value < 0.05, statistically significant pathways 
between diverse clusters were obtained.

Estimation of infiltrating cells in tumor 
microenvironment

The various groups or clusters were assessed for significant 
variations in the tumor microenvironment (TME) infiltration 
of cells through a single-sample gene set enrichment analysis 
(ssGSEA). The process involved assessing the 28 subpopu-
lations of tumor-infiltrating lymphocytes and quantifying 
their relative abundance in the LUAD TME for further dif-
ferential analysis. Notably, the study encompassed various 
key subtypes of immune cells in humans including activated 
dendritic cells, activated CD4 + T cells, natural killer T cells, 
activated CD8 + T cells, and macrophages (Barbie et al. 
2009; Charoentong et al. 2017).

Association of molecular patterns with the clinical 
characteristics and prognosis of LUAD

The clinical significance of clusters established through con-
sensus clustering was assessed by exploring the link between 
molecular patterns, clinical traits, and survival results. Age, 
gender, N- and T-stages, were included in the clinical fac-
tors. Additionally, Kaplan–Meier (KM) analysis was utilized 
to examine the variations in overall survival (OS) between 

https://portal.gdc.cancer.gov/
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distinct patterns through “survival” and “survminer” (Rich 
et al. 2010).

Association of molecular patterns and TME in LUAD

ESTIMATE was employed to examine the immune and stro-
mal scores of individuals with LUAD (Meng et al. 2020). 
Additionally, CIBERSORT was utilized to examine the lev-
els of 22 subtypes of immune cells in every individual (Chen 
et al. 2018). Moreover, the proportion of infiltrated immune 
cells was determined through ssGSEA (Huang et al. 2021). 
The relationship between the two subsets was assessed in 
terms of the expression of PD-1, PD-L1, and CTLA-4.

Development of the tetraspanin‑associated 
prognostic TPRG_Score

The quantitative assessment of tetraspanins was executed 
using a TPRG_score in every individual with LUAD. The 
transcriptomic data of TPRGs from different clusters across 
LUAD specimens were standardized, followed by intersect-
ing genes selection. Univariate Cox regression (uniCox) 
analysis was executed for TPRGs and the resulting survival-
linked genes were examined further. Principal component 
analysis (PCA) was conducted for generating tetraspanin-
linked gene scores utilizing the formula mentioned: TPRG_
score = expression of a gene [1] × corresponding coefficient 
[1] + expression of a gene [2] × corresponding coefficient 
[2] + expression of the gene [n] × corresponding coefficient 
[n].

Clinical significance and classification analysis 
based on TPRG prognostic signature

The relevance of the TPRG_score to clinical variables 
was examined. Furthermore, uniCox and multivariate Cox 
regression analyses were conducted for all cohorts to deter-
mine the capability of TPRG_score to independently predict 
the prognosis. Subsequently, the reliability and predictive 
capacities of the TPRG_score were examined in distinct sub-
groups (as per various clinical factors) through classification 
analysis. Additionally, the association of TPRG_score with 
cancer stem cell (CSC), microsatellite instability (MSI), and 
tumor mutation burden (TMB) scores was examined.

Construction of a predictive nomogram

A nomogram was developed in order to improve the predic-
tions provided for individuals with LUAD at the clinical 
level. This nomogram integrates risk scores and various 
other clinicopathological features, with a particular focus 
on predicting 1-, 3-, and 5-year OS. Subsequently, its clinical 

use and reliability were assessed through calibration curve 
analysis and decision curve analyses.

Mutation and drug sensitivity analysis

The mutational information of individuals with LUAD 
across various risk groups was determined by utilizing the 
TCGA database to generate a mutation annotation format 
using “maftools” (Mayakonda et al. 2018). Moreover, the 
values for semi-inhibitory concentration (IC50) of com-
monly prescribed drugs were computed through “oncoPre-
dict” to examine the clinical effectiveness of chemothera-
peutic drugs in diseased individuals (Maeser et al. 2021).

Statistical analysis

The processing of data, as well as their analysis and pres-
entation, was executed through R v 4.2.3 and its relevant 
packages. A two-sided P < 0.05 was deemed as a statistically 
significant difference.

Results

Genetic mutational landscape of TPRGs in LUAD

The initial assessment of the levels of the 33 TPRGs con-
cerning their expression in both tumor and normal speci-
mens was carried out using the TCGA-LUAD dataset. 
Overall 26 differentially expressed genes (DEGs) were dis-
covered, with the majority prevalent in the tumor samples 
(Fig. 1A). To examine the interactivity of these DEGs, a pro-
tein–protein interaction analysis was executed by employing 
the string website, which indicated that TSPAN9, TSPAN14, 
TSPAN31, TSPAN32, TSPAN33, and CD9 were hub genes 
(Fig. 1B). Subsequently, on determining the occurrence of 
CNVs and somatic mutations of the 33 TPRGs in LUAD, 
it was found that 72 of the 616 (11.69%) LUAD samples 
presented genetic mutations. TSPAN32 had the highest 
mutation incidence, followed by TSPAN12 and TSPAN11 
(Fig. 1C). Furthermore, evident CNV alterations were noted 
in the 33 TPRGs (Fig. 1D), and the site of these alterations 
was mapped to specific chromosomes (Fig. 2E). The result-
ing data suggest that CNV may regulate the expression of 
TPRGs. Moreover, the data indicate substantial differences 
in the genomic background and levels of TPRG expression 
between LUAD and normal specimens, implying the pos-
sible involvement of TPRGs in LUAD tumorigenesis.

Generation of tetraspanin subgroups in LUAD

Figure 2 presents the research flowchart in detail. Herein, 
the data of 726 individuals with LUAD from TCGA–LUAD, 
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GSE50081, and GSE30219 datasets were included to inves-
tigate the relationship between tetraspanins and tumorigen-
esis. The prognosis-predictive values of 33 TPRGSs were 
determined in individuals with LUAD using uniCox and 

Kaplan–Meier analyses (Fig. 3C). Additionally, a correla-
tion network was generated encompassing TPRG interac-
tions, regulator association, and their significance in terms 
of survival among individuals with LUAD (Fig. 3A).

Fig. 1  Genetic mutational landscape of TPRGs in LUAD. (A) DEG 
expression distribution between normal and GC tissues. (B) Pro-
tein–protein interaction network acquired from the STRING database 
among the TPRGs. (C) Genetic alteration of a query of TPRGs. (D) 

Non-CNV and CNV gain and loss frequencies among TPRGs. (E) 
TPRGs chromosome distribution illustrated through circus plots. 
P < 0.05 *; P < 0.01 **; P < 0.001 ***

Fig. 2  Study flowchart
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To gain a further understanding of the functional bio-
logical pattern of these TPRGs as well as their significance 
at the clinical level, consistent clustering was executed. As 
per the expression levels of 16 TPRGs, the samples of the 
TCGA–LUAD cohort were classified into subgroups. The 
clustering stability was considered to be best when K = 2, 
as it provided stable clustering results from k = 2 to k = 9. 
Furthermore, the categorization of the TCGA–LUAD cohort 
was executed as per two distinct TPRGs (Fig. 4A, B) into 
TPRG clusters A (n = 320) and B (n = 406). Moreover, per 
the level of TPRG expression, the two groups depicted 
remarkable variations in the transcriptional profiles of 
TPRGs using PCA (Fig.  4C). Further survival analysis 
depicted an improved OS for the individuals in cluster A 
of TPRG than the other cluster (Fig. 4D). Moreover, both 
clusters were comparatively assessed concerning clinico-
pathological parameters and genomic expression (Fig. 4E). 
The resulting data depicted a remarkable variation in the two 
above-mentioned elements.

Enrichment analysis based on consensus cluster

As per the resulting data of GSVA, cluster A was more 
prevalent in metabolism-linked pathways, including phe-
nylalanine, tryptophan, histidine, fatty acid, and alpha-
linolenic acid metabolism pathways (Fig. 5B). In contrast, 

cluster B was abundant in genetic information process-
ing pathways, for instance, cell cycle, nucleotide excision 
repair, DNA replication, base excision repair, and mis-
match repair. The GSVA functional enrichment analysis 
indicated the enrichment of cluster A primarily in biologi-
cal processes and molecular functions linked to myocardial 
cell membrane repolarization, whereas cluster B depicted 
enrichment primarily in processes linked to cell division 
and regulation of DNA replication (Fig. 5A and Table S5). 
The results of the GSEA functional analysis revealed that 
chromosome segregation, mitotic nuclear fission, nuclear 
chromosome segregation, regulation of chromosome seg-
regation, and sister chromatid segregation were primar-
ily enriched in cluster B (Fig. 5C). In terms of pathway 
enrichment, complement and coagulation cascades and 
vascular smooth muscle contraction were enriched in clus-
ter A, whereas DNA replication, cell cycle, and homolo-
gous recombination depicted enrichment in cluster B 
(Fig. 5D). A substantial difference in enrichment levels of 
the majority of immune cells between the two clusters was 
observed (Fig. 5E). Particularly, the enrichment levels of 
activated B cells, mast cells, eosinophils, monocytes, and 
plasmacytoid dendritic cells were remarkably elevated in 
cluster A in comparison to cluster B, whereas the activated 
CD4 + T,  CD56bright natural killer, natural killer T, and 
Type 2 T helper cells depicted the opposite trend.

Fig. 3  Survival analysis of TPRGs in LUAD. (A) Correlation network including TPRGs in TCGA cohort. (B) Univariate analysis showing nine 
TPRGs correlated with OS. (C) Kaplan–Meier analysis showing nine TPRGs correlated with OS
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Development and validation of the prognostic 
TPRG_Score

The TPRG_score was generated based on prognosis-
associated TPRGs. The randomly assigned individuals 
with LUAD formed the training (n = 352) or test (n = 351) 
cohorts at a ratio of 1:1. An optimal predictive model was 
established by executing LASSO and multivariate Cox 
analysis for nine prognosis-linked TPRGs (Fig. 6A, B). 
Five genes (TSPAN7, TSPAN11, TSPAN14, UPK1B, and 
UPK1A) were acquired and the TPRG_score was quanti-
fied as mentioned below: Risk score = (− 0.1320*expres-
s i o n  o f  T S PA N 7 )  +  ( −   0 . 1 2 8 1 * e x p r e s -
s i o n  o f  T S PA N 1 1 )  +  ( 0 . 3 4 5 1 * e x p r e s s i o n 
o f  T S P A N 1 4 )  +  ( 0 . 1 7 4 0 * e x p r e s s i o n  o f 
UPK1B) + (0.2498*expression of UPK1A). A remarkable 
variation in the TPRG_score of the tetraspanin clusters was 
noted (Fig. 6C). Figure 6D illustrates the distribution of the 
patients in the two tetraspanin clusters and two TPRG_score 

groups. Significant expression of genes related to the TPRG_
score was observed in both TPRG gene clusters and was con-
sistent with the expected results for a subset of TPRG_score 
(Fig. 6E).

Prognostic significance assessment of the risk 
model in the training, test, and entire cohorts

The three cohorts, training set A (n = 352), verification set 
B (n = 351), and entire set C (n = 703) were comparatively 
assessed regarding the distribution of risk score, survival prob-
ability, survival status, and expression level of related genes 
between the risk subgroups (low and high). The resulting data 
indicated an unfavorable prognosis for the subgroups with high 
risk (Fig. 7A–L). The model was assessed regarding its per-
formance by plotting a time-dependent ROC curve with AUC 
being computed at various time points. The respective AUC 
values for sets A, B, and C were 0.618, 0.705, and 0.664 at 
1 year; 0.676, 0.659, and 0.665 at 3 years; and 0.667, 0.633, 

Fig. 4  TPRG subtypes and clinicopathological and biological features 
of two distinct subtypes of samples divided by consistent clustering. 
(A) Two clusters (K = 2) and their correlation area defined through 
a heatmap of the consensus matrix. (B) Relative change area under 
cumulative distribution function curve. (C) PCA, tSNE, and UAMP 

depicted remarkable variations in transcriptome across the subtypes. 
(D) Kaplan–Meier curve indicated remarkable survival variations 
between clusters A and B (P < 0.001). (E) Variation in clinicopatho-
logic parameters and levels of TPRG expression across the subtypes
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and 0.645 at 5 years (Fig. 7M–O). The resulting data indicated 
the strong prognosis-predictive value of the model concerning 
follow-up encompassing both short- and long-term periods.

Construction of a nomogram for prognostic 
prediction in patients

Taking into account patient age and tumor stage, the Cox 
regression analyses (univariate and multivariate) determined 
that tumor stage and TPRG_score have independent predic-
tive capabilities concerning OS in individuals with LUAD 
(Fig. 8A). In order to develop a nomogram, clinical vari-
ables were incorporated, given the strong association of risk 
scores with patient prognosis. The 1-, 3-, and 5-year OS 
values were estimated for individuals with LUAD through 
the nomogram (Fig. 8B). A close alignment between the 
predicted values and the actual observations was depicted 
through calibration curves of this established nomogram 
(Fig. 8C). Over time, the risk increased, and the individuals 
from the high-risk group were at high risk in comparison 
to those from the group with low risk (Fig. 8D). Moreover, 
measurements were taken for these clinical factors regard-
ing their respective AUC values at 1, 3, and 5 years for 
predicting OS. These values were consistent with expecta-
tions, indicative of the remarkable predictive capacity of the 
nomogram for prognosis. Moreover, this prognostic model 

incorporating diverse clinical factors presented more net 
benefits for predicting the patient prognosis (Fig. 8E–G).

Correlation of TPRG_score with TMB, CSC score, 
and checkpoints in distinct groups

The immune microenvironment substantially influences both 
the development of lung adenocarcinoma and the effective-
ness of immunotherapy. To study this relationship, the TME 
of individuals with LUAD was examined. The risk groups 
(high and low) were assessed through CIBERSORT to 
examine the relative percentage of invasive immune cells. 
A ranking of low to high risk scores for the LUAD samples 
depicted the percentage of various immune cells (Fig. 9A). 
TPRG_score was positively linked to the M1 macrophages, 
M0 macrophages, activated memory CD4 + T cells, CD8 + T 
cells, resting natural killer cells, and regulatory T cell infil-
tration. In contrast, the opposite trend was noted in associa-
tion with TPRG_score and resting dendritic cells, naive B 
cells, monocytes, plasma cells, resting mast cells, and rest-
ing memory CD4 + T cells (Fig. 9F). The association of the 
selected genes in the predictive signature with immune cell 
enrichment was examined. The resulting data indicated that 
TSPAN7, TSPAN11, and TSPAN14 were strongly linked 
to the genes that were selected (Fig. 9E). Furthermore, the 
TPRG_score was negatively associated with immune and 

Fig. 5  Enrichment function analysis based on consistent cluster-
ing. (A) GSVA of biological pathways across the two subtypes. The 
respective activated and inhibited pathways indicated by red and blue. 
(B) GSVA of gene function between two subtypes. Respective acti-

vated and inhibited pathways denoted by red and blue. (C) GSEA of 
biological pathways in cluster A. (D) GSEA of gene function in clus-
ter A. (E) Infiltrating immune cell (23 types) abundance in the two 
subgroups
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stromal scores (Fig. 9D). Most immune cells varied between 
the risk groups (high- and low) concerning their infiltration 
profiles (Fig. 9B). Research has depicted the remarkable 
prognosis-predictive functions of TMB and MSI as indica-
tors for tumor immune response. ICP inhibitors can prove 
favorable in individuals with elevated TMB or MSI (31–33). 
These outcomes exhibited a positive correlation between 
TMB and risk level, depicting increased levels in the indi-
viduals with high risk than the ones at low risk (Fig. 9H). 
The data are indicative of the more favorable influence that 
immunotherapeutic measures may have on high-risk indi-
viduals. A positive association between TPRG_score and 
TMB was noted through Spearman correlation analysis 
(Fig. 9I). Moreover, utilizing the TCGA–STAD dataset, 
the variation in the distribution of the somatic mutations 
between TPRG_score patterns was examined. TP53, TTN, 
MUC16, CSMD3, RYR2, and ZFHX4 in the two risk groups 
depicted a mutation incidence of equal to or higher than 30% 
in individuals with LUAD (Fig. 9F, G). Notably, a higher 
likelihood of mutations was noted in the high-risk group 
relative to the other group.

Anticancer drug sensitivity assessment 
in individuals with varied TPRG_scores

The low- and high-risk populations were assessed concern-
ing their susceptibility to the selected anti-cancer drugs. The 
high TPRG individuals depicted decreased IC50 values of 
docetaxel, paclitaxel, and 5-fluorouracil compared to those 
with lower scores. Collectively, these data suggest a poten-
tial association of the TPRGs with susceptibility to drugs 
(Fig. 10).

Discussion

In this research, nine tetraspanin genes were identified in 
LUAD that were associated with prognosis through a prog-
nostic analysis. The cohort was sorted into two clusters 
through the K-means algorithm, and the tetraspanin gene 
set in LUAD was determined to be primarily enriched in 
metabolism-linked and genetic information processing path-
ways. Cluster B had a significantly lower OS than Cluster 
A. Five TPRGs were obtained through univariate regression, 
LASSO, and stepwise regression analysis. They were then 

Fig. 6  Establishment of the prognosis risk prediction model. (A, B) 
The least absolute shrinkage and selection operator regression was 
conducted with the minimum criteria. (C) Variation in TPRG_score 
across the two subtypes (E) Variation in clinicopathologic variables 

and level of TPRG expression across the risk groups (high- and low-
risk). (F) Alluvial diagram of subtype distributions in groups with 
diverse TPRG_scores and survival outcomes
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employed for establishing a new prognostic risk signature to 
sort patients with LUAD into high- and low-risk subgroups. 
The prognostic signature integrated five TPRGs, namely 
TSPAN7, TSPAN11, TSPAN14, UPK1B, and UPK1A. The 
data depicted that TSPAN7 and TSPAN11 were linked to a 
favorable prognosis in LUAD, whereas TSPAN14, UPK1B, 
and UPK1A were linked to an adverse prognosis. These 
findings could lead to improvements in the early diagnosis 

methods for lung cancer patients, as earlier diagnosis often 
leads to better treatment outcomes.

The resulting data validated that the adverse prognosis 
of individuals with lung malignancy was linked to elevated 
expression levels of TSPAN7. Previous reports have pointed 
out that direct correlations were noted between TSPAN7 
upregulation and advanced tumor stage, lymph node sta-
tus, and adenocarcinoma. Additionally, TSPAN7 promotes 

Fig. 7  Assessment of the train, test, and entire sets for the prognostic 
value of the risk model. (A–C) Patterns of expression of five selected 
prognostic genes in the high- and low-risk groups. (D–F) Display of 
the TPRG model as per the risk score of the train, test, and entire sets, 
respectively. (G–I) Comparison of survival time and status across 

the risk groups (low and high) in the three sets, respectively. (J–L) 
Kaplan–Meier survival curves showing the survival probability of 
patients between the risk groups in the three sets, respectively. (M–O) 
ROC curves for specificity and sensitivity prediction of 1-, 3-, and 
5-year survival as per the TPRG_score in the three sets, respectively
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epithelial–mesenchymal transition and stimulates an 
increase in the N-cadherin expression level in NSCLC cells 
by attenuating the expression of E-cadherin and vimentin 
(Wang et al. 2018). The expression level of TSPAN14 was 
reduced in malignant cells than in non-tumor cells. Reduced 
gene expression was linked to unfavorable patient survival 
and was more common in individuals with aggressive tumor 
types. Reduced expression of TSPAN14 leads to enhanced 
expression of MMP-2 and MMP-9 (matrix-degrading 
enzymes), resulting in the enhanced ability of cancer cells 
to degrade the matrix (Jovanović et al. 2022). But TSPAN11, 
UPK1B, and UPK1A are currently not related to lung can-
cer research. In brief, these findings indicate that while our 
study identified five genes suitable for the development of 
prognostic markers, not all of them have been previously 
linked to lung cancer. This observation may be attributed 
not only to the structural similarity but also to the functional 
diversity of the tetraspanin family. These results highlight 
the significant involvement of these five TPRGs in LUAD 
and demonstrate their high sensitivity and specificity in 
identifying LUAD patients. This also could provide a clue 
for new lung cancer treatment strategies. For instance, if we 
could find a way to reduce the expression of TSPAN9 or 
restore the expression of TSPAN14, it might help to inhibit 
further progression of the tumor.

TPRG_score was significantly correlated with the clinico-
pathological traits of LUAD. Upon adjusting for confound-
ing variables, the resulting data indicated the capacity of 
TPRG_score to independently predict survival outcomes 
among individuals with LUAD. Additionally, its predictive 
robustness was further validated upon executing ROC dis-
playing the 1-, 3-, and 5-year OS. This means that the TPRG 
score can be utilized to help us predict a patient's prognosis 
more accurately, and adjust the treatment strategies based 
on these predictions. For example, those with a high TPRG 
score may need a more aggressive treatment strategy, while 
those with a low TPRG score may be suitable for a more 
conservative treatment approach.

As LUADs are becoming increasingly resistant to chemo-
therapy (Rossi and Maio 2016), promising sensitive drugs 
were determined in diverse TPRG_score patient groups in 
the present study. Paclitaxel and docetaxel are presently con-
sidered the primary drugs for first-line lung cancer chemo-
therapy, while 5-fluorouracil has not been endorsed by cur-
rent treatment guidelines for lung cancer. The data depicted 
that targeting tetraspanins in combination with these drugs 
offers potential benefits in mitigating drug resistance and 
improving clinical outcomes, providing a new strategy for 
lung cancer treatment and new drug development targets for 
pharmaceutical companies.

Fig. 8  Development and validation of a nomogram. (A) Multivariate 
Cox regression analyses. (B) 1-, 3-, and 5-year OS prediction of indi-
viduals with GC in the entire cohort through nomogram. (C) ROC 
curves for 1-, 3-, and 5-year ROC prediction in the entire cohort. (D) 

Cumulative hazard of the two nomogram cohorts. (E) Decision curve 
analysis curves of the nomograms comparatively assessed for 1-, 3-, 
and 5-year OS in HCC
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Fig. 9  Evaluation of TMB, CSC 
score, and checkpoints between 
the two groups. (A, B) Immune 
infiltration analysis showing 
the percentage abundance of 
tumor-infiltrating immune cells 
between risk scores (high and 
low) in individuals with LUAD. 
(C) Correlation analysis of 22 
tumor-infiltrating immune cell 
risk scores. (D) Correlation 
analysis between TPRG_score 
and stromal and immune scores. 
(E) Associations between 
immune cell abundance and 
selected genes in the prog-
nostic model. (F) Correlation 
analysis between TPRG_score 
and immune cell types. (G, 
H) Waterfall plot showing 
somatic mutation characteris-
tics in TPRG_score (high and 
low) groups. (I, J) Correlation 
analysis between TPRG_score 
and TMB
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Furthermore, specific biomarkers as predictive models are 
required to ensure the effectiveness of immunotherapy. The 
accumulation of genetic alteration leads to carcinogenesis, 
which is linked to immune infiltration. The resulting data are 
indicative of the remarkable variation in genomic alterations 
between TPRG scores (low and high). Increased TMB is 
correlated with a better prognosis of immunotherapy in indi-
viduals with LUAD, hence depicting congruence with the 
data of this research (Negrao et al. 2021). The clinical out-
come in the low TPRG_score group was remarkably more 
favorable in contrast with that in the low TMB group, indi-
cating that TPRG_score can be employed for independently 
predicting the response to immunotherapeutic interventions. 
A notable finding from prior research indicated a negative 
association of tumor purity with immune response. The data 
exhibited that tumor purity could function as a proxy for the 
degree of immune response in the microenvironment of the 
tumor (Liu et al. 2019). Congruent with these data, the clini-
cal outcome in the low TPRG_score group was remarkably 
more favorable with that in the low TMB group, elevated 
levels of different immune cell infiltrations were exhibited 
in the low-TPRG score group, indicating that TPRG_score 
could be utilized to identify individuals who better respond 
to tumor immunotherapy. This discovery proposes that, in 
a clinical setting, we can utilize the TPRG_score as a pre-
dictive indicator of immunotherapy effectiveness, thereby 
informing our decision-making process regarding the admin-
istration of immunotherapeutic drugs to patients.

There are several noteworthy limitations to consider. 
First, the hypothesis requires additional validation through 
further research. Second, the cohorts were limited to TCGA, 
GEO, and Nantong, which restricts the ability to fully evalu-
ate the quality of the data. To more comprehensively assess 
the prognosis-predictive cuproptosis-signature, a multicenter 
prospective, study is necessary. Lastly, conducting in vivo 
experiments may provide additional clarity regarding the 

processes and functional role of the cuproptosis-signature 
in the onset and progression of LUAD.

In summary, the research dealt with developing a prog-
nostic tetraspanin-associated signature that could be utilized 
for predicting survival among individuals with LUAD by 
characterizing tumor immune infiltration. The data indicated 
that immunotherapy is crucial to improving the prognosis of 
patients with LUAD. Thus, the research findings are antici-
pated to offer valuable insights into precisely diagnosing and 
treating patients with LUAD.
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