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Abstract
Purpose  Resistance to chemotherapy and radiotherapy is the primary cause of a poor prognosis in oncological patients. 
Researchers identified many possible mechanisms involved in gaining a therapy-resistant phenotype by cancer cells, includ-
ing alterations in intracellular drug accumulation, detoxification, and enhanced DNA damage repair. All these features are 
characteristic of stem cells, making them the major culprit of chemoresistance. This paper reviews the most recent evidence 
regarding the association between the stemness phenotype and chemoresistance in head and neck cancers. It also investigates 
the impact of pharmacologically targeting cancer stem cell populations in this subset of malignancies.
Methods  This narrative review was prepared based on the search of the PubMed database for relevant papers.
Results  Head and neck cancer cells belonging to the stem cell population are distinguished by the high expression of cer-
tain surface proteins (e.g., CD10, CD44, CD133), pluripotency-related transcription factors (SOX2, OCT4, NANOG), and 
increased activity of aldehyde dehydrogenase (ALDH). Chemotherapy itself increases the percentage of stem-like cells. 
Importantly, the intratumor heterogeneity of stem cell subpopulations reflects cell plasticity which has great importance for 
chemoresistance induction.
Conclusions  Evidence points to the advantage of combining classical chemotherapeutics with stemness modulators thanks to 
the joint targeting of the bulk of proliferating tumor cells and chemoresistant cancer stem cells, which could cause recurrence.

Keywords  Cancer stem cells · Chemosensitivity · Chemotherapy resistance · Cisplatin · CSC · Head and neck cancer

Introduction

Head and neck squamous cell carcinomas (HNSCC) are 
the most common type of neoplastic lesions that develop 
in the head and neck region. With over 900,000 new cases 
and over 450,000 deaths in 2020, HNSCC is the eighth 
most common cancer worldwide (Sung et al. 2021). The 
incidence of HNSCC continues to rise and is expected 
to increase by 30% by 2030 (Ferlay et al. 2019). Many 
patients are diagnosed at an advanced stage of the dis-
ease. Thus, they often do not have good long-term prog-
nosis. Like other cancer types, head and neck cancers are 

managed by surgery, radiotherapy, and chemotherapy 
(Atashi et al. 2021). Due to the localization of lesions, 
surgical resection often causes permanent disfigurement 
and a decrease in quality of life. As a result, survivors of 
this cancer have the second highest rate of suicide when 
compared to survivors of other cancers (Osazuwa-Peters 
et al. 2018). The current standard of care for patients with 
locally advanced HNSCC is concomitant platinum-based 
chemoradiotherapy (CRT) or surgery followed by adjuvant 
radiation or chemoradiation. For patients with recurrent 
and/or metastatic HNSCC, platinum-based chemotherapy 
plus 5-fluorouracil (5-FU) has a response rate of 30–40% 
and a median survival of 6–9 months. Patients with plat-
inum-resistant disease have few options and a very poor 
prognosis with second-line therapies (Sola et al. 2019). 
Thus, novel therapeutic strategies augmenting the effects 
of treatment could significantly benefit HNSCC patients. 
Furthermore, due to the frequent resistance to conven-
tional treatment, extensive research has been conducted 
to develop molecularly targeted therapies. So far, only 
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cetuximab, an epidermal growth factor receptor (EGFR) 
inhibitor, and, more recently, nivolumab and pembroli-
zumab, PD-1 inhibitors, have been approved for the treat-
ment of HNSCC. However, cetuximab, a monoclonal anti-
body approved by the FDA in 2006, shows only limited 
efficacy in advanced HNSCC patients (Sola et al. 2019).

Many factors that contribute to resistance to therapy in 
HNSCC can be identified. The most studied mechanisms 
involve alterations in intracellular drug accumulation, 
detoxification, and DNA damage repair in cancer cells. 
Other novel mechanisms include epigenetic changes that 
regulate cell plasticity, the involvement of the tumor micro-
environment (TME), and the presence of so-called cancer 
stem cells (CSCs) (Griso et al. 2022). CSCs constitute a 
small cell population characterized by slow proliferation, 
self-renewal capacity by symmetric or asymmetric division, 
and resistance to therapy (Atashzar et al. 2020; Yang et al. 
2020). It is believed that CSCs may be derived from trans-
formed adult stem cells, or they can originate by the dedif-
ferentiation of somatic cells (Barbato et al. 2019; Walcher 
et al. 2020; Yin et al. 2021). A recent hypothesis states that 
adult stem cells are the cell population that is most likely to 
accumulate oncogenic mutations and serve as cancer cells 
of origin (White and Lowry 2015). The biological behavior 
of CSCs is determined by the action of several pluripotency 
and self-renewal-mediating transcription factors, including 
c-MYC, Nanog, OCT-3/4, SOX2, KLF4, and by the activ-
ity of stemness-related signaling pathways, typically Wnt/
β-catenin, Hedgehog, Notch, JAK/STAT, TGF-β/SMAD, 
PI3K/Akt, and NF-kappaB, together with intercellular and 
extracellular matrix (ECM) communication within the TME 
niche (Huang et al. 2020a, b; Yang et al. 2020).

CSCs tend to be radio- and chemoresistant, which results 
from several mechanisms: (1) the upregulated expression of 
the ABC family of transporters, which are responsible for 
the exclusion of cytotoxic drugs from cancer cells; (2) the 
induction of quiescence/dormancy; (3) the enhancement of 
DNA repair mechanisms; (4) increased protection against 
oxidative stress; (5) cell plasticity (Barbato et al. 2019; 
Gupta et al. 2021; Kuşoğlu and Biray Avcı 2019; Yang 
et al. 2020; Yin et al. 2021). While traditional chemotherapy 
kills the rapidly dividing cells that constitute the majority 
of the tumor mass, CSCs may remain intact and cause can-
cer relapse after the end of treatment (Atashzar et al. 2020; 
Barbato et al. 2019; Kuşoğlu and Biray Avcı 2019; Walcher 
et al. 2020). Indeed, chemoresistant cells or cancer stem 
cells form slow-growing, aggressive/metastatic tumors in 
mice (Mir et al. 2021). Eliminating CSCs to improve therapy 
response is not a novel idea, and the scientific community 
has been exploring these options for decades (Atashzar et al. 
2020; Barbato et al. 2019; Gupta et al. 2021; Walcher et al. 
2020; Yang et al. 2020). However, this appears to be chal-
lenging (Griso et al. 2022).

CSCs in solid tumors are identified by the presence of 
various cell surface (CD10, CD24, CD44, CD90, CD133, 
CD271, EpCAM, LGR5) or intracellular (ALDH1, Nanog, 
OCT3/4, BMI-1, SOX2) markers (Kuşoğlu and Biray Avcı 
2019; Walcher et al. 2020). HNSCC cells belonging to the 
CSC population are distinguished by their high expression 
of certain surface proteins (for example, CD44, CD133), 
pluripotency-related transcription factors (SOX2, OCT4, 
Nanog), and increased aldehyde dehydrogenase (ALDH) 
activity (Cirillo et al. 2021; Krishnamurthy et al. 2010; 
Prince et al. 2007). The major markers of HNSCC stem cells 
are presented in Table 1. Prince et al. (2007) were the first 
to report the existence of a population of neoplastic cells 
with stem cell properties in HNSCC (Prince et al. 2007). 
They observed that the CD44 + cell population could form 
new tumors in vivo, in contrast to the CD44 – cell popu-
lation. Moreover, CD44 + cells were less differentiated 
than CD44 – cells, which more closely resembled a dif-
ferentiated squamous epithelium and showed increased 
involucrin expression (a marker of keratinocyte differen-
tiation). Tumors that arose from the isolated population of 
CD44 + cells recreated the heterogeneity of the primary 
tumor and could be passaged multiple times, which proved 
that the CD44 + population had two key stem cell features—
the ability for differentiation and self-renewal. Krishnamur-
thy et al. (2010) showed that, based on the assessment of 
ALDH activity within the CD44 + tumor cell population, 
it is possible to identify a subpopulation of cells with an 
even greater intensity of features typical of stem cells, which 
constituted 1–3% of the cells of the primary tumor (Krishna-
murthy et al. 2010). In their studies, the implantation of 
1000 CD44 + /ALDH + cells led to the formation of tumors 
in 13 out of 15 mice, while the implantation of 10,000 
CD44 –/ALDH – cells led to the development of tumors in 
only two animals. ALDH1 activity has also been associated 
with an increased frequency of local relapse after the end 
of therapy (Ota et al. 2014). Later studies have shown that 
these stem-like cells are also much less sensitive to chemo-
radiotherapy and can persist after therapy, leading to relapse. 
The overexpression of CD44 correlated with poor overall 
and disease-free survival in patients with advanced oral 
carcinomas (Boxberg et al. 2018). In addition, the expres-
sion of ALDH1 and CD44 was a predictor of angiolym-
phatic invasion and lymph node metastasis in patients with 
oral carcinomas, respectively (Ortiz et al. 2018). In another 
study, ALDH1 expression was associated with lymph node 
involvement and high mortality rate (Gupta et al. 2022). A 
broader stem cell gene expression signature correlated with 
lower 5-years and relapse-free survival rates in HPV-neg-
ative HNSCC patients (Kim et al. 2022). HNSCC tumors 
developing in Fanconi anemia patients carry a very poor 
prognosis and require aggressive treatment. Notably, these 
tumors contain a greater proportion of ALDH-positive CSC 
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cells showing Nanog and Oct-3/4 expression, in comparison 
with sporadic HNSCC (Wu et al. 2014). Thus, current evi-
dence shows that an increase in cancer stem cell population 
confers poor prognosis in HNSCC.

The growing field of research on the importance of cancer 
stem cells in HNSCC has resulted in many new and interest-
ing findings in recent years. This narrative review aimed to 
present the latest evidence documenting the significance of 
cancer stem cells in the development of therapeutic resist-
ance in head and neck squamous cell cancers, including the 
molecular mechanisms involved in the stemness-related 
development of resistance. We searched the PubMed 
database using the keywords “head neck cancer stem cell 
resistance” and retrieved records from the last decade (Jan 
2012–Feb 2023). We identified additional records by cross-
references. Our analysis included all the experimental papers 
that tested the association between stemness potential and 
resistance. Most studies have focused on the chemoresist-
ance to conventional chemotherapeutics, mainly cisplatin, 
but also 5-fluorouracil or docetaxel. We excluded papers that 
merely reported an association between resistance pheno-
type and the expression of stemness markers, and we focused 
on papers that reported evidence generated with the use of 
stem cell subpopulations. Aiming to focus on squamous cell 
carcinomas, we also excluded papers studying esophageal, 
thyroid, salivary gland, nasopharyngeal or central nervous 
system tumors, because of different etiological and clini-
cal factors related to these tumor types. Additionally, we 
excluded experimental papers that used the misidentified 
Hep2 cell line as a model of HNSCC.

Several review papers have recently been published on 
this topic (Cirillo et al. 2021; Mudra et al. 2021; Siqueira 
et al. 2023), but new information has appeared since. This 
review presents up-to-date knowledge and focuses on the 
possibilities of pharmacological targeting of stemness-
related chemoresistance. More information about the rela-
tionship between stemness and radioresistance can be found 
in other excellent reviews (Atashzar et al. 2020; Siqueira 
et al. 2023).

The association between stemness 
phenotype and chemoresistance in HNSCC

Chemotherapy leads to the enrichment of cancer 
stem cells

Several lines of evidence point to the appearance of cancer 
stem cells as the driving force in chemoresistance. First of 
all, many studies have shown that chemotherapy and radio-
therapy can increase the percentage of cancer stem cells. In 
this regard, cisplatin led to an increase in the percentage of 
ALDH-positive cells (Kim et al. 2017; Subramanian et al. 

2017) or CD44high cells (Basak et al. 2015; Bu et al. 2015), 
or ALDHhighCD44high cells (Nakano et al. 2021; Nör et al. 
2014). Cells identified as the side population (SP) exhibit the 
ability to efflux the Hoechst33342 dye, which is a measure of 
drug efflux capability reflecting cellular chemoresistance. To 
a large extent, these cell populations overlap with stem-like 
cells (Yang et al. 2020). Cisplatin has been shown to increase 
the ratio of CD44 + cells or the percentage of SP cells, which 
show elevated expression of CD44, CD133, ALDH1A, and 
ABCG2 (Jiang et al. 2018). In addition, cisplatin increased 
the SP and CD24 + cell populations (Sinnung et al. 2021). 
Moreover, ionizing radiation increases the percentage of 
side population cells (Macha et al. 2017). Thus, in general, 
chemoradiotherapy leads to a dangerous enrichment with 
CSCs, which poses a significant risk of treatment failure 
in the long term (Dzobo et al. 2020). It remains unclear 
whether this is solely a consequence of killing the bulk of 
proliferating cancer cells or whether chemotherapeutics can 
transform cells toward a stem-like phenotype. Although this 
is difficult to discern experimentally, some evidence points 
to the possibility of the latter (Nör et al. 2014; Vipparthi 
et al. 2022). Moreover, stem cell plasticity may be respon-
sible for the adaptive response to chemotherapy, leading to 
resistance (Gupta et al. 2021). HNSCC cell lines and tumor-
derived cells exhibit different stem cell subpopulations 
based on the presence of CD44, CD24, and ALDH markers. 
CD44high cells may transition into CD44highALDHhigh cells 
or CD44highCD24high cells, and the latter could also gain 
ALDH activity. It has been observed that while the CD24 
transition was unidirectional, there was plasticity/reversibil-
ity on the ALDH axis. Notably, the acquisition of cisplatin 
resistance was related to stem cell phenotype switching. 
Cisplatin induced the transition toward CD24high cells and 
stimulated plasticity toward the ALDHhigh subpopulation. 
Indeed, triple-positive cells (CD44highCD24highALDHhigh) 
were the most enriched subpopulation after cisplatin treat-
ment, presenting a highly cisplatin-tolerant phenotype asso-
ciated with high expression of ABCG2 drug efflux protein 
(Vipparthi et al. 2022).

Many studies focused on cancer stem cells used the tum-
orsphere assay to evaluate the effects on chemosensitivity. 
This assay is a simple measure of stemness-associated self-
renewal under low-attachment conditions and is utilized to 
enrich the subpopulation of cancer stem cells (Yang et al. 
2020). Cisplatin was shown to increase the efficiency of 
sphere formation in the tumorsphere assay (Nör et al. 2014; 
Subramanian et al. 2017). Indeed, cells grown as spheres 
showed an increased level of CD44, SOX2, OCT4, NANOG, 
and c-Myc, compared to monolayer cells (Huang et  al. 
2020a, b). SAS cells grown as spheres were less sensitive 
to cisplatin or gemcitabine than parental cells (Sun et al. 
2022a, b). Moreover, stem cells isolated from SAS cells oro-
spheres were much less sensitive to cisplatin than parental 
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cells (Peng et al. 2022). Additionally, HNSCC stem cells 
generated by growing parental cells as spheres for three gen-
erations showed elevated expression of ALDH1, SOX2, and 
KLF4 and lowered sensitivity to cisplatin or 5-fluorouracil 
(Garcia-Mayea et al. 2019). Thus, there is a clear association 
between the exposure to cytostatic drugs and cancer stem 
cells accummulation, either because of their selection fol-
lowing the killing of bulk cancer cells, or due to stimulation 
of cell plasticity, or both.

Drug‑resistant cells show the enrichment in stem 
cell subpopulations

Another line of evidence comes from studies using resistant 
cell lines generated in vitro by prolonged sequential treat-
ment of cells with increasing drug concentrations. Such 
resistant cells exhibit enhanced stemness compared to the 
parental cells. For example, cisplatin-resistant CAL27 and 
SCC-131 cells were able to form larger tumorspheres, point-
ing to higher self-renewal potential, and exhibited elevated 
expression of CD44, KLF4, OCT4, SOX2, c-MYC, and 
β-catenin (Roy et al. 2018, 2019). Similarly, cisplatin-resist-
ant OC2 cells showed a greater capacity for tumorsphere for-
mation and increased expression of CD133, ABCG2, BMI1, 
OCT4, and NANOG (Tsai et al. 2011). Multidrug (cispl-
atin, docetaxel, doxorubicin, erlotinib) resistant HSC-3 cells 
showed higher expression of CD44 and SOX9 and increased 
ability for tumorsphere formation (Murakami et al. 2022). 
Furthermore, CAL27 cells resistant to cisplatin or doc-
etaxel were enriched in CD44 + cells and showed elevated 
expression of CD133, ALDH1A1, OCT4, SOX2 (Kulsum 
et al. 2017), and cisplatin-resistant CAL27, and SCC9 cells 
showed the accumulation of CD44 + ALDH + cells (Lima 
de Oliveira et  al. 2022). In addition, cisplatin-resistant 
FaDu cells showed increased expression of CD44 and an 
increased percentage of CD44-positive cells. They also 
exhibited increased autophagy, which inhibition with anti-
ATG14 siRNA reduced CD44 expression (Naik et al. 2018). 
On the other hand, cisplatin-resistant Detroit 562 cells are 
enriched in CD10-positive cells (Fukusumi et al. 2014). Cis-
platin-resistant SAS cells showed higher ALDH activity and 
increased expression of CD133, OCT4, and NANOG (C.-W. 
Chang et al. 2014). Similarly, cisplatin-resistant UM-SCC-
22B cells exhibited higher expression of BMI1 and OCT4 
pluripotency markers (Nör et al. 2014). Cisplatin-resistant 
SCC-4/-9 cells showed elevated expression of NANOG, 
which transcriptionally stimulated OCT4, c-MYC, and 
ABCG2 expression, which was reduced by NANOG knock-
down, leading to sensitization to cisplatin (Kashyap et al. 
2020). Moreover, immunohistochemical analysis showed 
the upregulation of OCT4 and NANOG in OSCC patients 
characterized by chemoresistance, which indicates that these 
in vitro findings have clinical relevance (Tsai et al. 2011). 

Thus, it can be concluded that chemoresistant cells are char-
acterized by the accumulation of cancer stem cells and the 
increased expression of stemness (CD44, CD133, CD10, 
ALDH) and pluripotency (NANOG, BMI1, OCT4, SOX2) 
markers. Thus, the acquisition of cellular chemoresistance is 
indeed associated with increased stemness potential.

Isolated cancer stem cells are resistant 
to chemotherapeutics

The most compelling evidence for the key importance of 
targeting cancer stem cells in tackling chemoresistance 
comes from studies that used the subpopulations of CSCs 
isolated by selective cell sorting based on the presence 
of stem cell markers. Since no single marker of HNSCC 
stem cells exists, studies focused on analyzing different 
stemness-related proteins, with CD44 and ALDH being the 
most frequently investigated. For example, ALDH + cells 
showed higher expression of BMI1, OCT4, NANOG, and 
MDR1 and reduced radiosensitivity (Chen et al. 2010). 
In another study, a small subpopulation of UTSCC-60A 
cells that were positive for ALDH expressed higher levels 
of BMI1, KLF4, OCT4, and SOX2 and were resistant to 
cisplatin (Gunduz et al. 2019). In parallel, ALDHlow cells 
were more sensitive to paclitaxel (Fernandes et al. 2022). 
ALDH-positive cells are usually described as a subpopu-
lation of CD44high cells, and these cells were resistant to 
docetaxel or cetuximab (Keysar et al. 2017). Moreover, a 
subpopulation of CD44v3highALDHhigh HNSCC stem cells, 
which expressed OCT4, NANOG, and SOX2, was resistant 
to apoptosis induction because of the high expression of IAP 
proteins (XIAP, c-IAP2). The presence of hyaluronic acid 
(HA), which interacts with CD44, further decreases cispl-
atin-induced apoptosis, whereas anti-CD44 antibody sensi-
tizes cells to cisplatin (Bourguignon et al. 2012, 2016). This 
underscores the role of the HA-CD44 axis in HNSCC chem-
oresistance. Histopathological analyses seem to corroborate 
these findings because the increased immunohistochemical 
levels of ALDH1, CD44, or pSTAT3 were associated with 
shorter overall survival in HNSCC patients, while the worst 
survival rate was observed in triple-positive patients (Chen 
et al. 2010). Additionally, CD44high cells showed lower 
proliferation but higher colony formation ability and were 
resistant to cisplatin, and tended to be resistant to EGFR 
inhibition by cetuximab or gefitinib (La Fleur et al. 2012). 
CD44 + HNSCC cells were resistant to apoptosis induction, 
and showed elevated expression of anti-apoptotic Bcl-2 
and IAP proteins (Chikamatsu et al. 2012). The ratio of 
CD44 + cells significantly varies among different HNSCC 
cell lines and not all CD44 + cells exhibit stem-like prop-
erties and chemoresistance (Modur et al. 2016). Further-
more, subpopulations of CD44high cells were distinguished 
based on differences in cell morphology, and ameboid-like 
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CD44high cells showed significant resistance to docetaxel, 
compared to epithelial-like or mesenchymal-like CD44high 
OSCC cells (Yokoyama et al. 2021). In another study, mes-
enchymal-like CD44high cells, which appeared when cells 
were grown on fibronectin-coated hydrogel, were charac-
terized by elevated expression of NANOG, SOX2, OCT4, 
and ALDH1 and resistance to cisplatin when compared to 
epithelial-like CD44high or parental cells (Shigeishi et al. 
2022). Thus, it is relevant to recognize that CD44high cells 
are neither homogeneous nor a fixed population of cells. 
Indeed, stemness seems to depend on cell plasticity and 
constitutes the feature of the tumor as a whole (Wang et al. 
2017). On the other hand, in vitro growth conditions affect 
stem cells by inducing adaptive changes due to cell plastic-
ity. It remains to be established which culture conditions are 
best in mimicking the in vivo environments to allow the best 
possible prediction of therapeutic response.

CD271 belongs to the TNF family of receptors, and it 
is present in the stem cells of the normal oral epithelium. 
However, its growing expression has been observed in 
various stages of pathology: from dysplasia to advanced 
HNSCC cases (Elkashty et  al. 2020). Interestingly, the 
presence of CD271 is restricted to CD44 + cells and 
CD44 + CD271 + cells turned out to have the highest tumo-
rigenic potential (Murillo-Sauca et al. 2014). Furthermore, 
CD44 + CD271 + cells exhibited a higher capacity for tumor-
sphere formation and increased expression of BMI1, OCT4, 
and SOX2 and showed resistance to cisplatin and, to a lesser 
extent, 5-fluorouracil (Elkashty et al. 2020). In an interesting 
study using patient-derived xenotransplanted hypopharyn-
geal tumors, cell sorting led to the identification of a sub-
population of tumor-initiating cells that were positive for 
CD271. These cells would tend to be located in tumors at the 
invasive front and near blood vessels. They were also highly 
tumorigenic in mice. Moreover, CD271 + cells expressed 
NANOG, OCT4, and SOX2 and cell surface efflux transport-
ers, e.g., ABCC2, ABCB5, and ABCG2. Importantly, cis-
platin was able to kill CD271-negative cells while CD271-
positive cells survived cisplatin treatment in vivo. This 
suggests that the presence of CD271 marks a subpopulation 
of cisplatin-resistant HNSCC stem cells (Imai et al. 2013).

Although rarely detected in HNSCC samples (Fukusumi 
et al. 2014), CD133 is yet another marker of stem cells. A 
small percentage of HNSCC-derived cells were character-
ized as SP cells which expressed stemness markers (CD133 
and OCT4) and showed high self-renewal capacity. These 
cells were resistant to cisplatin, oxaliplatin, paclitaxel, and 
5-fluorouracil, which was associated with increased expres-
sion of ABCG2 drug efflux transporter and anti-apoptotic 
Bcl2 (Guan et al. 2015; Lu et al. 2016). In another study, 
CD44highCD133highCD117high HN13 cells were much less 
sensitive to paclitaxel treatment than parental cells (viability 
88% vs 44%, respectively) (Silva Galbiatti-Dias et al. 2018).

Moreover, several studies have shown that HNSCC stem 
cells also exhibit the presence of CD10 or CD24 surface 
markers. Indeed, CD10 + cells formed more tumorspheres, 
expressed higher levels of ALDH1 and OCT3/4, and were 
tumorigenic in mice. These slow-cycling dormant cells were 
resistant to cisplatin, 5-fluorouracil, and radiation (Fuku-
sumi et  al. 2014). Additionally, CD10high cells showed 
higher expression of ALDH1, BMI1, OCT4, NANOG, and 
SOX2 and were significantly less sensitive to cisplatin, than 
CD10low cells (Pu et al. 2021; Wang et al. 2021). In addition, 
higher expression of CD24, NANOG, and OCT4 correlated 
with a reduced response to cisplatin combined with radio-
therapy in patients with OSCC (Mishra et al. 2020). Further-
more, the percentage of CD24 + cells correlated with cispl-
atin resistance in HNSCC cell lines, and CD24 knockdown 
significantly reduced NANOG expression and sensitized 
cells to cisplatin treatment. Moreover, CD24 + cells were 
enriched in the fraction of residual resistant cells (Modur 
et al. 2016).

The pharmacological targeting 
of stemness‑mediated HNSCC 
chemoresistance mechanisms

A complex network of molecular pathways regulates the 
transcriptional and cellular programs responsible for the 
stemness phenotype. Thus, many potential molecular tar-
gets (Fig. 1) could be therapeutically modulated to prevent 
relapse by facilitating the elimination of chemoresistant 
cancer stem cells and thus increasing the effectiveness of 
chemotherapeutics.

PI3K/Akt, Wnt/β‑catenin and Src pathways 
interactively induce stemness‑related resistance

ALDH + CD44high cells showed activation of the PI3K/Akt/
mTORC1 pathway, which regulates SOX2 expression, in 
turn activating ALDH1A1 expression and activity. These 
cells responded to PI3K inhibition, which decreased the 
ALDH + population and SOX2 expression without affecting 
CD44 expression. Moreover, SOX2 overexpression dimin-
ished the response to docetaxel (Keysar et al. 2017). The 
Akt kinase activation can also be mediated by PDK1, whose 
knockdown reduced the level of pAkt, and affected stemness 
by reducing the expression of SOX2, OCT4, and CD133, 
decreasing tumorsphere formation capacity. Moreover, the 
PDK1 inhibitor—BX795—sensitized OSCC cells to cispl-
atin (Pai et al. 2021). Thus, the PI3K/Akt pathway is mecha-
nistically responsible for the induction of ALDH and SOX2 
expression and participates in stemness-related chemoresist-
ance. These effects may be mediated by cross-talk with other 
signaling pathways. The canonical Wnt/β-catenin pathway 
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has been implicated in HNSCC development (Paluszczak 
2020), and a recent study has shown that pAkt stimulates 
β-catenin nuclear translocation, which induces the TCF4-
mediated transcription of ALDH1A1 (Wang et al. 2017). 
Moreover, the activation of the Wnt/β-catenin pathway plays 
a role in the cisplatin-induced enrichment of resistant stem 
cells (Sinnung et al. 2021). Cisplatin-resistant and CSC cells 
showed the elevated level of β-catenin and EZH2. EZH2, 
which is a histone methyltransferase mediating transcrip-
tional repression by H3K27 methylation, suppressed APC 
which acts as the upstream inhibitor of β-catenin activation. 
The combinatorial inhibition of both Wnt/β-catenin and 

EZH2 effectively reduced the CSC population in vitro and 
in vivo, and sensitized cells to cisplatin (Milan et al. 2023). 
Notably, the Wnt pathway also influences RXR-mediated 
effects. In this regard, the overexpression of RXRα or the 
addition of retinoids (9-cis-retinoic acid) led to the enrich-
ment of SP cells and CD44 + cells, and increased the level 
of expression of stemness markers (CD44, CD133, SOX2, 
OCT4), while the knockdown of RXRα resulted in the oppo-
site effects (Jiang et al. 2018).

On the other hand, a pathway initiated by the interac-
tion of Keratin 17 (KRT17) with plectin and integrin-64 
may stimulate the transcriptional activity of β-catenin. This 

Fig. 1   The molecular mechanisms responsible for stemness-associ-
ated resistance (Bu et  al. 2015; Chen et  al. 2017, 2022, 2010; Gar-
cia-Mayea et  al. 2020; Han et  al. 2021; Herzog et  al. 2021; Hsueh 
et al. 2021; Huang et al. 2020a, b; Jang et al. 2022; Jiang et al. 2018; 
Kashyap et al. 2018; Keysar et al. 2017; Lee et al. 2016; Lim et al. 
2014; Paluszczak 2020; Peng et  al. 2018; Silva Galbiatti-Dias et  al. 
2018; Sinnung et al. 2021; Song et al. 2022; Wang et al. 2017, 2018; 
Zhao et al. 2022). Abbreviations: c-MET tyrosine-protein kinase Met, 
DOT1L DOT1 like histone lysine methyltransferase, HA hyaluronic 
acid, HDAC1/2 histone deacetylase 1/2, HGF hepatocyte growth 

factor, HMGA2 high mobility group AT-hook 2, IL-4,6,8 interleu-
kin-4,6,8, ILRs interleukin receptors, KRT17 keratin 17, LSD1 lysine-
specific demethylase 1, NFAT nuclear factor of activated T-cells, 
PLEK2 pleckstrin 2, PLOD2 procollagen lysine 2, RTKs receptor 
tyrosine kinases, SRC proto-oncogene tyrosine-protein kinase Src, 
SDCBP syntenin-1, STAT3 signal transducer and activator of tran-
scription 3, TET1 tet methylcytosine dioxygenase 1, TSPAN1 tetras-
panin-1, TRPM7 transient receptor potential cation channel, subfam-
ily M, member 7
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pathway activates the FAK/Src/ERK cascade of downstream 
kinases, ultimately resulting in the nuclear translocation of 
β-catenin, leading to the upregulation of CD44 and enhanced 
sphere formation. Importantly, the knockdown of KRT17 
reduced the self-renewal potential and sensitized cells to cis-
platin (Jang et al. 2022). In addition, cisplatin-resistant cells 
expressed higher levels of tetraspanin-1 (TSPAN1), and its 
siRNA-mediated reduction enhanced susceptibility to cis-
platin and dasatinib. Dasatinib is a small molecule inhibi-
tor targeting the Src pathway. Indeed, TSPAN1 depletion 
reduced the level of active phospho-Src kinase, although 
TSPAN1 targeted both Src-dependent and independent 
pathways (Garcia-Mayea et al. 2020). Similarly, syntenin-1 
(SDCBP) was upregulated in cisplatin-resistant and stem-
like Detroit 562 cells, and the depletion of SDCBP sensi-
tized the cells to cisplatin. This led to reduced expression 
of CD44, CD133, KLF4, and OCT3/4 and decreased levels 
of phospho-Src protein. Moreover, Src inhibition also sen-
sitized cells to cisplatin (Mir et al. 2021). These data would 
suggest that Src may be an important downstream effec-
tor regulating stemness and chemoresistance in HNSCC. 
Indeed, the inhibitors of the Src family of kinases are an 
emerging group of anti-cancer molecularly targeted thera-
peutics. However, they did not demonstrate sufficient clinical 
effectiveness in HNSCC. In contrast to the aforementioned 
studies, a recent paper has shown that Src inhibitors—dasat-
inib or saracatinib—not only failed to eliminate cancer stem 
cells in tumorspheres but also increased the expression of 
ALDH1A1, SOX2, OCT4, and NANOG. The authors of 
this work hypothesized that this pro-stemness activity was 
responsible for the poor clinical response to these drugs. A 
mithramycin analog, EC-8042, on the other hand, reduced 
the stemness phenotype, and the combination of this com-
pound with dasatinib was beneficial. Such simultaneous tar-
geting of proliferating and migrating cells by dasatinib and 
tumor-propagating cells by EC-8042 led to potent antitumor 
activity in vivo (Hermida-Prado et al. 2019). Thus, the exact 
role of Src signaling in regulating stemness and pluripotency 
in HNSCC cells still requires elucidation.

The activation of the MEK/ERK pathway has been shown 
to contribute to cisplatin resistance by inducing the expres-
sion of CD44v4 and its pharmacological inhibition reversed 
this phenotype (Kashyap et al. 2018). In another study, the 
ERK1/2 pathway induced the expression of CD44 and 
NANOG and increased resistance to cisplatin or 5-fluoro-
uracil in CD44 + cell spheroids. ERK inhibitors sensitized 
these cells to chemotherapeutics (Huang et al. 2020a, b). On 
the other hand, MEK/ERK inhibition did not affect ALDH 
expression (Keysar et al. 2017). The inhibition of p38 using 
SB203580 reduced the RNA and protein levels of stemness 
markers (CD44, OCT4, KLF4) in cisplatin-resistant SCC-
131 and CAL27 cells. In addition, pretreatment of cells 
with the p38 inhibitor sensitized resistant cells to cisplatin, 

significantly increasing DNA damage and apoptosis. Moreo-
ver, SB203580 prevents cisplatin-induced enhancement of 
stemness marker expression (Roy et al. 2021).

Interleukins induce stemness‑related resistance 
via STAT3 activation

Several interleukins (IL) have been implicated in regulating 
stemness and resistance. Indeed, cisplatin-resistant HNSCC 
cells showed higher expression of IL-6/8/10 (Basak et al. 
2015). Also, IL6 enhanced cisplatin-induced enrichment 
of the ALDHhighCD44high cells (Nör et al. 2014). The low 
level of let-7c in ALDH + and CD44 + cells was responsible 
for the upregulation of IL-8 secretion. Conversely, the over-
expression of let-7c attenuated IL-8 level, reduced ALDH 
activity and sensitized ALDH + cells to cisplatin. However, 
the addition of IL-8 could antagonize these effects (Peng 
et  al. 2018). Moreover, the increased secretion of IL-8 
via ERK signaling activation enhanced chemoresistance 
in cisplatin-resistant CD10high cells. IL-8 inhibition using 
SB225002 sensitized CD10high cells to cisplatin (Pu et al. 
2021). Additionally, it has been found that the Hedgehog 
signaling pathway is involved in regulating the cisplatin-
resistant properties of CD10high cells (Y. Wang et al. 2021). 
Also, the hypersecretion of IL-4 can drive the multidrug 
resistance phenotype of CD133 + side population cells and 
neutralizing IL-4 by antibody sensitized these cells to drug 
treatment (Guan et al. 2015). The cross-talk between JMJD6 
and IL-4 further substantiates the importance of IL-4 for 
stemness. It has been shown that tumorsphere cells express 
higher levels of several histone demethylases, including 
JMJD6. Indeed, ALDHhigh cells showed elevated expres-
sion of JMJD6. On the other hand, JMJD6 overexpression 
led to increased expression of stemness markers (OCT4, 
NANOG) and resulted in cell resistance to doxorubicin, 
etoposide, and methotrexate. Importantly, JMJD6 transcrip-
tionally regulates IL-4. Anti-IL-4 antibodies suppressed the 
stem-like phenotype of JMJD6 overexpressing cells, while 
recombinant IL-4 rescued the stemness phenotype (C.-R. 
Lee et al. 2016). The association between immunomodu-
lation, stemness, and chemoresistance is further supported 
by the observation that the upregulation of the CXCR3A 
chemokine receptor increased the expression of SOX2 and 
NANOG, and stimulated the resistance to cisplatin, gemcit-
abine, and paclitaxel (Sun et al. 2022a, b).

The activation of the STAT3 pathway, which can be 
mediated by IL-4, IL-6, or other factors, was shown 
to maintain the stemness potential of radioresistant 
ALDH + CD44 + cells. The decrease in phospho-STAT3 lev-
els induced by cucurbitacin I stimulates the differentiation of 
these stem cells into ALDH/CD44-negative cells, sensitizing 
tumors to ionizing radiation (Chen et al. 2010). The activa-
tion of STAT3 correlated with the increased expression of 
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ALDH1, CD44, OCT4, and SOX2 in cancer cells (Bu et al. 
2015). Moreover, it has been shown that the activation of 
the IL-6/STAT3 pathway in cisplatin-resistant cell lines is 
driven by collagen lysyl hydroxylase PLOD2, which results 
in the stimulation of the expression of stemness markers 
CD44 and CD133 via integrin β1 (Song et al. 2022). PLOD2 
can also activate Wnt signaling and PLOD2 overexpressing 
FaDu cells showed elevated expression of NANOG, OCT4, 
and KLF4. PLOD2 knockdown reduced the tumorsphere 
forming capacity, the percentage of SP cells, and sensitized 
cells to cisplatin treatment (Sheng et al. 2019). The silenc-
ing of IL-6R decreased the percentage of cisplatin-induced 
ALDHhighCD44high cells showing that IL-6/STAT3 signal-
ing is important for the stemness phenotype by regulating 
the expression of BMI1 (Herzog et al. 2021). Magnololol-
induced sensitization of orosphere-derived stem cells from 
the SAS cell line to cisplatin is mediated by the reduced 
secretion of IL-6 and decreased activation of STAT3. More-
over, magnolol attenuated ALDH activity and decreased the 
capacity for secondary sphere formation (Peng et al. 2022). 
The inhibition of STAT3 using S3I-201 led to the elimina-
tion of both bulk and side population cancer cells in vitro. 
Also, it diminished the capacity for tumorsphere formation 
and the expression of ALDH1, CD44, OCT4, and NANOG, 
resulting in the sensitization of cells to chemotherapeutics 
(Bu et al. 2015).

Other players

TRPM7 is a membrane protein that functions as a chan-
nel for divalent cations (particularly Mg2 +) and contains a 
serine/threonine kinase domain. The protein acts as a sen-
sor of changes in cellular osmolarity, and pH alterations. 
It has pleiotropic functions, and affects cell survival, pro-
liferation and migration. It has been shown that cisplatin-
resistant patients show higher RNA expression of TRPM7. 
The downregulation of this membrane receptor protein was 
associated with a decrease in the expression of stemness 
markers (BMI1, OCT4, SOX2, NANOG) in SAS cells. 
The knockdown of TRPM7 in combination with cisplatin 
strongly reduced the capacity for tumorsphere formation. 
These findings suggest that the TRPM7/NFAT pathway is 
relevant for maintaining OSCC stem cells (Chen et al. 2022).

Pleckstrin-2 (PLEK2) is another protein that is implicated 
in the regulation of stemness. Pleckstrin-2 is a cell mem-
brane-associated protein which takes part in focal adhesion 
and contact with the actin cytoskeleton, and is also impli-
cated in PI3K signaling. PLEK2 was found overexpressed 
in dysplasia and HNSCC, showing the highest expression 
in chemoresistant patients. Also, chemoresistant cell lines 
expressed higher levels of PLEK2. The overexpression of 
PLEK2 increased the proportion of ALDH + cells, while the 
knockdown of PLEK2 reduced the expression of stemness 

markers (CD133, BMI1, SOX2, OCT4, NANOG) and 
decreased ALDH activity. These effects were mediated by 
the stabilization and activation of c-MYC by PLEK2 (Zhao 
et al. 2022).

The HGF/c-MET pathway also plays a role in the mainte-
nance of stemness phenotype and chemoresistance. Indeed, 
ALDHhigh cells showed high expression of c-Met, while 
c-Methigh cells were characterized by the increased expres-
sion of OCT4, SOX2, and CD44. The knockdown of c-Met 
decreased the expression of these stem cell markers and 
diminished tumorsphere forming capacity. Moreover, it led 
to a decrease in the percentage of SP cells and reduced the 
expression of ABCG2 transporter protein, which was associ-
ated with modest cisplatin sensitization (Lim et al. 2014).

BMI1 is one of the pluripotency markers whose enhanced 
expression seems to play an important role in HNSCC cell 
stemness. CD44 + ALDHhigh cells isolated from parental and 
cisplatin-resistant SCC-1 cells showed elevated expression 
of BMI1. Also, tumor-derived EpCAM + CD44 + ALDHhigh 
cells showed elevated BMI1 expression. Indeed, 
BMI1 + cells were found to be slowly proliferating but could 
transform into actively proliferating cells, which points to 
their stem-like features. BMI1 + cells isolated from primary 
tumors showed high clonogenic potential, as shown by the 
ability to form primary and secondary tumorspheres. Also, 
they were highly tumorigenic in vivo, in contrast to BMI1 
non-expressing cells. BMI1 has been associated with chem-
oresistance since PTC-209, an inhibitor of BMI1, restored 
the sensitivity of cisplatin-resistant SCC-1 cells to cispl-
atin. This points to the possible clinical potential of com-
bining classical chemotherapeutics with stemness modula-
tors thanks to the joint targeting of the bulk of proliferating 
tumor cells and chemoresistant cancer stem cells. Mono-
therapy with cisplatin killed mitotic cells and induced apop-
tosis of BMI-negative cells while enriching BMI + cells that 
were present in recurrent or persistent tumors in the mouse 
4NQO-induced tumor model. This shows that the lack of 
elimination of cancer stem cells is responsible for treatment 
failure. Importantly, the combination therapy with cisplatin 
and PTC-209 effectively inhibited tumor growth. PTC-209 
significantly decreased the percentage of BMI + cancer 
stem cells and its combination with cisplatin reduced both 
BMI1 + and bulk cancer cells in vivo. Importantly, a similar 
effect was observed with the AP-1 inhibitor, 3-PA, which 
underscores the importance of the AP1 pathway in regulat-
ing BMI1 expression (Chen et al. 2017).

CAL27 and FaDu cells grown as tumorspheres showed 
elevated expression levels of CD133, CD44, ALDH1, 
SOX2, and BMI1. The higher expression of these stemness 
markers may depend on the activity of the HMGA2 pro-
tein, which acts in cooperation with Slug. Knockdown of 
HMGA2 reduced the expression of CD133, CD44, ALDH1, 
SOX2, and BMI1, and diminished tumorsphere formation 
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capacity. On the other hand, overexpression of HMGA2 
increased tumorsphere formation and facilitated cell survival 
in the presence of cisplatin, thus causing chemoresistance 
(Li et al. 2022). Chaperone proteins are another player in 
therapy resistance. The pharmacological inhibition of Heat 
shock protein 90 (Hsp90) with KU711 or KU757 decreased 
the number of spheres and the percentage of ALDH-positive 
and CD44-positive cells and the level of BMI1 protein in 
parental and cisplatin-resistant HNSCC cell lines (Subra-
manian et al. 2017).

Epigenetic regulation of transcription and CSC 
chemoresistance

Epigenetic mechanisms can affect transcriptional programs 
associated with cell plasticity and the induction of the 
expression of pluripotency and stemness-related genes. For 
example, CD44 may lead to chemoresistance by increasing 
the expression of anti-apoptotic IAP proteins. These effects 
are mediated by the upregulation of DOT1L histone lysine 
methyltransferase and the subsequent increase in the meth-
ylation level of H3K79 residue, which directs the activa-
tion of gene transcription (Bourguignon et al. 2016). The 
observation that the knockdown of TET1 protein, which is 
responsible for active DNA demethylation, may sensitize 
CD44 + cells to cisplatin further supports the association 
between stemness-related chemoresistance and epigenetic 
mechanisms. TET1 promotes chemoresistance by MGMT 
promoter demethylation, augmenting DNA repair response 
to damages induced by alkylating agents (Wang et al. 2018). 
Moreover, cisplatin-resistant cell lines showed the overex-
pression of histone deacetylases HDAC1/2 (Lima de Oliveira 
et al. 2022). On the other hand, histone lysine demethylase 
LSD1 was essential for the stimulation of the expression of 
BMI1. LSD1 knockdown suppressed stemness characteris-
tics, although it led to the upregulation of PDL1, enhancing 
immune evasion. However, the combination of LSD1 inhibi-
tion and PD-1 blockade showed efficacy in vivo, leading to 
overcoming immune evasion (Han et al. 2021).

Redox states and CSC chemoresistance

Stemness and resistance are also associated with redox 
homeostasis. For instance, cisplatin was found to elevate 
the proportion of stem-like ROSlow cells. Cisplatin-resistant 
SAS cells exhibited low levels of reactive oxygen species 
(ROS) due to increased expression and activity of catalase, 
superoxide dismutase 2 (SOD2), or peroxiredoxin. Thus, 
the depletion of ROS scavengers may stimulate chemo-
sensitivity. Indeed, cell treatment with 2-metoxyestradiol 
and/or 3-amino-1,2,4-triazole lowered the expression of 
OCT4 and NANOG and reduced the proportion of ROSlow 
cells, thus sensitizing cells to cisplatin (Chang et al. 2014). 

Interestingly, FaDu cells that acquired resistance to PI3K 
inhibitor BEZ235 and cross-resistance to gefitinib and cis-
platin exhibited stemness phenotype. Specifically, these cells 
had elevated activity of ALDH and increased expression of 
NANOG, OCT4, SOX2, and BMI1 but also displayed ROS 
imbalance and SOD2 upregulation. Notably, SOD inhibi-
tors sensitized these resistant cells to BEZ235 (Hsueh et al. 
2021). Also, cisplatin-resistant CAL27 and SCC9 cells dem-
onstrated reduced ROS levels. The inhibition of HDAC6 by 
tubastatin A induced oxidative stress in these cells, reversing 
the cisplatin-induced accumulation of CD44highALDHhigh 
stem cells (Tavares et al. 2022). Moreover, increasing ROS 
formation by the inhibition of ALDH activity with Aldi-6 
contributed to cell sensitization to cisplatin, which could 
be counteracted by the addition of antioxidant N-acetyl-
cysteine (Kim et al. 2017). Additionally, the chemoresistant 
CD133 + side population cells exhibited increased expres-
sion of the Nrf2 transcription factor, which promotes the 
expression of cytoprotective and antioxidant proteins (Lu 
et al. 2016). These findings indicate the significant contri-
bution of redox imbalance in the acquisition and/or mainte-
nance of chemoresistance in stem-like HNSCC cancer cells.

The important role of tumor microenvironment

Solid tumors consist of multiple cell types, and recent evi-
dence points to the crucial role of alterations in TME for epi-
thelial neoplastic transformation (White and Lowry 2015). 
Apart from the heterogenous clones of neoplastic cells (both 
bulk and stem-like cells), non-neoplastic cells, including 
fibroblasts, macrophages, mesenchymal stem cells, endothe-
lial cells and immune cells, are also present in TME (Dzobo 
2020; Dzobo et al. 2023; Kok 2020). These stromal cells 
infiltrate the tumor and become hijacked by cancer cells to 
support tumor growth and drug resistance, thus pointing to 
the inhibition of tumor-stroma interactions as a key target in 
chemosensitization (Senthebane et al. 2017). The interaction 
between cancer cells and stromal cells is multidirectional, 
and cancer stem cells continuously interact with these cells 
to establish a favorable niche (Fig. 2) (Dianat-Moghadam 
et al. 2023; Huang et al. 2020a, b). Tumor-associated mac-
rophages (TAMs) increased CSC fraction by elevating the 
level of hyaluronic acid in ECM, and subsequent stimula-
tion of CD44/PI3K pathway (Gomez et al. 2020). The sig-
nificance of such intercellular cross-talk in drug resistance 
acquisition may be indirectly confirmed by an observation 
that stronger infiltration of HNSCC tumors with TAMs pre-
dicted worse response to chemoradiotherapy and was asso-
ciated with higher risk of relapse (Balermpas et al. 2014).

Most stromal cells are able to secrete pro-tumorigenic fac-
tors, including growth factors (e.g., TGF-beta) or cytokines 
and chemokines, which promote survival, stemness and 
chemoradioresistance (Dzobo et al. 2023; Senthebane et al. 
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2017). In this regard, patient-derived cancer-associated 
fibroblasts (CAFs) have been shown to possess the ability 
to promote cisplatin resistance in cancer cells by paracrine 
effects. Changes in gene expression, including NANOG 
upregulation, mediated these effects (Peltanova et al. 2021). 
A recent study found that these cells were able to induce 
a transition of SCC-25 cells into paclitaxel-resistant cells 
by the paracrine action of IL-6 (Liu et al. 2021a, b). Also, 
“normal” keratinocytes present in the cancer field can con-
tribute to stemness and chemoresistance induction. One of 
the mechanisms involved relies on the secretion of ligands 
that activate EGFR and/or FGFR receptors on cancer cells 
and promote the enrichment of CD44highSOX2high cells. This 
results in enhanced resistance to small molecule PI3K inhi-
bition, which can be abolished by erlotinib (Nguyen et al. 
2022). Thus, drug resistance cannot be considered as the 
property of isolated cancer cells but of the cell interactome 
characteristic of the tumor microenvironment (Dzobo et al. 
2020). In addition, CAFs and TAMs are responsible for the 
increased production of the components of the extracel-
lular matrix (ECM), which can contribute to chemoresist-
ance (Dzobo et al. 2023; Senthebane et al. 2018). Indeed, 
ECM activated ERK and PI3K/Akt signaling in cancer cells 
and reduced sensitivity to cisplatin, fluorouracil and epiru-
bicin, and the reduction in the level of collagen type I and 

fibronectin in ECM resulted in diminished colony formation 
of cancer cells and sensitization to cisplatin (Senthebane 
et al. 2018). Moreover, increased matrix stiffness, which 
was caused by increased deposition of fibrillar collagens and 
other proteins, together with enhanced matrix cross-linking, 
led to the stimulation of cell dormancy, and correlated with 
shorter relapse-free survival (Jingyuan et al. 2023).

The tumor microenvironment in solid tumors significantly 
contributes to immunosuppression (Dianat-Moghadam et al. 
2022, 2023). Thus, despite the high prevalence of PD-L1 
expression in HNSCC, the immune checkpoint inhibitors 
do not show satisfactory clinical response due to primary 
and adaptive resistance, including the immunosuppressive 
capabilities presented by CD44 + cells (Kok 2020). Cancer 
stem cells can affect immune cells by exosomes (Gonzalez-
Callejo et al. 2023). Indeed, CSC-derived exosomes can 
mediate communication with other cells to protect the CSC-
niche and to promote relapse (Gupta et al. 2021). Further-
more, CD44 + HNSCC cells were shown to secrete increased 
amounts of IL-8, granulocyte colony-stimulating factor, and 
TGF-β, leading to the inhibition of effector T or NK cells. 
In addition, CD44 + cells decreased the secretion of inter-
feron gamma or IL-2 by peripheral blood mononuclear cells 
(Chikamatsu et al. 2011). All these effects may contribute to 
immune evasion in HNSCC.

Fig. 2   Tumor microenvironment niche. Fibroblasts, macrophages and 
mesenchymal stem cells infiltrate tumors and are hijacked by cancer 
cells to support tumor survival and growth by promoting stemness, 
dormancy, immunoediting, and by altering the structure of the extra-

cellular matrix. All these result in chemoresistance (Dianat-Mogh-
adam et al. 2022, 2023; Dzobo 2020; Dzobo et al. 2023; Gupta et al. 
2021; Jingyuan et al. 2023; Kok 2020; Senthebane et al. 2018, 2017)
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Table 2 lists the chemicals that exhibit chemosensitiz-
ing effects by affecting HNSCC stem cells. Future research 
should focus on characterizing the clinical utility and opti-
mizing the proposed strategies.

Conclusions

The current state of knowledge allows us to assume that 
HNSCC cancer stem cells are the most significant population 
of cells in the acquisition of drug resistance. Importantly, the 
stem cell hypothesis does not fully explain the occurrence 
of chemoresistance (Griso et al. 2022). For example, it has 
been shown that the pH reduction in tumors is responsible 
for cisplatin resistance because of drug entrapment in the 
acidic extracellular compartment. While microenvironment 
acidification could induce the expression of NANOG, CD44, 
and BMI1 in cells in vitro, it was shown that the restoration 
of physiological pH was sufficient for cell resensitization 
to cisplatin (de Bem Prunes et al. 2022). There is also a 
plethora of other mechanisms which can contribute to the 
resistant phenotype, but not all of them have been studied in 
relation to HNSCC stem cells (Griso et al. 2022).

Nevertheless, based on the current literature, the associa-
tion between the stemness phenotype and chemoresistance 
in HNSCC is evident. Crucial aspects of this connection 
include the finding that chemotherapy leads to the enrich-
ment of cancer stem cells (Basak et al. 2015; Bu et al. 2015; 
Jiang et al. 2018; Kim et al. 2017; Nakano et al. 2021; Nör 
et al. 2014; Subramanian et al. 2017, p. 90), drug-resistant 
cells show the enrichment of stem cell subpopulations (Kul-
sum et al. 2017; Lima de Oliveira et al. 2022; Murakami 
et al. 2022; Roy et al. 2018, 2019; Tsai et al. 2011), and iso-
lated cancer stem cells are resistant to chemotherapy (Chen 
et al. 2010; Fernandes et al. 2022; Gunduz et al. 2019; Silva 
Galbiatti-Dias et al. 2018). In addition, various molecular 
mechanisms underlying stemness-related therapy resist-
ance were identified (Barbato et al. 2019). The PI3K/Akt, 
Wnt/catenin, and Src pathways are all implicated, as are 
interleukin-induced STAT3 activation, epigenetic modula-
tors, redox states, and the tumor microenvironment. Also 
metabolic reprogramming, one of the hallmarks of cancer, 
can contribute to stemness and chemoresistance. The activ-
ity of the enzymes associated with NAD + synthesis and 
consumption is frequently altered in cancer cells, including 
head and neck cancers (Togni et al. 2021). These aberra-
tions may play a role in the acquisition of stemness potential 
(Novak Kujundžić et al. 2021). A recent study has shown 
that NAD + imbalance is characteristic of HNSCC stem 
cells. The targeting of NAD + biosynthetic pathways with 
the inhibitors of nicotinamide phosphoribosyltransferase 
(NAMPT) or nicotinate phosphoribosyltransferase (NAPRT) 
showed anti-tumor effects and exerted sensitization to 

docetaxel in xenograft mice. Moreover, the adaptive reboost-
ing of NAD + synthesis by the upregulation of NAMPT or 
NAPRT, which was observed upon cell treatment, could be 
tackled by the combinatorial inhibition of both enzymes 
(Navas et al. 2023). This corroborates the importance of 
the use of mixes of chemicals to deal with the consequences 
of cell plasticity. Additionally, the isoenzymes of pyru-
vate dehydrogenase kinase (PDK1 and PDK2), which are 
associated with alterations of glucose metabolism called 
the Warburg effect, have been implicated in stemness and 
chemoresistance. Their knockdown led to the HNSCC sen-
sitization to cisplatin and gemcitabine (Sun et al. 2022a, 
b). Interestingly, recent reports presented a new strategy for 
eradicating HNSCC stem cells by inducing their osteogenic 
differentiation (Jaksic Karisik et al. 2023; Patil et al. 2022).

Thus, there is a plethora of biological mechanisms 
responsible for stemness-induced chemoresistance and 
because of this very reason it is currently difficult to single 
out a target which would be best for the effective sensitiza-
tion of stem cells in tumors (Yang et al. 2020). Perhaps, this 
would require some personalization using molecular diag-
nostic tests that have not yet been developed (Walcher et al. 
2020). However, the difficulty in the selection of drug targets 
is also a consequence of high cellular plasticity (Salem and 
Salo 2023). Indeed, isolated subpopulations of stem cells 
were able to restore the original heterogenous cell popula-
tions (Navas et al. 2023). Thus, combinatorial sensitizing 
treatments may be the best option; however, more work is 
necessary to determine which compounds and targets show 
the highest synergistic potential. Furthermore, most of the 
currently available information was developed using selected 
cell lines and more research should be peformed in vivo, 
especially using patient-derived xenografts (or patient-
derived organoids) or other relevant in vivo models (Salem 
and Salo 2023). Moreover, most in vivo studies used tumor 
size/volume as endpoint, but rarely analyzed cell subpopu-
lations in the tumors, which would be helpful to prove that 
the observed effects are indeed dependent on the ablation 
of stem cells. Another factor that needs further elucidation 
is the sequence of treatments. Some evidence points to the 
utility of sequential treatments, with the stem cell-ablating 
chemical preceding the classical chemotheraputic dug. How-
ever, more evidence is necessary to find the best option. 
Thus, while the benefits of the pharmacological targeting of 
cancer stem cells by affecting various molecular targets were 
shown in vitro and in vivo, direct evidence of such benefits 
in HNSCC patients have not been documented so far, and 
the field needs well-designed relevant clinical studies which 
would test the clinical validity of the findings.

This paper corroborates targeting cancer stem cells as 
a promising strategy for overcoming therapy resistance in 
head and neck cancers. Chemicals aimed at stem cell abla-
tion have shown adjuvant potential in animal studies, which 
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Table 2   A list of compounds which increased chemosensitivity by targeting stem cells in HNSCC

Compound Biological effects References

Celastrol Celastrol significantly reduced the viability of cisplatin-resistant cells and sup-
pressed tumorsphere formation

Chen et al. (2020)

Cucurbitacin I Decreased the fraction of ALDH + /CD44 + cells and improved radio sensitivity 
by down-regulating STAT3, leading to synergistic effects in mice and prevent-
ing metastases

Chen et al. (2010)

Curcumin Curcumin reduced the expression of stemness markers and reversed cisplatin-
induced CD44 + and SP cell ratios by RXRα inhibition; combination with 
cisplatin led to stronger tumor growth reduction in a mouse xenograft model

Jiang et al. (2018)

Curcumin difluorinated Pre-treatment with liposomal CDF killed CD44high cells in cisplatin-resistant cell 
lines

Basak et al. (2015)

Honokiol Honokiol in combination with cisplatin was potent in reducing the number of 
secondary tumor spheres by inhibiting the IL-6/STAT3 pathway

Chang et al. (2018)

Magnolol Magnolol sensitized cancer stem cells to cisplatin leading to viability reduction 
similar to parental cells

Peng et al. (2022)

Melatonin Melatonin sensitized CD44high cells to cisplatin-induced cell death Shigeishi et al. (2022)
Sulforaphane Sulforaphane sensitized CD44 + CD271 + cells to cisplatin and 5-fluorouracil by 

inhibiting Hedgehog pathway and reducing SOX2 and OCT4 expression
Elkashty and Tran (2020)

5-aminolevulinic acid (ALA) Photodynamic therapy using ALA reduced the ratio of CD44 + and ALDH + cells, 
decreased the expression of OCT4 and NANOG, and sensitized stem-like cells 
to cisplatin and 5-fluorouracil

Yu and Yu (2014)

Tubastatin A HDAC6 inhibition by tubastatin A reduced the stemness phenotype and reversed 
cisplatin-induced stem cell accumulation

Tavares et al. (2022)

Vorinostat, entinostat Inhibition of histone deacetylases diminished the stem cell population from 
cisplatin-resistant cell lines

Lima de Oliveira et al. (2022)

Valproic acid Reduced the proportion of CD44 + cells, sensitized cells to cisplatin treatment, 
and its combination with cisplatin reduced tumor burden in mice

Lee et al. (2015)

JQ1 BET proteins inhibition with JQ1 reduced the expression of IL-6/8, BMI1, 
and CD44, as well as diminished the growth of xenograft tumors formed by 
CD44high/ALDHhigh cells derived from cisplatin-resistant cell lines

Dong et al. (2021)

NCT-501 Inhibition of ALDH activity by NCT-501 sensitized cisplatin-resistant CAL27 
cells to cisplatin and reduced spheroid formation capacity

Kulsum et al. (2017)

Aldi-6 Inhibition of ALDH activity by Aldi-6 sensitized cells to cisplatin by increasing 
reactive oxygen species formation

Kim et al. (2017)

PTC-209 Bmi1 inhibition by PTC-209 sensitized tumor cells to cisplatin and reduced the 
ratio of Bmi1 + stem cells and reduced tumor growth and metastasis

Chen et al. (2017)

S3I-201 S3I-201 reduced the percentage of SP cells and CD44 + cells; STAT3 inhibition 
by S3I-201 in combination with cisplatin, 5-fluorouracil, or docetaxel reduced 
the number and size of tumorspheres

Bu et al. (2015)

Tocilizumab The inhibition of the IL-6R/STAT3 pathway by tocilizumab suppressed cisplatin-
induced accumulation of stem cells; combination therapy suppressed orosphere 
formation and decreased xenograft tumor growth

Herzog et al. (2021)

SB225002 Inhibition of IL-8 activity by SB225002 in combination with cisplatin signifi-
cantly reduced the viability of CD10high cells

Pu et al. (2021)

Afatinib Pre-treatment of cells with afatinib (EGFR inhibitor) downregulated CD44 and 
OCT3/4 and abrogated the enrichment of SP cells induced by ionizing radiation, 
increasing radiosensitivity

Macha et al. (2017)

GDC0449 Hedgehog pathway inhibition with GDC0449 sensitized CD10high cell tumors to 
cisplatin

Wang et al. (2021)

XAV939 Inhibition of the Wnt/β-catenin pathway with XAV939 reversed cisplatin resist-
ance and reduced the proportion of SP cells

Sinnung et al. (2021)

XAV939 sensitized cells to cisplatin and reduced the expression of stem cell 
markers (CD44, KLF4, OCT4, and β-catenin)

Roy et al. (2019)

Ibrutinib Ibrutinib (BTK inhibitor) reduced the expression of CD133 and NANOG, and the 
percentage of ALDH-positive cells; it sensitized cells to cisplatin, and the com-
bination of cisplatin and ibrutinib significantly reduced tumorsphere formation

Liu et al. (2021a, b)
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warrants further research on the exact clinical utility of these 
stem cell-targeted strategies as chemosensitizers in humans.
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