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Abstract
Purpose Lymphocyte activation gene 3 (LAG3) is thought to contribute to T cell exhaustion within the tumor microenviron-
ment of solid tumors. This study aimed to analyze the spatial distribution of LAG3 + cells in relation to clinicopathological 
and survival data in a large set of 580 primary resected and neoadjuvantly treated gastric cancers (GC).
Methods LAG3 expression was evaluated in tumor center and invasive margin using immunohistochemistry and whole-
slide digital image analysis. Cases were divided into LAG3-low and LAG3-high expression groups based on (1) median 
LAG3 + cell density, (2) cut-off values adapted to cancer-specific survival using Cutoff Finder application.
Results Significant differences in spatial distribution of LAG3 + cells were observed in primarily resected GC, but not in 
neoadjuvantly treated GC. LAG3 + cell density showed evident prognostic value at following cut-offs: in primarily resected 
GC, 21.45 cells/mm2 in tumor center (17.9 vs. 10.1 months, p = 0.008) and 208.50 cells/mm2 in invasive margin (33.8 vs. 
14.7 months, p = 0.006); and in neoadjuvantly treated GC, 12.62 cells/mm2 (27.3 vs. 13.2 months, p = 0.003) and 123.00 cells/
mm2 (28.0 vs. 22.4 months, p = 0.136), respectively. Significant associations were found between LAG3 + cell distribution 
patterns and various clinicopathological factors in both cohorts. In neoadjuvantly treated GC, LAG3 + immune cell density 
was found to be an independent prognostic factor of survival (HR = 0.312, 95% CI 0.162–0.599, p < 0.001).
Conclusion In this study, a higher density of LAG3 + cells was associated with favorable prognosis. Current results support 
the need for extended analysis of LAG3. Differences in the distribution of LAG3 + cells should be considered, as they could 
influence clinical outcomes and treatment responses.

Keywords Gastric cancer · Lymphocyte activation gene 3 protein · Prognosis · Tumor-infiltrating lymphocytes · Tumor 
microenvironment
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LAG3  Lymphocyte activation gene 3
LVI  Lymphovascular invasion
MSI  Microsatellite instability
NAT-GC  Neoadjuvantly treated gastric cancer
OS  Overall survival
PD-1  Programmed cell death 1
PD-L1  Programmed cell death 1 ligand
pR  Status of resection lines
PR-GC  Primarily resected gastric cancer
TC  Tumor center
TILs  Tumor-infiltrating lymphocytes
TMAs  Tissue microarrays
TME  Tumor microenvironment

Introduction

Adenocarcinoma of the stomach and gastroesophageal junc-
tion (GC) is a heterogeneous disease that shows striking 
variations in epidemiology, etiology, risk factors, patho-
genesis, topography, histological features, and prognosis. 
It remains the 5th most common and 4th deadliest cancer 
worldwide (Sung et al. 2021). Treatment options are still 
limited because of advanced-stage diagnoses that are com-
mon in the Western world (Arnold et al. 2019; National 
Cancer Institute).

Tumor immunotherapy has become one of the major 
therapeutic strategies in oncology (Galluzzi et al. 2014; van 
den Bulk et al. 2018; He and Xu 2020). Prominent of these 
therapies are immune checkpoint inhibitors (ICI) that tar-
get immune checkpoints, inhibitory or stimulatory proteins 
in immune cells, and/or tumor cells that modulate immune 
responses. Furthermore, immune checkpoints are involved in 
many processes of tumor cell metabolism and are related to 
epithelial–mesenchymal transition, metastasis, drug resist-
ance, anti-apoptosis, and angiogenesis (Zhang and Zheng 
2020). ICI block the transmission of inhibitory signals, 
stimulate the activation of cytotoxic T lymphocytes (CTLs), 
and boost the anti-tumor response of T lymphocytes (Shan 
et al. 2020). Current approved ICI are directed against pro-
grammed cell death 1 and its ligand (PD-1/PD-L1) and cyto-
toxic T-lymphocyte-associated protein 4 (CTLA4). How-
ever, many patients do not respond to ICI or the response is 
limited because of innate or acquired resistance (Shergold 
et al. 2019). Targeting other co-inhibitory receptors within 
the tumor microenvironment (TME), including simultane-
ous inhibition of multiple immune checkpoints, may provide 
new opportunities for immunotherapy.

Lymphocyte activation gene 3 (LAG3), also known as 
CD223, is a type I transmembrane protein expressed on a 
variety of immune cell types including activated CD4 + and 
CD8 + T cells, natural killer (NK) cells, NKT cells, and 
regulatory T cells (Triebel et al. 1990; Huang et al. 2004). 

Like other inhibitory receptors, it is essential to control T 
cell activation and to prevent autoimmunity (Andrews et al. 
2017). LAG3 structurally resembles CD4 co-receptor and 
can interact with MHC class II molecules (Baixeras et al. 
1992). Similar to CD4, the LAG3 gene is located on chro-
mosome 12. Although both molecules are closely related 
(Triebel et al. 1990), they exhibit different functions due 
to dissimilarities in their cytoplasmic domains (Workman 
et al. 2002; Andrews et al. 2017). Unlike CD4 and any other 
known immune checkpoints, the LAG3 cytoplasmic tail 
contains specific KIEELE, FxxL, and EP motifs, which are 
thought to be essential for its inhibitory function (Anderson 
et al. 2016; Maeda et al. 2019).

Despite over 30 years of research involving LAG3, the 
exact mechanism by which LAG3 and its binding partner(s) 
contribute to T cell suppression is not completely under-
stood. LAG3 is strongly upregulated upon continuous T 
cell stimulation due to persistent exposure to tumor anti-
gens (Andrews et al. 2017). This inhibitory signal is thought 
to contribute to T cell exhaustion. Exhausted T cells lose 
their ability to proliferate and to perform effector functions 
including cytokine production and degranulation (Wherry 
and Kurachi 2015). Besides its well-recognized ligand MHC 
class II, several alternate LAG3 ligands have been reported, 
including liver sinusoidal endothelial cell lectin (Xu et al. 
2014), galectin-3 (Kouo et al. 2015), and fibrinogen-like 
protein 1 (Wang et al. 2019). Interestingly, a recent study 
demonstrated that LAG3 could inhibit T cell receptor (TCR) 
signaling in the absence of binding MHC II class (Guy et al. 
2022).

In vitro studies have shown that LAG3 expression level 
strongly correlates with its inhibitory function, and changes 
in the amount of LAG3 on the cell surface directly affect its 
inhibitory effect (Maeda et al. 2019). LAG3 is co-expressed 
with other inhibitory receptors like PD-1, CTLA4, T-cell 
immunoglobulin and mucin domains-containing protein 
3 (TIM3), and T cell immuno-receptor with Ig and ITIM 
domains (TIGIT) (Blank et al. 2019). It has been suggested 
that the higher the number of co-expressed inhibitory recep-
tors, the more severe is the T cell exhaustion (Wherry and 
Kurachi 2015). Dual blockade of PD-1 and LAG3 has led to 
decreased tumor growth and enhanced anti-tumor immunity 
in mouse models (Woo et al. 2012). In patients with previ-
ously untreated metastatic or un-resectable melanoma, com-
bination of relatlimab (anti-LAG3 antibody) and nivolumab 
(anti-PD-1 antibody) has increased the median progression-
free survival more than two times when compared to PD-1 
inhibition alone (Tawbi et al. 2022). Recently, the first such 
combination immunotherapy has been approved by the U.S. 
Food and Drug Administration (Paik 2022).

The effectiveness of LAG3-targeted therapies in GC 
has been evaluated in several clinical trials (https:// clini 
caltr ials. gov/, accessed on 10.04.2023). However, the 
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clinicopathological significance and prognostic role of 
LAG3 protein expression in GC remain unclear, show-
ing discrepant results with regard to patient prognosis 
(Lee et al. 2019; Park et al. 2021; Lv et al. 2021). To our 
knowledge, there are no published data on LAG3 expres-
sion in GC of Western origin. Based on previous studies, 
we hypothesize that: (1) LAG3 expression varies among 
histological and molecular subtypes of GC, and (2) high 
density of LAG3 + cells is related to advanced clinico-
pathological features and poor outcome in GC. To check 
our hypotheses and to deepen our understanding of the 
role of LAG3 in GC, we investigated the clinicopathologi-
cal and prognostic significance of LAG3 in a large cohort 
of primarily resected chemotherapy-naïve GC (PR-GC). 
Additionally, the need for information on the expression 
patterns of immune checkpoints in tumors after neoad-
juvant therapy is increasing. Therefore, we evaluated 
LAG3 expression also in a set of neoadjuvantly treated 
GC (NAT-GC).

Methods

Study population

A well-characterized cohort of patients with GC was 
included in this study. Formalin-fixed and paraffin-
embedded tissue samples from the primary tumor 
site were analyzed. Patients in the PR-GC sub-cohort 
underwent primary total gastrectomy or surgical resec-
tion between 1997 and 2009 at the University Hospital 
Schleswig–Holstein, Kiel, Germany. Patients in the NAT-
GC sub-cohort received preoperative chemo-radiation or 
perioperative chemotherapy and underwent total gas-
trectomy or surgical resection between 1998 and 2019. 
The following exclusion criteria were used: (a) diagnosis 
other than adenocarcinoma and (b) insufficient tissue for 
tumor compartment analysis, that is, no residual tumor 
in the NAT-GC. Clinicopathological characteristics were 
collected from previous records, including sex, age at 
diagnosis, tumor localization, type by Laurén, pathologic 
(pTNM) or post-neoadjuvant (ypTNM) stage according 
to the 8th edition of the UICC guidelines (Brierley et al. 
2017), status of resection lines (pR), and lymphatic or 
venous invasion (LVI). For survival analysis, the date of 
surgery and date of death or last follow-up were used. 
The Helicobacter pylori, microsatellite instability (MSI)-, 
Epstein–Barr virus (EBV)-, HER2-, MET-, and PD-1/
PD-L1-status was available from previous studies of 
the cohort (Warneke et al. 2013; Metzger et al. 2016; 
Böger et al. 2016, 2017; Mathiak et al. 2017; Schoop 
et al. 2020).

Immunohistochemical detection of LAG3

Immunohistochemical staining was performed on whole tis-
sue sections using the Bondmax automated system (Leica 
Biosystems, Wetzlar, Germany). The LAG3 monoclonal 
antibody (Clone D2G4O, Cell Signaling, Leiden, the Neth-
erlands) was used at a 1:50 dilution. Slides were pre-treated 
with ER2 (Leica Biosystems) for 20 min, and visualization 
was performed using the Bond Polymer Refine Detection 
Kit (Leica Biosystems).

Evaluation of LAG3 immunostaining

Digital images of whole tissue sections were obtained using 
a Leica SCN400 scanner (Leica Biosystems, Nussloch, 
Germany) at 40 × nominal magnification, corresponding to 
a resolution of 0.25 µm per pixel. To detect LAG3 + cells, 
image analysis was performed using Definiens Tissue Studio 
(version 4.4.3, Definiens, Munich, Germany). A machine 
learning algorithm using Definiens Composer Technology 
was trained with four representative images to recognize 
LAG3 + cells. To avoid false results (e.g., due to large areas 
of necrotic debris, surface ulcerations, mucin pools, folded 
tissue, or holes), marking of distinct tumor compartments 
was carried out manually using the viewer and painting 
program VMP (Fig. 1a–c). The invasive margin (IM) was 
defined as a narrow band-like area with a width of up to 
1000 µm centered on the border separating cancer cells from 
the host tissue (Hendry et al. 2017). The tumor center (TC) 
was defined as the remaining tumor area comprising cancer 
cells and desmoplastic stroma. In NAT-GC, the tumor center 
could include surrounding scarred tissue that had reacted 
to NAT. LAG3 + cell densities were individually computed 
for TC and IM.

Statistical analysis

Data were analyzed using SPSS 25.0.0.2 (IBM Corpora-
tion, New York, USA). A significance level of p < 0.05 was 
assumed. Overall survival (OS) and cancer-specific survival 
(CSS) were defined as the time from the date of surgery until 
death due to any cause and death due to GC, respectively. 
The median LAG3 + cell density was calculated separately 
for each cohort. Because of differences in median densities 
between both cohorts, as well as tumor compartments, it 
was decided to analyze them separately and use individual 
cut-offs. To incorporate LAG3 + immune cell density in 
further statistical analyses, it was dichotomized into low 
and high LAG3 expression groups: (1) by median number; 
(2) using Cutoff Finder web application (Budczies et al. 
2012), in which the optimal cut-off values were generated 
based on CSS. Survival curves were estimated using the 
Kaplan–Meier method and compared using the log-rank test. 



10800 Journal of Cancer Research and Clinical Oncology (2023) 149:10797–10811

1 3



10801Journal of Cancer Research and Clinical Oncology (2023) 149:10797–10811 

1 3

Multivariate survival analysis was performed using back-
ward stepwise (likelihood ratio) Cox regression models and 
included all variables with p < 0.100 in univariate survival 
analysis. Associations with demographic and clinicopatho-
logical variables were analyzed using cross-tabulation analy-
sis and Kendall’s tau test for ordinal variables or Fischer’s 
exact test for non-ordinal variables. To account for the false 
discovery rate, the Benjamini–Hochberg (Simes) method 
was applied to the pool of all p values of this study (n = 172) 
(Benjamini and Hochberg 1995). All the p values are given 
uncorrected. Those p values which have lost significance are 
marked accordingly.

Results

Cohort characteristics

A total of 580 patients (441 with PR-GC and 139 with NAT-
GC) were included in this study. For further information 
on baseline characteristics, see Supplementary Table 1. The 
median OS for the PR-GC cohort was 14.7 months [95% 
confidence interval (CI) 12.6–16.7 months], and the median 
CSS was 16.0 months (95% CI 13.5–18.5). In NAT-GC, the 
median OS was 22.4 months (95% CI 17.3–27.4), and CSS 
was 24.6 months (95% CI 19.9–29.4).

Accumulation of LAG3 + cells in GC

LAG3 + immune cells were detected in both the stromal 
and intraepithelial compartments. The staining pattern 
varied from weak and dot-like to strong and membranous/
cytoplasmic (Fig. 1d–g), which was also recently demon-
strated in melanoma (Johnson et al. 2022). The distribution 
of LAG3 + cell densities differed significantly between the 
two sub-cohorts (p < 0.0001). In PR-GC, the median den-
sity of LAG3 + immune cells was 55.15 cells/mm2 (range 
3.57–1687.63) in TC and 70.35 cells/mm2 (1.91–1858.35) in 
IM, and it differed significantly between both compartments 

(p < 0.001). This pattern of distribution was not observed 
in the NAT-GC, where the median numbers were 41.37 
(3.56–543.43) in the TC and 43.28 (3.60–537.73) in the IM.

Survival analysis

To incorporate LAG3 expression in the survival analysis, 
median LAG3 + cell densities were used in the first step to 
dichotomize cohorts into low and high LAG3 expression 
groups. In PR-GC, no significant differences were found 
in OS (data not shown) and CSS between the two groups 
(Suppl. Table 2; Suppl. Fig. 1).

Similar results were found in the NAT-GC sub-cohort 
when comparing low vs. high LAG3 expression in TC 
(Suppl. Table 2; Suppl. Fig. 2). Interestingly, NAT-GC 
patients with higher LAG3 + cell density at the IM had sig-
nificantly longer OS than in the LAG3 low subgroup (28.0 
vs. 13.3 months, p = 0.025, log-rank test; data not shown).

LAG3 expression predicts favorable prognosis 
when divided by biological cut‑off

Dichotomization of patient cohorts at median values may 
not reflect biological relevant cut-offs, as it was previously 
shown by our group, e.g., for neutrophil counts in GC 
(Clausen et al. 2020). Therefore, we explored an alternative 
dichotomization approach for LAG3 using Cutoff Finder 
(Budczies et al. 2012) and CSS as outcome measure. Cut-
off Finder is a web application, which enables detection of 
optimal biomarker cut-offs. Interestingly, using this tool in 
PR-GC, the most significant cut-offs were 21.45 cells/mm2 
in TC and 208.50 cells/mm2 at IM. Now, the median CSS of 
patients with high LAG3 expression in TC was 17.9 months 
(95% CI 13.7–22.1 months) in comparison to 10.1 months 
(95% CI 7.5–12.7) of LAG3-low patients (p = 0.008). 
After splitting cases with high and low LAG3 expression 
in the IM, the median CSS reached 33.8 months (95% CI 
21.4–46.3) vs. 14.7 months (95% CI 12.1–17.2), respectively 
(p = 0.006) (Fig. 2; Suppl. Table 2). However, when using 
multivariate analysis, LAG3 expression was not found to be 
an independent prognostic factor (Table 1).

In NAT-GC, the most significant cut-off of LAG3 + cell 
density in TC was 12.62 cells/mm2. The median CSS was 
27.3 months (95% CI 19.6–35.1) and 13.2 months (95% 
CI 5.6–20.8) in patients with high vs. low LAG3 expres-
sion, respectively (p = 0.003). LAG3 expression in TC was 
an independent prognosticator of CSS (Table 1). There 
was no significant difference in median CSS among LAG3 
groups of IM even at the most optimal calculated cut-off 
(123.00 cells/mm2): 28.0 months (95% CI non-calcula-
ble), LAG3-high, vs. 22.4 months (15.5–29.2), LAG3-low 

Fig. 1  LAG3 + immune cells in gastric cancer and cancer of gas-
troesophageal junction: a–c, representative images from the viewer 
and painting program VMP, which was used to mark the tumor 
center (yellow) and invasive margin (orange), magenta dots c indi-
cate LAG3 + cells identified using Definiens Tissue Studio. Anti-
LAG3 immunostaining, original magnification × 12.5 (a, b) and 
× 50 (c); d–g, representative tissue sections with LAG3 + tumor-
infiltrating immune cells in primary resected and neoadjuvantly 
treated tumors: d high expression in EBV-associated gastric adeno-
carcinoma; e low expression in unclassified gastric carcinoma with 
prominent tumor-associated inflammatory reaction in the stroma; f 
LAG3 + immune cells were present in both the stromal and intraepi-
thelial compartments of this gastric intestinal-type adenocarcinoma; 
g LAG3 + immune cells in gastric cancer treated with neoadjuvant 
therapy. Anti-LAG3 immunostaining, original magnification × 400

◂
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Fig. 2  Kaplan–Meier curves in primary resected gastric cancer: can-
cer-specific survival according to LAG3 + cell density groups split by 
determined cut-off values (a tumor center, p = 0.008, log-rank test; b 

invasive margin, p = 0.006, log-rank test; small vertical lines in the 
graph indicate censored data)

Table 1  Multivariate analysis: Independent predictors for cancer-specific survival using a Cox proportional hazards model; variables with 
p < 0.100 by univariate analysis were included in the multivariate analysis

GC gastric cancer, HR hazard ratio, CI confidence interval, UICC Union for International Cancer Control, TC tumor center, IM invasive margin, 
NS not statistically significant
a Based on the adjusted cut-off value of Cutoff Finder

Variable Primarily resected GC Neoadjuvantly treated GC

HR 95% CI p value HR 95% CI p value

Laurén phenotype NS Not included
UICC stage  < 0.001 0.034
 II A/B vs. I A/B 2.544 1.330–4.866 0.005 2.014 0.625–6.492 NS
 III A/B/C vs. I A/B 5.901 3.214–10.833  < 0.001 3.715 1.285–10.738 0.015
 IV vs. I A/B 8.180 4.156–16.100  < 0.001 4.821 1.448–16.052 0.010

R status (R1/2 vs. R0) 2.891 1.957–4.271  < 0.001 2.775 1.361–5.660 0.005
Lympho-vascular invasion (L1 vs. L0) NS NS
Venous invasion (V1 vs. V0) NS 4.690 2.089–10.528  < 0.001
MET status (positive vs. negative) 2.009 1.171–3.447 0.011 NS
MSI status (MSI vs. MSS) NS Not included
PD-L1 in tumor cells (positive vs. negative) NS Not included
PD-L1 in immune cells (positive vs. negative) 0.643 0.478–0.867 0.004 Not included
PD-1 in immune cells NS Not included
LAG3 + cell density in TC (high vs. low)a NS 0.312 0.162–0.599  < 0.001
LAG3 + cell density at IM (high vs. low)a NS Not included
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(p = 0.136) (Fig. 3; Suppl. Table 2). These data show that 
the biological effect of LAG3 depends on cell numbers, 
location, and treatment.

Association with demographical 
and clinicopathological features

The associations between LAG3 expression (dichotomized 
by biological cut-offs) and clinicopathological characteris-
tics are summarized in Tables 2 and 3. In PR-GC (Table 2), a 
significant association was found between LAG3 expression 
in IM and the Lauren phenotype (p < 0.001). Enrichment of 
LAG3 + cells in the IM was more likely to be observed in 
males (p = 0.050). Higher LAG3 + density in both compart-
ments was associated with PD-1 expression (p = 0.004, TC, 
and p = 0.002, IM). LAG3 + cell density in IM showed a cor-
relation with EBV, MSI- and PD-L1-status (p < 0.001). No 
significant associations were found between LAG3 expres-
sion and patient age, tumor location, pTNM categories, pres-
ence of LVI, pR status, H. pylori infection, and MET-status. 
For analysis based on median values, see Suppl. Table 3.

In NAT-GC (Table 3), LAG3 expression (dichotomized 
by adapted cut-off value) in TC was associated with Lau-
ren phenotype (p < 0.001), presence of distant metasta-
ses (p = 0.015) and enrichment of PD-L1 + immune cells 
(p = 0.001). LAG3 + cell density in IM inversely correlated 
with ypT (p = 0.013) and UICC stage (p = 0.009). No asso-
ciations were observed between LAG3 + cell infiltration and 
patient age, sex, tumor location, ypN, presence of LVI, and 

HER2 status. LAG3 expression in both compartments was 
associated with PD-L1 expression in tumor cells (p = 0.040, 
TC, and p = 0.001, IM). No significant associations were 
found between LAG3 expression and EBV, MSI, MET, and 
PD1 status, probably because of the limited number of cases. 
For analysis based on median values, see Suppl. Table 4.

Discussion

Recently, LAG3 has gained increasing attention in immuno-
oncology, and its putative role as a biomarker has been stud-
ied in various solid tumors. In this retrospective study of GC, 
we demonstrated the distribution patterns of LAG3 + cells 
within tumor tissues and their association with clinicopatho-
logical data and survival. The main findings of the current 
study are as follows: (1) LAG3 + immune cell density differs 
significantly between PR-GC and NAT-GC; (2) LAG3 + cell 
density shows significant differences in spatial distribution 
patterns between tumor compartments in PR-GC, which 
is not seen in NAT-GC; (3) CSS is significantly longer for 
patients with LAG3 expression above the calculated cut-
offs in both cohorts; (4) LAG3 + immune cell density in TC 
is an independent prognostic factor of CSS in NAT-GC. 
Moreover, LAG3 + immune cell density is associated with 
various parameters, including sex, tumor location, Lauren 
phenotype, and HER2-, EBV-, MSI, and PD-1/PD-L1 status 
in PR-GC. In NAT-GC, an association with ypT and ypN 

Fig. 3  Kaplan–Meier curves in neoadjuvantly treated gastric cancer: 
cancer-specific survival according to LAG3 + cell density groups split 
by determined cut-off values (a tumor center, p = 0.003, log-rank test; 

b invasive margin, p = 0.136, log-rank test; small vertical lines in the 
graph indicate censored data)
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Table 2  Primarily resected GC: Association of LAG3 + cell density (dichotomized by determined cutoff) with demographical and clinicopatho-
logical patient characteristics

Characteristics Tumor center Invasive margin

Valid/missing LAG3 low LAG3 high p value Valid/missing LAG3 low LAG3 high p value

N (%) n (%) n (%) n (%) n (%) n (%)

Sex 441/0 0.515a 408/33 0.050a,*
 Male 277 (62.8) 45 (16.2) 232 (83.8) 254 (62.3) 207 (81.5) 47 (18.5)
 Female 164 (37.2) 31 (18.9) 133 (81.1) 154 (37.7) 137 (89.0) 17 (11.0)

Age 441/0 0.900b 408/33 0.276b

 < 68 years 220 (49.9) 37 (16.8) 183 (83.2) 201 (49.3) 165 (82.1) 36 (17.9)
 ≥ 68 years 221 (50.1) 39 (17.6) 182 (82.4) 207 (50.7) 179 (86.5) 28 (13.5)

Location 438/3 1.000a 405/36 0.186a

 Proximal stomach 141 (32.2) 24 (17.0) 117 (83.0) 130 (32.1) 105 (80.8) 25 (19.2)
 Distal stomach 297 (67.8) 51 (17.2) 246 (82.8) 275 (67.9) 237 (86.2) 38 (13.8)

Laurén phenotype 441/0 0.678a 408/33  < 0.001a

 Intestinal 226 (51.2) 39 (17.3) 187 (82.7) 216 (52.9) 177 (81.9) 39 (18.1)
 Diffuse 138 (31.3) 27 (19.6) 111 (80.4) 119 (29.2) 118 (99.2) 1 (0.8)
 Mixed 29 (6.6) 3 (10.3) 26 (89.7) 26 (6.4) 23 (88.5) 3 (11.5)
 Unclassified 48 (10.9) 7 (14.6) 41 (85.4) 47 (11.5) 26 (55.3) 21 (44.7)

pT category 441/0 0.071b 408/33 0.167b

 pT1 (a/b) 55 (12.5) 3 (5.5) 52 (94.5) 48 (11.8) 39 (81.3) 9 (18.8)
 pT2 48 (10.9) 7 (14.6) 41 (85.4) 47 (11.5) 36 (76.6) 11 (23.4)
 pT3 181 (41.0) 36 (19.9) 145 (80.1) 172 (42.2) 147 (85.5) 25 (14.5)
 pT4 (a/b) 157 (35.6) 30 (19.1) 127 (80.9) 141 (34.5) 122 (86.5) 19 (13.5)

pT category 441/0 0.025a,* 408/33 0.109a

 pT1 (a/b)/pT2 103 (23.4) 10 (9.7) 93 (90.3) 95 (23.3) 75 (78.9) 20 (21.1)
 pT3/pT4 (a/b) 338 (76.6) 66 (19.5) 272 (80.5) 313 (76.7) 269 (85.9) 44 (14.1)

pN category 440/1 0.604b 408/33 0.283b

 pN0 127 (28.9) 19 (15.0) 108 (85.0) 120 (29.4) 96 (80.0) 24 (20.0)
 pN1 60 (13.6) 13 (21.7) 47 (78.3) 57 (14.0) 49 (86.0) 8 (14.0)
 pN2 77 (17.5) 12 (15.6) 65 (84.4) 69 (16.9) 61 (88.4) 8 (11.6)
 pN3 (a/b) 176 (40.0) 32 (18.2) 144 (81.8) 162 (39.7) 138 (85.2) 24 (14.8)

pN category 440/1 1.000a 408/33 0.136a

 pN0 127 (28.9) 19 (15.0) 108 (85.0) 120 (29.4) 96 (80.0) 24 (20.0)
 pN + 313 (71.1) 57 (18.2) 256 (81.8) 288 (70.6) 248 (86.1) 40 (13.9)

pM category 441/0 1.000b 408/33 0.286b

 M0 358 (81.2) 62 (17.3) 296 (82.7) 335 (82.1) 279 (83.3) 56 (16.7)
 M1 83 (18.8) 14 (16.9) 69 (83.1) 73 (17.9) 65 (89.0) 8 (11.0)

UICC stage 440/1 0.361b 408/33 0.197b

 IA/IB 75 (17.0) 8 (10.7) 67 (89.3) 68 (16.7) 54 (79.4) 14 (20.6)
 IIA/IIB 96 (21.8) 18 (18.8) 78 (81.3) 93 (22.8) 79 (84.9) 14 (15.1)
 IIIA/IIIB/IIIC 186 (42.3) 36 (19.4) 150 (80.6) 174 (42.6) 146 (83.9) 28 (16.1)
 IV 83 (18.9) 14 (16.9) 69 (83.1) 73 (17.9) 65 (89.0) 8 (11.0)

pR status 434/5 0.336b 403/38 0.673b

 pR0 381 (87.4) 62 (16.3) 319 (83.7) 356 (88.3) 299 (84.0) 57 (16.0)
 pR1/pR2 55 (12.6) 12 (21.8) 43 (78.2) 47 (11.7) 41 (87.2) 6 (12.8)

L category 421/20 0.239b 390/51 0.096b

 L0 203 (48.2) 29 (14.3) 174 (85.7) 186 (47.7) 150 (80.6) 36 (19.4)
 L1 218 (51.8) 41 (18.8) 177 (81.2) 204 (52.3) 178 (87.3) 26 (12.7)

V category 420/21 0.677b 389/52 0.512b

 V0 373 (88.8) 61 (16.4) 312 (83.6) 345 (88.7) 292 (84.6) 53 (15.4)
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categories, as well as PD-L1 expression in tumor cells and 
immune cells is observed.

High LAG3 + expression has been associated with poor 
prognosis in non-small cell lung cancer (He et al. 2017; 
Shepherd et al. 2022), renal cell cancer (Giraldo et al. 2015), 
hepatocellular cancer (Guo et al. 2020), and pancreatic can-
cer (Seifert et al. 2021) but with favorable prognosis in breast 
cancer (Burugu et al. 2017), colon cancer (Rhyner Agocs 
et al. 2021), and esophageal cancer (Zhang et al. 2018; 
Gebauer et al. 2020). In a large cohort of colorectal cancers, 
the prognostic effect differed based on the spatial location of 
LAG3 + tumor-infiltrating lymphocytes (TILs), and showed 
poor CSS in cases with high intra-tumoral LAG3 + TILs 
and improved CSS when LAG3 was identified in stromal 
immune cells (Al-Badran et al. 2021). Another interesting 

finding was an association of LAG3 with better outcome 
in early-stage tumors (Saleh et al. 2019). What is more, 
although LAG3 expression has been associated with more 
aggressive tumor features in breast cancer, patients with 
high LAG3 + intraepithelial TILs showed improved survival 
(Burugu et al. 2017). Interestingly, low LAG3 + expression 
became an independent predictor of favorable prognosis in 
breast cancers that were treated with neoadjuvant chemo-
therapy (Asano et al. 2022). To sum up, previous results 
suggest that the prognostic effect of LAG3 may depend on 
the tumor type, spatial location of TILs, clinical stage, and 
therapeutic approach (primary surgery vs. NAT).

LAG3 expression has also been observed in GC. A pro-
spective study of solid tumors performed by Lee et al. (2019) 
included 53 metastatic GCs cases. They analyzed TMAs 

Table 2  (continued)

Characteristics Tumor center Invasive margin

Valid/missing LAG3 low LAG3 high p value Valid/missing LAG3 low LAG3 high p value

N (%) n (%) n (%) n (%) n (%) n (%)

 V1 47 (11.2) 9 (19.1) 38 (80.9) 44 (11.3) 35 (79.5) 9 (20.5)
H. pylori status 374/67 0.563a 351/90 0.418a

 Negative 317 (84.8) 51 (16.1) 266 (83.9) 295 (84.0) 247 (83.7) 48 (16.3)
 Positive 57 (15.2) 11 (19.3) 46 (80.7) 56 (16.0) 50 (89.3) 6 (10.7)

HER2 status 412/29 0.482a 384/57 0.806a

 Negative 378 (91.7) 69 (18.3) 309 (81.7) 350 (91.1) 295 (84.3) 55 (15.7)
 Positive 34 (8.3) 4 (11.8) 30 (88.2) 34 (8.9) 28 (82.4) 6 (17.6)

MET status 430/11 0.238a 401/40 0.282a

 Negative 397 (92.3) 71 (17.9) 326 (82.1) 374 (93.3) 312 (83.4) 62 (16.6)
 Positive 33 (7.7) 3 (9.1) 30 (90.9) 27 (6.7) 25 (92.6) 2 (7.4)

EBV status 431/10 0.056a 400/41  < 0.001a

 Negative 412 (95.6) 75 (18.2) 337 (81.8) 383 (95.8) 333 (86.9) 50 (13.1)
 Positive 19 (4.4) 0 (0) 19 (100) 17 (4.2) 4 (23.5) 13 (76.5)

MSI status 429/12 0.331a 398/43  < 0.001a

 Negative (MSS) 397 (92.5) 72 (18.1) 325 (81.9) 366 (92.0) 316 (86.3) 50 (13.7)
 Positive 32 (7.5) 3 (9.4) 29 (90.6) 32 (8.0) 18 (56.3) 14 (43.8)

PD-L1 in tumor  cellsc 419/22 0.227b 388/53  < 0.001b

 Negative (IRS ≤ 2) 319 (76.1) 59 (18.5) 260 (81.5) 292 (75.3) 266 (91.1) 26 (8.9)
 Positive (IRS > 2) 100 (23.9) 13 (13.0) 87 (87.0) 96 (24.7) 58 (60.4) 38 (39.6)

PD-L1 in immune  cellsc 419/22 0.593b 388/53  < 0.001b

 Negative (QS ≤ 1) 267 (63.7) 48 (18.0) 219 (82.0) 243 (62.6) 219 (90.1) 24 (9.9)
 Positive (QS > 1) 152 (36.3) 24 (15.8) 128 (84.2) 145 (37.4) 105 (72.4) 40 (27.6)

PD-1 in immune cells 422/19 0.004a 391/50 0.002a

 Not present 191 (45.3) 44 (23.0) 147 (77.0) 174 (44.5) 157 (90.2) 17 (9.8)
 Present 231 (54.7) 28 (12.1) 203 (87.9) 217 (55.5) 170 (78.3) 47 (21.7)

IRS immunoreactivity score, QS quantity score
*Statistically non-significant after multiple testing correction
a Fisher's exact test
b Kendall's tau test
c Cutoffs used by Böger et al.
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Table 3  Neoadjuvantly  treated GC: Association of LAG3 + cell density (dichotomized by determined cutoff) with demographical and clinico-
pathological patient characteristics

Characteristics Tumor center Invasive margin

Valid/missing LAG3 low LAG3 high p value Valid/missing LAG3 low LAG3 high p value

n (%) n (%) n (%) n (%) n (%) n (%)

Sex 139/0 0.404a 124/15 0.350a

 Male 110 (79.1) 16 (14.5) 94 (85.5) 98 (79.0) 86 (87.8) 12 (12.2)
 Female 29 (20.9) 6 (20.7) 23 (79.3) 26 (21.0) 21 (80.8) 5 (19.2)

Age 139/0 0.170b 124/15 0.124b

 < 64 years 69 (49.6) 14 (20.3) 55 (79.7) 59 (47.6) 54 (91.5) 5 (8.5)
 ≥ 64 years 70 (50.4) 8 (11.4) 62 (88.6) 65 (52.4) 53 (81.5) 12 (18.5)

Location 139/0 0.074a 124/15 0.571a

 Proximal stomach 99 (71.2) 12 (12.1) 87 (87.9) 88 (71.0) 77 (87.5) 11 (12.5)
 Distal stomach 40 (28.8) 10 (25.0) 30 (75.0) 36 (29.0) 30 (83.3) 6 (16.7)

Laurén phenotype 139/0  < 0.001a 124/15 0.068a

 Intestinal 73 (52.5) 4 (5.5) 69 (94.5) 68 (54.8) 58 (85.3) 10 (14.7)
 Diffuse 27 (19.4) 11 (40.7) 16 (59.3) 23 (18.5) 23 (100) 0 (0.0)
 Mixed 29 (20.9) 5 (17.2) 24 (82.8) 24 (19.4) 18 (75.0) 6 (25.0)
 Unclassified 10 (7.2) 2 (20.0) 8 (80.0) 9 (7.3) 8 (88.9) 1 (11.1)

ypT category 139/0 0.333b 124/15 0.013b,*
 pT1 (a/b) 18 (13.0) 3 (16.7) 15 (83.3) 14 (11.3) 11 (78.6) 3 (21.4)
 pT2 23 (16.5) 3 (13.0) 20 (87.0) 20 (16.1) 14 (70.0) 6 (30.0)
 pT3 88 (63.3) 12 (13.6) 76 (86.4) 81 (65.3) 73 (90.1) 8 (9.9)
 pT4 (a/b) 10 (7.2) 4 (40.0) 6 (60.0) 9 (7.3) 9 (100) 0 (0.0)

ypT category 139/0 1.000a 124/15 0.018a,*
 pT1 (a/b)/pT2 41 (29.5) 6 (14.6) 35 (85.4) 34 (27.4) 25 (73.5) 9 (26.5)
 pT3/pT4 (a/b) 98 (70.5) 16 (16.3) 82 (83.7) 90 (72.6) 82 (91.1) 8 (8.9)

ypN category 139/0 0.134b 124/15 0.087b

 pN0 44 (31.7) 7 (15.9) 37 (84.1) 38 (30.6) 30 (78.9) 8 (20.5)
 pN1 36 (25.9) 2 (5.6) 34 (94.4) 32 (25.8) 28 (87.5) 4 (12.5)
 pN2 35 (25.2) 5 (14.3) 30 (85.7) 32 (25.8) 28 (87.5) 4 (12.5)
 pN3 (a/b) 24 (17.3) 8 (33.3) 16 (66.7) 22 (17.7) 21 (95.5) 1 (4.5)

ypN category 139/0 1.000a 124/15 0.156a

 pN0 44 (31.7) 7 (15.9) 37 (84.1) 38 (30.6) 30 (78.9) 8 (21.1)
 pN + 95 (68.3) 15 (15.8) 80 (84.2) 86 (69.4) 77 (89.5) 9 (10.5)

ypM category 139/0 0.015 b * 124/15 0.374b

 M0 128 (92.1) 17 (13.3) 111 (86.7) 116 (93.5) 99 (85.3) 17 (14.7)
 M1 11 (7.9) 5 (45.5) 6 (54.5) 8 (100) 8 (37.5) 0 (0.0)

UICC stage 139/0 0.985b 124/15 0.009b,*
 IA/IB 21 (15.1) 2 (9.5) 19 (90.5) 18 (14.5) 14 (77.8) 4 (22.2)
 IIA/IIB 25 (18.0) 6 (24.0) 19 (76.0) 22 (17.7) 16 (72.7) 6 (27.3)
 IIIA/IIIB/IIIC 76 (54.7) 11 (14.5) 65 (85.5) 69 (55.7) 62 (89.9) 7 (10.1)
 IV/IVA/IVB 17 (12.2) 3 (17.6) 14 (82.4) 15 (12.1) 15 (100) 0 (0.0)

pR status 134/5 1.000b 120/19 0.125b

 pR0 117 (87.3) 19 (16.2) 98 (83.8) 105 (87.5) 88 (83.8) 17 (16.2)
 pR1/pR2 17 (12.7) 3 (17.6) 14 (82.4) 15 (12.5) 15 (100) 0 (0.0)

L category 136/3 0.627b 121/18 1.000b

 L0 90 (66.2) 15 (16.7) 75 (83.3) 78 (64.5) 67 (85.9) 11 (14.1)
 L1 46 (33.8) 6 (13.0) 40 (87.0) 43 (35.5) 37 (86.0) 6 (14.0)

V category 133/6 0.207b 118/21 0.357b

 V0 122 (91.7) 20 (16.4) 102 (83.6) 107 (90.7) 91 (85.0) 16 (15.0)
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(two tissue cores from each GC) and regarded positive cases 
as any presence of LAG3 + immune cells regardless of their 
number (Lee et al. 2019). LAG3 expression was found in 
24.7% of all GCs and was associated only with EBV sta-
tus. No significant differences in sex, age, primary tumor 
site, Lauren classification, HER2 status, or OS were found 
between patients with or without LAG3 expression.

Lv et al. (2021) investigated the clinical and molecu-
lar correlations of LAG3 + cell infiltration in a large set 
of 464 GCs. Using TMAs (one core from each GC), they 
evaluated the mean density of LAG3 + immune cells and 
dichotomized all cases into LAG3 + low and LAG3 + high 
groups based on the median value of 59 cells/HPF. In their 
study, LAG3 + cell infiltration was associated with male 
sex and immuno-evasive contexture, and was found to be 
an independent adverse prognostic factor for both OS and 
disease-free survival (Lv et al. 2021). LAG3 showed higher 

expression in EBV + subtype and defective MLH1 subtype, 
as well as predicted poor survival in these subtypes (Lv et al. 
2021).

Park et al. (2021) performed conventional and multiplex 
IHC on GC TMAs (n = 385, two tissue cores from each case) 
for immune cell markers and immune checkpoint receptors, 
including LAG3, as well as survival analysis. Positive LAG3 
expression was defined as immunostaining in ≥ 5% of the 
immune cells, and it was found in 45.5%, 29.6%, and 50.1% 
of cases in the TC, IM, and TC or IM, respectively. LAG3 
was expressed more commonly by  CD3+/CD8+ T cells in 
the tumor area than in the stromal compartment (Park et al. 
2021). It was associated with male sex, distal location, intes-
tinal and mixed subtypes by Lauren, and better prognosis in 
multivariate survival analysis (Park et al. 2021).

These varying findings regarding the role of LAG3 in 
malignant tumors could be explained by the use of differ-
ent assessment and scoring methods. Currently, there is no 

Table 3  (continued)

Characteristics Tumor center Invasive margin

Valid/missing LAG3 low LAG3 high p value Valid/missing LAG3 low LAG3 high p value

n (%) n (%) n (%) n (%) n (%) n (%)

 V1 11 (8.3) 8 (72.7) 3 (27.3) 11 (9.3) 11 (100) 0 (0.0)
HER2 status 135/4 0.654a 122/17 0.604a

 Negative 125 (92.6) 19 (15.2) 106 (84.8) 113 (92.6) 97 (85.8) 16 (14.2)
 Positive 10 (7.4) 2 (20.0) 8 (80.0) 9 (7.4) 9 (100) 0 (0.0)

MET status 131/8 0.246a 117/22 0.527a

 Negative 125 (95.4) 19 (15.2) 106 (84.8) 112 (95.7) 97 (86.6) 15 (13.4)
 Positive 6 (4.6) 2 (33.3) 4 (66.7) 5 (4.3) 4 (80.0) 1 (20.0)

EBV status 120/19 1.000a 108/31 0.050a,*
 Negative 117 (97.5) 20 (17.1) 97 (82.9) 105 (97.2) 92 (87.6) 13 (12.4)
 Positive 3 (2.5) 0 (0.0) 3 (100) 3 (2.8) 1 (33.3) 2 (66.7)

MSI status 127/12 0.326a 115/24 0.055a

 Negative (MSS) 120 (94.5) 19 (15.8) 101 (84.2) 108 (93.9) 95 (88.0) 13 (12.0)
 Positive (MSI) 7 (5.5) 2 (28.6) 5 (71.4) 7 (6.1) 4 (57.1) 3 (42.9)

PD-L1 in tumor  cellsc 109/30 0.040b,* 100/39 0.001b

 Negative (IRS = 0) 84 (77.1) 19 (22.6) 65 (77.4) 76 (76.0) 70 (92.1) 6 (7.9)
 Positive (IRS > 0) 25 (22.9) 1 (4.0) 24 (96.0) 24 (24.0) 15 (62.5) 9 (37.5)

PD-L1 in immune  cellsc 113/26 0.001b 100/39 0.092b

 Negative (QS ≤ 1) 66 (58.4) 19 (28.8) 47 (71.2) 55 (55.0) 50 (90.9) 5 (9.1)
 Positive (QS > 1) 47 (41.6) 2 (4.3) 45 (95.7) 45 (45.0) 35 (77.8) 10 (22.2)

PD-1 in immune cells 113/26 0.612a 100/39 0.590a

 Not present 7 (6.2) 2 (28.6) 5 (71.4) 7 (7.0) 7 (100.0) 0 (0.0)
 Present 106 (93.8) 19 (17.9) 87 (82.1) 93 (93.0) 78 (83.9) 15 (16.1)

IRS immunoreactivity score, QS quantity score
*Statistically non-significant after multiple testing correction
a Fisher's exact test
b Kendall's tau test
c Cut-offs used by Schoop et al.
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standardized assay for LAG3 expression in GC tissue. Sev-
eral approaches, including absolute number per HPF (Lv 
et al. 2021) or per  mm2 (Shepherd et al. 2022), and cut-offs, 
such as any positivity (Burugu et al. 2017; Lee et al. 2019; 
Rhyner Agocs et al. 2021), median number (Lv et al. 2021), 
1% of all nucleated cells (Johnson et al. 2022), or 5% of all 
TILs (Park et al. 2021), have been used in GC and other solid 
malignancies. Furthermore, the use of the TMA technique 
might influence the results because of the limited amount of 
tissue, uneven distribution of infiltrating immune cells, and 
heterogeneous expression of immune checkpoint molecules. 
It has been demonstrated on TMAs as substitutes for core 
biopsies that at least five biopsies are needed to reflect the 
objective status of PD-L1 expression as in whole sections 
of GC (Ye et al. 2020).

In previous studies, LAG3 expression was correlated with 
EBV + and MSI-H GC molecular subtypes. Our results con-
firm this association in a Western GC cohort, however only 
when using the median cut-off values (an approach used by 
Lv et al.). Both subtypes are known to contain a high num-
ber of TILs. DNA mismatch repair-deficient tumors harbor 
large amounts of somatic mutations and tumor-specific neo-
antigens that trigger neo-antigen-specific T cells and make 
them sensitive to immune checkpoint blockade (Le et al. 
2017). Similarly, EBV evokes an active immune response 
that leads to enrichment in activated CD8 + T cells (Landais 
et al. 2005; van Beek et al. 2006). In a study of Hodgkin’s 
lymphoma, EBV infection increased gene expression of 
LAG3 and immunosuppressive cytokines associated with 
type-1 T regulatory cells (Tr1) (Morales et al. 2014).

Although expression of inhibitory receptors is a hallmark 
of T cell exhaustion, they are transiently expressed already 
on activated effector T cells (Wherry and Kurachi 2015). 
According to a study by Bae et al. (2014), the majority of 
LAG3 is localized in lysosomes in resting cells and translo-
cates to the cell surface upon stimulation. This could explain 
the enrichment of LAG3 + cells in early-invasive tumors 
(pT1/2) despite LAG3 classical role in immunosuppres-
sive TME. We assume that, in such cases, LAG3 expression 
could rather be a sign of an activated immune response. This 
feature makes the LAG3 protein an attractive marker for 
the assessment of potential anti-tumor response and, thus, 
patient stratification for immunotherapy.

Another interesting finding is higher LAG3 expression 
in males, which was also demonstrated by both larger Asian 
studies (Park et al. 2021; Lv et al. 2021). There is increasing 
awareness about sexual dimorphism in the immune response 
in solid cancers and its effect on patient outcomes. In a 
meta-analysis of 17 clinical trials, males appeared to ben-
efit more frequently from ICI therapy than females (Parmar 
et al. 2022). Higher tumor mutational burden/antigenicity 
and T cell-dominating inflammation are thought to be key 
features of such differences in males (Conforti et al. 2019). 

Previously, tumor-associated neutrophils at the invasive 
front were found to be an independent predictor of CSS in 
females of the same PR-GC cohort (Clausen et al. 2020). 
Current findings expand the sex-based differences in TME 
of PR-GC, now also including LAG3.

Furthermore, NAT also affects TME. Chemotherapeu-
tics and anticancer agents increase tumor antigenicity and 
response of CTLs or inhibit immunosuppressive pathways, 
thus favoring anti-tumor response (Galluzzi et al. 2015). 
Previous GC studies of paired pre-NAT biopsies and post-
NAT resection specimens demonstrated that chemotherapy 
increases CD8 + T cell density (Yu et al. 2019; Wei et al. 
2021; Christina Svensson et al. 2021). It also induces mac-
rophage markers CD68 and CD163 (Wei et al. 2021) and 
immune checkpoint molecules PD1, PD-L1, and TIM3 (Yu 
et al. 2019), but decreases CD20 + B cell density (Christina 
Svensson et al. 2021). However, there are no data regarding 
LAG3 in GC. Previous studies on esophageal and rectal can-
cers revealed upregulation of immune checkpoint molecules, 
including LAG3, after chemo-radiation (Kelly et al. 2018; 
Peng et al. 2021). Unfortunately, we were unable to char-
acterize the direct effect of NAT on the TME. However, in 
our study, the median density of LAG3 + cells was lower in 
NAT-GC than that in PR-GC. There was no significant dif-
ference in LAG3 + cell distribution between TC and IM and 
among molecular subtypes (i.e., EBV and MSI) in NAT-GC, 
as observed in PR-GC. Collectively, these findings support 
the notion that NAT also affects the expression of LAG3 
in GC.

Our study has several limitations. This retrospective 
study was restricted to immunohistochemical assessment of 
LAG3. No further subtyping of LAG3 + immune cells was 
performed. In the NAT-GC sub-cohort, different treatment 
schemes and doses were used (according to the changing 
treatment protocols). No matched pre- and post-treatment 
samples were compared. Digital analysis is performed 
only on sections where marking of tumor compartments 
was possible. Some samples lacked IM values because the 
stained sections included neoplastic tissue only (marked as 
TC). However, this is a large and well-characterized set of 
both PR-GC and NAT-GC. To our knowledge, this is the 
first study to investigate LAG3 expression in GC of Cau-
casian origin. The assessment was performed on whole tis-
sue sections to reduce the under- or over-representation of 
LAG3 + cells due to their heterogeneous distribution within 
the TME. The same marking techniques and software set-
tings were used for the entire cohort. To increase the repro-
ducibility of the results, a dichotomous scoring method was 
used.

In conclusion, despite the postulated immunosuppressive 
role of LAG3 within the TME of solid tumors, the current 
findings demonstrate differences in the TME among the 
main histological and molecular subtypes of GC. A high 
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density of LAG3 + cells predicts favorable prognosis in 
NAT-GC. LAG3 may have different, stage-based functional 
roles within the TME. Increased numbers of LAG3 + cells 
within GC tissue could be a sign of crosstalk between can-
cer and immune cells rather than a sign of exhausted, dys-
functional T cells. The precise mechanisms by which LAG3 
regulates T cell function require further investigation. The 
current findings also raise an important issue in GC immune 
checkpoint studies based on TMA analysis using single-tis-
sue cores. In the present study, LAG3 + immune cells were 
detectable in all cases and demonstrated spatial heteroge-
neity. Considering the popularity of LAG3 as a potential 
biomarker in cancer studies, a robust LAG3 assay should be 
developed. Cut-offs may vary between TC and IM, as well 
as between primarily resected and neo-adjuvantly treated 
GCs, which merits specific consideration. Matters are far 
more complicated than anticipated.
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