
Vol.:(0123456789)1 3

Journal of Cancer Research and Clinical Oncology (2023) 149:10841–10850 
https://doi.org/10.1007/s00432-023-04974-x

RESEARCH

Association of CDKN2A/B mutations, PD‑1, and PD‑L1 with the risk 
of acute lymphoblastic leukemia in children

Yang Ruan1 · Longlong Xie2 · Aijun Zou1

Received: 3 May 2023 / Accepted: 4 June 2023 / Published online: 14 June 2023 
© The Author(s) 2023

Abstract
Purpose Currently, the significance of CDKN2A/B mutations in the pathogenesis and prognosis of acute lymphoblastic 
leukemia (ALL) is inconclusive. In this study, we analyzed the genetic and clinical features of children with CDKN2A/B 
mutations in ALL. In addition, we evaluated the expression and significance of programmed cell death protein 1 (PD-1) and 
programmed cell death ligand 1 (PD-L1) in serum and explored their role in the susceptibility of childhood ALL.
Methods We sequenced CDKN2A/B in the peripheral blood of 120 children with ALL and 100 healthy children with physi-
cal examination. The levels of  CD4+ T,  CD8+ T, and NK cells were measured by flow cytometry (FCM). Furthermore, the 
expression of PD-1 and PD-L1 was detected by ELISA.
Results We found 32 cases of CDKN2A rs3088440 and 11 of CDKN2B rs2069426 in 120 ALL children. Children with 
ALL in the CDKN2A rs3088440 were more likely to have hepatosplenomegaly (P = 0.019) and high risk (P = 0.014) than 
the wild group. In contrast, CDKN2B rs2069426 was more likely to develop lymph node metastasis (P = 0.017). The level 
of PD-L1 in the serum of ALL children was significantly higher than that of the control group, and there was no significant 
difference in PD-1 (P < 0.001). Additionally, children with CDKN2A rs3088440 had reduced  CD8+ T cell counts than the 
wild group (P = 0.039).
Conclusion CDKN2A rs3088440 and CDKN2B rs2069426 may be related to the occurrence and development of ALL in 
Chinese children. Additionally, PD-1/PD-L1 may be involved in the immune escape process of ALL, which is expected to 
become a new target for the treatment of the disease.
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Introduction

Leukemia is a malignant tumor of the hematopoietic system 
and a serious disease that threatens the life and health of 
children. According to WHO statistics, malignant tumors 
have become the second leading cause of death in children 
after accidental injuries (Young et al. 1986). Acute lympho-
blastic leukemia (ALL) is children's most common malig-
nant tumor, accounting for about 80% of ALL children (Shen 
et al. 2018). Although the treatment of ALL has matured, 

and its cure rate has risen to 90%, there are still 10% of 
patients with relapse and poor prognosis following treatment 
(Karol and Pui 2020). Due to the high incidence of ALL, 
relapsed or refractory ALL remains the leading cause of 
tumor-related death in children (Imai 2017). However, the 
etiology and pathogenesis of ALL are not fully understood. 
From what is suggested, it may be associated with genetic 
mutations, viral infections, physical and chemical factors 
(Bardsiri et al. 2022; Deng et al. 2022; Onyije et al. 2022). 
Therefore, it is vital to discover the key genes of ALL, bio-
markers of ALL malignant proliferation, and to explore the 
molecular mechanisms of ALL occurrence. Notably, these 
investigations are valuable in basic research, clinical diag-
nosis, and treatment.

Genetic and epigenetic mechanisms such as gene muta-
tions, deletions, and DNA methylation can activate proto-
oncogenes. Activation of proto-oncogenes, abnormal 
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expression of antioncogene, apoptosis suppressor genes, and 
abnormalities in cell cycle regulation play essential roles 
in the development of malignant tumors (Chen et al. 2017; 
Matthews et al. 2022).

Genome-wide association studies (GWAS) have found 
that single nucleotide polymorphisms (SNPs) in essential 
genes are associated with a high risk of ALL. These findings 
suggest that ALL may be related to polygenic susceptibility 
(Vijayakrishnan et al. 2018; Pui et al. 2019). However, these 
studies have not reached a consensus in the worldwide popu-
lation. Another factor associated with the onset of ALL is 
the ethnic characteristics of different populations (Hsu et al. 
2016). Importantly, several studies involving the genomes of 
large numbers of patients have suggested that genetic vari-
ants may be risk factors for ALL in populations with differ-
ent patterns of ethnic composition (Fernandes et al. 2022; 
Yamada et al. 2017).

Cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) is 
an important regulator of cell growth regulation and apop-
tosis, while the absence of cell proliferation regulation and 
cell cycle regulation is crucial for the development and pro-
gression of cancer (Hayward et al. 2017; Kathiravan et al. 
2019). Notably, it has been suggested that coding variants 
of CDKN2A/B may be associated with susceptibility to ALL 
in children (Xu et al. 2015). In addition, programmed cell 
death ligand 1 (PD-L1) is highly expressed in some tumor 
cells, which is a significant factor in promoting tumor 
immune escape (Qin et al. 2015; Zhou et al. 2017). PD-1/
PD-L1 signaling pathway plays a vital role in tumor immune 
escape. Furthermore, PD-L1, which is highly expressed on 
the surface of tumor cells, can inhibit the anti-tumor immune 
response of T cells, thus allowing tumor cells to evade 
immune surveillance (Yu et al. 2013).

Currently, because the significance of CDKN2A/B gene 
mutations in the pathogenesis and prognosis of ALL is 
inconclusive, some of the literature has yielded studies with 
widely varying results and different conclusions. Therefore, 
further studies are needed to understand whether CDKN2A/B 
gene mutations, programmed cell death protein 1 (PD-1), 
and PD-L1, are related to ALL occurrences in children. This 
study sequenced the CDKN2A/B gene in 120 children with 
ALL. Importantly, we analyzed the expression and signifi-
cance of PD-1 and PD-L1 in serum and explored their role 
in the susceptibility of childhood ALL.

Materials and methods

Research subjects

A total of 120 children with ALL were admitted to Hunan 
Children's Hospital selected. ALL included children 
with blood and bone marrow changes that met the FAB 

Collaborative Group's diagnostic criteria for ALL (Eys et al. 
1986). We excluded other children with non-acute lympho-
blastic leukemia and those with genetic disorders. The 100 
children in the control group were randomly selected from 
healthy examinations of the same period. Children with 
malignancy, hematologic disorders, or family history cannot 
be included. This study has been approved by the hospital 
ethics committee (No. HCHLL-2020 -32).

Research methods

CDKN2A/B gene mutation detection

Venous whole blood samples were collected using EDTA 
tubes. Plasma was separated by centrifugation (1,000 rpm, 
15 min) within 2 h after blood collection and then stored at 
– 80 ℃ until the analysis. The DNA extraction kit (Tiangen 
Biotech Corp) was used to extract whole blood specimen 
DNA. The exon coding sequence of the CDKN2A/B gene 
was determined according to the database, primers were 
designed, and the extracted DNA was sequenced by Sanger. 
Bioinformatics analysis was performed after sequencing to 
determine the mutation site of the CDKN2A/B gene.

Detection of PD‑1, PD‑L1

Plasma levels of soluble PD-1 and PD-L1 were assayed 
using enzyme-linked immunosorbent assay (ELISA) kits 
SEA751Hu and SEA788Hu (Cloud-Clone Corp, TX, 
USA). Their assay range was 0.156–10 ng/mL with detec-
tion limits of 0.063 ng/mL and 0.056 ng/mL, respectively. 
PD-1 and PD-L1 were tested in strict accordance with the 
kit instructions.

Detection of  CD4+T cells,  CD8+ T cells, and NK cells

The lymphocyte subsets were identified and determined 
using the BD FACSCanto™II Flow Cytometer. For the 
flow cytometry analyses, the reagent cocktail (20 μL) con-
taining CD3 FITC, CD4 PE-Cy7, CD8 APC-Cy7, CD16 
PE, CD19 APC, CD45 PerCP-Cy5.5, and CD56 PE was 
added to 50 μL whole blood. All of these were purchased 
from BD Pharmingen. For each sample, at least 10,000 
cells were analyzed and the percentage of the cells express-
ing  CD4+ T cells  (CD45+CD3+CD4+),  CD8+ T cells 
 (CD45+CD3+CD8+), NK cells  (CD45+CD16+  CD56+), and 
B cells  (CD45+CD19+) markers were evaluated.

Statistics

SPSS 20.0 software was used for the statistical analysis 
of the data. Continuous variables conforming to normal 
distribution were expressed as mean ± standard deviation 
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( x ± s). Enumeration data were expressed as rate and per-
centage. The Chi-square test (χ2) was used to compare the 
data between the two groups. The odds ratio (OR) and 95% 
confidence interval (CI) were used to represent the degree 
of association. Multiple related factors were analyzed using 
Logistic regression. A significant difference was considered 
when the p-value < 0.05.

Results

Correlation analysis of CDKN2A/B gene mutation 
with childhood ALL

We found a mutation site rs3088440 in the 3'-UTR of 
exon 3 of CDKN2A. Additionally, rs3088440 (C > T) was 
found in 32 of 120 ALL specimens (26.7%) in this study. 
In the control group, 13 of 100 specimens (13.0%) had 
rs3088440 (C > T). Our statistical analysis showed that 
the mutation rate of rs3088440 (C > T) in the ALL group 
was higher than in the control group and that the difference 

was statistically significant (P = 0.012, OR = 2.43, 95%CI: 
1.197–4.947) (Table 1).

We also found a mutation site rs2069426 (C > A) in 
the non-exon sequence of CDKN2B. Rs2069426 (C > A) 
was found in 11 of 120 ALL specimens (9.2%) in this 
study and 2 of 100 specimens (2.0%) in the control group 
(P = 0.025, OR = 4.95, 95% CI: 1.070–22.863) (Table 1).

Clinical characteristics of patients with ALL 
and controls

The age of onset, white blood cell count, lymph node 
metastasis, and hepatosplenomegaly were significantly 
different in ALL children compared with the control 
group (p < 0.05) (Table 2). The children with CDKN2A 
rs3088440 mutations were more likely to develop hepato-
splenomegaly and be at higher risk than the wild group. 
However, children with CDKN2B rs2069426 mutations 
were more likely to have lymph node metastasis (Table 3).

Table 1  CDKN2A and 
CDKN2B genotypes in the ALL 
and control groups

SNP single nucleotide polymorphism, OR odds ratio, CI confidence interval

SNP ALL (%) Controls (%) �
2 P OR(95%CI)

CDKN2A
rs3088440 (C > T)

32(26.7%) 13(13.0%) 6.262 0.012 2.43(1.197–4.947)

CDKN2A
rs3088440 wild type

88(73.3%) 87(87.0%)

CDKN2B
rs2069426 (C > A)

11(9.2%) 2(2.0%) 5.039 0.025 4.95(1.070–22.863)

CDKN2B
rs2069426 wild type

109(90.8%) 98(98.0%)

Table 2  Clinical characteristics 
of ALL and control patients

Clinical characteristics n n(%) �
2 p

ALL patients Controls

Gender
Males 139 76(63.3) 63(63.0)
Females 81 44(36.7) 37(37.0) 0.003 0.959
Age
< 5 years 106 67(55.8) 39(39.0)
≥ 5 years 114 53(44.2) 61(61.0) 6.191 0.013
White blood cell count
 < 50 ×  109/L 198 98(81.7) 100(100.0)
 ≥ 50 ×  109/L 22 22(18.3) 0 20.370 < 0.001
Lymphatic metastasis
Yes 47 47(39.2) 0
No 173 73(60.8) 100(100.0) 49.807 < 0.001
Hepatosplenomegaly
Yes 77 77(64.2) 0
No 143 43(35.8) 100(100.0) 98.718 < 0.001
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Comparison of PD‑1, PD‑L1,  CD4+,  CD8+ and NK 
between ALL children and controls

PD-L1 was significantly higher in the serum of children 
with ALL than in the control group. In contrast, PD-1 
was not significantly different.  CD4+ and  CD8+ T cells 
were significantly lower in children with ALL than in con-
trols, and there was no significant difference in NK cells 
(Table 4). Children with CDKN2A rs3088440 had lower 
 CD8+ T cells than the wild-type group. However, there 

was no significant difference between CDKN2B rs2069426 
and wild type group (Table 5).

Logistic regression analysis

Logistic regression analysis showed that age, CDKN2A 
rs3088440, CDKN2B rs2069426, and PD-L1 were inde-
pendent risk factors for ALL (Table 6).

Table 3  Relationship between 
CDKN2A and CDKN2B 
gene status, and clinical 
characteristics in children with 
ALL

Clinical characteristics n CDKN2A rs3088440
n (%)

p n CDKN2B rs2069426
n (%)

p

Mutation Wild type Mutation Wild type

Gender
Males 76 18(56.3) 58(65.9) 76 9(81.8) 67(61.5)
Females 44 14(43.7) 30(34.1) 0.332 44 2(18.2) 42(38.5) 0.182
Age
< 5 years 67 19(59.4) 48(54.5) 67 7(63.6) 60(55.0)
≥ 5 years 53 13(40.6) 40(45.5) 0.638 53 4(36.4) 49(45.0) 0.585
White blood cell count
< 50 ×  109/L 98 25(78.1) 73(83.0) 98 10(90.9) 88(80.7)
≥ 50 ×  109/L 22 7(21.9) 15(17.0) 0.545 22 1(9.1) 21(19.3) 0.406
Lymphatic metastasis
Yes 47 11(34.4) 36(40.9) 47 8(72.7) 39(35.8)
No 73 21(65.6) 52(59.1) 0.517 73 3(27.3) 70(64.2) 0.017
Hepatosplenomegaly
Yes 77 26(81.2) 51(58.0) 77 7(63.6) 70(64.2)
No 43 6(18.8) 37(42.0) 0.019 43 4(36.4) 39(35.8) 0.969
Risk stratification
Low-risk 58 12(37.5) 46(52.3) 0.284 58 7(63.6) 51(46.8) 0.342
Middle-risk 58 17(53.1) 41(46.6) 0.059 58 4(36.4) 54(49.5) 0.587
High-risk 4 3(9.4) 1(1.1) 0.014 4 0 4(3.7) 0.461

Table 4  Comparison of PD-1, 
PD-L1,  CD4+,  CD8+, NK cells 
between ALL children and 
control group (pg/ml, x ± s)

Group PD-1 PD-L1 CD4+ CD8+ NK

ALL 1.13 ± 6.05 406.27 ± 1034.73 26.13 ± 13.61 20.20 ± 11.84 13.64 ± 16.21
Control 0.30 ± 2.96 36.67 ± 126.78 35.90 ± 6.64 23.73 ± 5.17 11.50 ± 5.47
t 1.323 3.878 − 6.936 − 2.945 1.356
P 0.188 < 0.001 < 0.001 0.004 0.177

Table 5  Comparison of PD-1, 
PD-L1,  CD4+,  CD8+, NK cells 
between CDKN2A rs3088440, 
CDKN2B rs2069426 and wild 
type group (pg/ml, x ± s)

CDKN2A rs3088440 p CDKN2B rs2069426 p

Mutation Wild type Mutation Wild type

PD-1 3.18 ± 10.99 0.38 ± 2.22 0.162 0 ± 0 1.24 ± 6.34 0.52
PD-L1 415.08 ± 809.98 403.07 ± 1109.35 0.955 237.84 ± 599.37 423.27 ± 1069.24 0.573
CD4+ 25.15 ± 16.69 26.51 ± 12.42 0.675 26.33 ± 10.99 26.13 ± 13.90 0.963
CD8+ 16.51 ± 10.32 21.55 ± 12.12 0.039 20.95 ± 8.43 20.13 ± 12.16 0.827
NK 12.61 ± 16.14 14.01 ± 16.31 0.677 19.15 ± 24.05 13.08 ± 15.25 0.238
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Discussion

The cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) 
gene is located in the chromosome 9p21 region. It is a vital 
cancer suppressor gene and belongs to the family of cell 
cycle-dependent enzyme inhibitor genes. CDKN2A encodes 
the cyclin-dependent kinase inhibitors  p16INK4A and replace-
ment reading frame protein  p14ARF, while CDKN2B encodes 
the  p15INK4B (Krieger et al. 2010). These three proteins, as 
components of the RB1 and TP53 pathways, negatively reg-
ulate the G1-S transition in the cell cycle during proliferation 
to maintain normal cell growth (Salas et al. 2016).  p16INK4A 
and cyclin competitively bind to cell cyclin-dependent pro-
tein kinase (CDK4/6) and inhibit CDK4/6 kinase activity. In 
doing so, they render retinoblastoma protein (pRb) unphos-
phorylated. Notably, these steps prevent cells from entering 
the S phase and initiating DNA synthesis, inhibiting cell 
proliferation. At the same time, highly phosphorylated pRb 
can induce the expression of  p16INK4A, which in turn can 
inhibit the phosphorylation of Rb protein (Zhao et al. 2016). 
Thus, p16 plays a negative feedback regulatory role in the 
cell cycle regulatory pathway  p16INK4A-CDK4/6-pRb-E2F. 
Its abnormality can cause uncontrolled cell proliferation, 
leading to tumors (Zhao et al. 2016). Therefore, the inac-
tivation of CDKN2A/B may lead to rapid or uncontrolled 
cell growth and even cancer formation. Inactivation of 
CDKN2A/B occurs through mutation, deletion, or methyla-
tion (Sulong et al. 2009). Furthermore, mutations or dele-
tions in the CDKN2A/B gene are associated with various 
tumors, including breast cancer, melanoma, ovarian cancer, 
and lung adenocarcinoma (ShahidSales et al. 2018; Chan 
et al. 2017; Reinhardt et al. 2018; Cocco et al. 2017; Jiang 
et al. 2016; Mullighan and Downing 2009).

ALL is the most common malignancy in children (Terwil-
liger and Hay 2017). Studies have shown that specific gene 
mutations may be associated with abnormal signaling path-
ways, and their abnormal activation can promote oncogenic 
changes in ALL (Burns et al. 2018). Additionally, genetic 
variation is strongly associated with susceptibility to ALL in 

children (Li et al. 2022). Alteration of the CDKN2A/B locus 
is one of the hallmarks of ALL (Celia et al. 2021). CDKN2A 
exon variants are associated with susceptibility to childhood 
ALL (Vijayakrishnan et al. 2017; Walsh et al. 2015). The 
absence of CDKN2A/B may indicate poor prognosis in adult 
and pediatric ALL patients, which may be related to the 
pathogenesis of the disease (Ribera et al. 2017; Qian et al. 
2019; Braun et al. 2017; Zhang et al. 2019; Kumari et al. 
2022). However, some scholars believe that there is no cor-
relation (Zutven et al. 2005; Mirebeau et al. 2006). These 
differences in study results may be due to different clinical 
characteristics, including race, age, and subtype (Liao et al. 
2016; Guo et al. 2014; Prasad et al. 2010). Xu et al. (2015) 
found that the CDKN2A gene was related to the occurrence 
of ALL in children, and it could increase the probability of 
leukemia transformation. Additionally, Maude et al. (2015) 
performed sequencing analysis on 204 children with ALL 
chemotherapy and found that more than 90% of children 
with recurrent ALL had CDKN2A gene deletions. Likewise, 
the CDKN2A SNP (rs3731249) is associated with suscepti-
bility to ALL (Walsh et al. 2015; Vijayakrishnan et al. 2015; 
Gutierrez-Camino et al. 2017). A meta-analysis with a large 
sample size showed that SNPs at CDKN2A (rs3731217 and 
rs3731249) were significantly associated with the risk of 
ALL. Individuals carrying these two SNP risk alleles had 
0.72-fold and 2.26-fold increased disease susceptibility, 
respectively (Zhou et al. 2018). Moreso, rs3731249 and 
rs2811709 have been linked to B-ALL susceptibility in 
Spaniards (Gutierrez-Camino et al. 2017). Furthermore, 
rs3731246 can be used as a risk marker for ALL suscepti-
bility in Yemeni children (Al-Absi et al. 2017). In addition 
to germline mutations in the CDKN2A exon, SNPs predis-
posed to B-ALL have been identified in introns and non-
coding regions such as promoters (Sherborne et al. 2010). 
Notably, these SNPs regulate CDKN2A gene expression 
(Hungate et al. 2016). In particular, many loci associated 
with susceptibility to ALL were found in noncoding genome 
regions. Importantly, non-coding elements have a relevant 
role in cancer development (Khurana et al. 2016). Mutations 
in the CDKN2A locus can modify the protein interaction 
domain in INK4a. It can affect the interaction with other pro-
teins, such as MYB, or lead to the mislocalization of INK4a 
protein in the nucleus (Healy et al. 2007; Britigan et al. 
2014). Hungate et al (2016) also found through functional 
analysis that rs662463 could regulate CDKN2B expression 
through CEBPB signal and affect the risk of B-ALL in chil-
dren. Therefore, mutations in CDKN2A (− 222 T>A) and 
CDKN2B (593A>T, C) may play a role in susceptibility to 
childhood leukemia (Healy et al. 2007). Collectively, these 
studies suggest that the CDKN2A/B gene may play a crucial 
role in the development of ALL.

We performed Sanger sequencing to detect CDKN2A/B 
gene mutations in the blood of 120 children with ALL and 

Table 6  Logistic regression analysis of the relationship between clin-
icopathological features and ALL

SE standard error, OR odds ratio, CI confidence interval

Factors B SE Wald P OR(95%CI)

X1 (gender) − 0.061 0.302 0.041 0.839 0.940(0.520–1.700)
X2 (age) − 0.658 0.291 5.105 0.024 0.518(0.292–0.916)
X3 (rs3088440) 0.920 0.379 5.899 0.015 2.509(1.194–5.272)
X4 (rs2069426) 1.600 0.796 4.044 0.044 4.955(1.041–

23.572)
X5 (PD-L1) 0.783 0.253 9.612 0.002 2.189(1.334–3.591)
Constant 0.094 0.293 0.104 0.747 1.099
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100 healthy children with a physical examination. These 
investigations found a missense mutation rs3088440 in 
exon 3 of CDKN2A. CDKN2B has a non-exon mutation 
rs2069426. Likewise, the age of onset, white blood cell 
count, lymph node metastasis, and hepatosplenomegaly was 
significantly different in the ALL group compared with the 
control group (p < 0.05). Children with CDKN2A rs3088440 
mutation were more likely to develop hepatosplenomegaly 
and high risk than the wild group. Additionally, children 
with CDKN2B rs2069426 mutation were more likely to have 
lymph node metastasis. Some studies have shown that the 
risk allele of SNPs in the 3′-UTR of CDKN2A may alter 
the binding capacity of transcription factors, thereby affect-
ing the expression of target genes (Hesari et al. 2019). Fur-
thermore, we identified a polymorphic locus rs3088440 in 
the 3'-UTR of CDKN2A in children with ALL. The 3′-UTR 
region is a transcriptional regulatory region, and SNPs can 
affect mRNA stability and protein synthesis by regulating 
regulatory elements in the region (Dong et al. 2017). As 
previously demonstrated, the C allele in the rs3088440 vari-
ant facilitates the binding of c-Myb to the CDKN2A tran-
scriptional regulatory region, which may lead to the repres-
sion of the CDKN2A gene and impair its normal function 
in cell cycle regulation (Stenman et al. 2010). Moreover, 
rs3088440 was positively correlated with ALL mortality, 
and the higher the frequency of this variant allele, the higher 
the incidence and mortality of ALL (Fernandes et al. 2022). 
Therefore, CDKN2A rs3088440 may be associated with the 
development of childhood ALL. Our study showed that there 
is a mutation site rs2069426 on the CDKN2B. This mis-
sense mutation can turn leucine into isoleucine. This muta-
tion may alter the cis-regulatory splicing element and thus 
affect CDKN2B expression to function (Burd et al. 2010). 
Therefore, these results suggest that CDKN2A rs3088440 
and CDKN2B rs2069426 may be associated with the sus-
ceptibility to childhood ALL.

The environment of tumor survival is also known as the 
tumor microenvironment. It contains various types of cells, 
such as tumor, stromal, and immune cells (Hui and Chen 
2015). Immune cells include T cells, B cells, macrophages, 
and other key cells. Various components in the microenvi-
ronment are in constant communication with tumor cells, 
so the tumor microenvironment plays a significant role in 
the occurrence and progression of tumors (Qin et al. 2017). 
 CD8+ T cells play a major role in killing tumor cells in 
the tumor microenvironment (Farhood et al. 2019). Many 
studies have found that the function of T cells in the tumor 
microenvironment is inhibited and that the proliferation abil-
ity is limited and reaches the exhaustion state, eventually 
leading to the proliferation and metastasis of tumor cells 
(Majzner and Mackall 2019; Minton 2020; Zhao et al. 2020). 
Notably, PD-1 and PD-L1 interactions provide an immu-
nosuppressive environment for tumor growth. Studies have 

shown that PD-1 levels are increased in pancreatic cancer, 
non-small cell lung cancer, nasopharyngeal cancer, chronic 
lymphocytic leukemia, advanced rectal cancer, and other 
cancers (Kruger et al. 2017; Bian et al. 2019; Hejleh et al. 
2019; Chang et al. 2019; Meyo et al. 2020; Ruan et al. 2019; 
Tominaga et al. 2019). Additionally, PD-1/PD-L1 expression 
is higher in solid and leukemic tumors and has been an inde-
pendent predictor of survival in some experiments (Kiyasu 
et al. 2015; Miyoshi et al. 2016). Consequently, elevated 
plasma PD-L1 levels are associated with advanced disease, 
clinical stage, and poor prognosis in cancer patients (Bian 
et al. 2019; Khan et al. 2020). The interaction of PD-1 and 
PD-L1 can inhibit T cell effector functions, such as cyto-
toxicity and cytokine release, limit the proliferation and 
survival of T cells, and induce apoptosis of tumor-specific 
T cells (Freeman et al. 2000). In addition,  CD4+ T cells dif-
ferentiate into  Fox3+ regulatory T cells (Wang et al. 2008). 
These co-inhibitory pathways are critical mechanisms of 
tumor immune escape. Furthermore, blocking this path-
way can improve T-cell function and the survival of cancer 
patients (Zitvogel and Kroemer 2012; Iwai et al. 2017).

Our study found that the serum PD-L1 was significantly 
higher in children with ALL than in the control group, and 
 CD4+ and  CD8+ T lymphocytes were lower. Importantly, 
CDKN2A rs3088440 had lower  CD8+ T lymphocytes than 
the wild group. Moreso, the logistic regression analysis 
showed that CDKN2A rs3088440, CDKN2B rs2069426, 
PD-L1, and age were independent risk factors for childhood 
ALL. Studies have found that the binding of PD-L1 to its 
receptor PD-1 results in the phosphorylation of immunore-
ceptor tyrosine-based inhibitory motif (ITIM) and immuno-
receptor tyrosine transforming motif (ITSM) in the cytosolic 
domain of PD-1 to be phosphorylated by Src family tyrosine 
kinases. Further recruitment of Src homology 2 domain-
containing phosphatase (SHP) to phosphorylated tyrosine 
residues inactivates T cells to activate essential cytokines 
and proteins, ultimately leading to functional inhibition of 
T cells (Shimizu et al. 2020; Ok and Young 2017). PD-L1 
is mainly released by tumor cells and mature dendritic cells 
and can induce apoptosis of  CD4+ and  CD8+ T lymphocytes 
(Frigola et al. 2012). PD-L1 also protects tumor cells from 
the cytotoxic effects of type I and type II interferons and 
cytotoxic T lymphocyte-mediated cytolysis (Gato-Canas 
et al. 2017). Therefore, PD-L1 and PD-1 are vital players 
in the tumor microenvironment and represent therapeutic 
targets against tumors. Studies have shown that CDK4 func-
tions as a negative regulator of PD-L1 expression by indi-
rectly regulating its ubiquitination (Zhang et al. 2018). Thus, 
we speculated that CDKN2A rs3088440 might up-regulate 
the expression of PD-L1 through CDK4, hence inducing 
 CD8+ T lymphocytes depletion and ultimately leading to 
tumor cell proliferation and metastasis.
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In conclusion, CDKN2A rs3088440 and CDKN2B 
rs2069426 may be related to the occurrence and develop-
ment of ALL in Chinese children. Additionally, PD-1/PD-L1 
may be involved in the immune escape process of ALL, 
which is expected to become a new target for the treatment 
of the disease. Therefore, the detection and localization of 
CDKN2A/B gene mutation and PD-L1 may provide a reason-
able basis for the targeted treatment strategy of ALL.
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