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Abstract
Purpose   Less-invasive early diagnosis of lung cancer is essential for improving patient survival rates. The purpose of this 
study is to demonstrate that serum comprehensive miRNA profile is high sensitive biomarker to early-stage lung cancer in 
direct comparison to the conventional blood biomarker using next-generation sequencing (NGS) technology combined with 
automated machine learning (AutoML).
Methods  We first evaluated the reproducibility of our measurement system using Pearson’s correlation coefficients between 
samples derived from a single pooled RNA sample. To generate comprehensive miRNA profile, we performed NGS analysis 
of miRNAs in 262 serum samples. Among the discovery set (57 patients with lung cancer and 57 healthy controls), 1123 
miRNA-based diagnostic models for lung cancer detection were constructed and screened using AutoML technology. The 
diagnostic faculty of the best performance model was evaluated by inspecting the validation samples (74 patients with lung 
cancer and 74 healthy controls).
Results  The Pearson’s correlation coefficients between samples derived from the pooled RNA sample ≥ 0.98. In the validation 
analysis, the best model showed a high AUC score (0.98) and a high sensitivity for early stage lung cancer (85.7%, n = 28). 
Furthermore, in comparison to carcinoembryonic antigen (CEA), a conventional blood biomarker for adenocarcinoma, the 
miRNA-based model showed higher sensitivity for early-stage lung adenocarcinoma (CEA, 27.8%, n = 18; miRNA-based 
model, 77.8%, n = 18).
Conclusion  The miRNA-based diagnostic model showed a high sensitivity for lung cancer, including early-stage disease. 
Our study provides the experimental evidence that serum comprehensive miRNA profile can be a highly sensitive blood 
biomarker for early-stage lung cancer.
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Abbreviations
miRNA	� MicroRNA
NGS	� Next-generation sequencing
AutoML	� Automated machine learning
CT	� Computed tomography
ML	� Machine learning
COVID-19	� Coronavirus disease 2019
JRCN	� Japanese Red Cross Aichi Medical Center 

Nagoya Daiichi Hospital
OCROMC	� OCROM Clinic
OPHACH	� Osaka Pharmacology Clinical Research 

Hospital
TOCROMC	� ToCROM Clinic
GBM	� Gradient boosting machine
AUC​	� Area under the curve
CEA	� Carcinoembryonic antigen
CYFRA21-1	� Cytokeratin 19 fragment 21-1
Cis	� Confidence intervals
PCA	� Principal component analysis
BA	� Boxplot analysis
NSCLC	� Non-small cell lung carcinoma
AC	� Adenocarcinoma
SCC	� Squamous cell carcinoma
SCLC	� Small-cell lung carcinoma

Introduction

Lung cancer is the second most common malignancy and 
the first leading cause of cancer-related deaths in the world 
(Sung et al. 2021). Since the 5-year survival rate for patients 
with lung cancer patients diagnosed at an early stage is 
approximately 70% or more, which drops to less than 10% 
for patients diagnosed at an advanced stage, prompt detec-
tion might be a critical step in influencing the prognosis 
of lung cancer (Goldstraw et al. 2016). Although low-dose 
CT has been considered a screening tool for detecting lung 
cancer, the high false-positive rates of this technology might 
lead to over-diagnosis and consequently over-treatment 
(Bach et al. 2012). Hence, the field of early detection of 
lung cancer remains a challenge.

MicroRNAs(miRNAs), a class of small single-stranded 
noncoding RNAs (Hermeking 2012), play important roles 
in various cellular processes, such as cell differentiation 
and apoptosis, by regulating gene expression (O'Brien et al. 
2018). Several recent studies have reported that the expres-
sion of various miRNAs changes dynamically in the body 
fluids of patients with lung cancer (Sozzi et al. 2014; Jin 
et al. 2017; Asakura et al. 2020).

Next-generation sequencing (NGS) ensures high accuracy 
in distinguishing miRNAs at a single-base resolution, and 
is suitable for generating comprehensive miRNA profiles. 
NGS presents a high detection sensitivity and a high level of 

technical reproducibility compared to that of other technolo-
gies (Tam et al. 2014). However, no previous study has dem-
onstrated the clinical utility of a lung cancer discrimination 
model constructed using comprehensive miRNA profiles 
generated via NGS-based measurements.

Machine learning (ML) is one of the most powerful tools 
in the biomedical classification analysis of various diseases 
including coronavirus disease 2019 (COVID-19), neurologi-
cal disorders and cancer (Gao et al. 2020; Boutet et al. 2021; 
Kourou et al. 2014). However, constructing an ML model 
manually requires statistical knowledge and immense effort 
in significant coding, resulting in a difficulty of the wide dis-
tribution of this powerful tool in biomedical research fields 
(Papoutsoglou et al. 2021).

Therefore, this study aimed to validate the ability of 
serum miRNA profiles to distinguish between patients with 
lung cancer and healthy controls by employing NGS tech-
nology in combination with automated machine learning 
(AutoML).

Materials and methods

Patient recruitment and sample collection

Serum was collected from patients with lung cancer at the 
Japanese Red Cross Aichi Medical Center Nagoya Daiichi 
Hospital (JRCN). All lung cancer cases were pathologically 
diagnosed using surgery or biopsy specimens and confirmed 
to be free of other malignancies at the time of blood sam-
pling. The time interval between blood sampling and serum 
freezing at – 80 °C was observed strictly within the same 
day, and serum samples showing hemolysis were excluded. 
Patients with lung cancer were divided into a discovery data-
set and a validation dataset according to their recruitment 
period (discovery dataset, from February 2021 to July 2021; 
validation dataset, from August 2021 to June 2022).

Serum was collected from healthy participants at the 
OCROM clinic (OCROMC), Osaka Pharmacology Clini-
cal Research Hospital (OPHACH) and ToCROM clinic 
(TOCROMC). Inclusion criterion for healthy control par-
ticipants were no history of malignant tumor according to 
self-reported medical history at the time of blood sampling 
and 1 year later. In our discovery dataset, 57 healthy serum 
samples were selected so that the age distribution matched 
that of participants with the lung cancer. In addition, in our 
validation dataset, 74 healthy serum samples were selected 
so that the age and sex distributions matched those of the 
lung cancer participants.

All individuals gave their written consent for the use of 
their serum samples and clinical information. This study 
was reviewed and approved by the Research Ethics Com-
mittee of JRCN (Registry number: 2020-107), OCROMC 
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(Registry number: 1108), OPHACH (Registry number: 
1108), TOCROMC (Registry number: 1108) and ARKRAY, 
Inc. (Registry number: EC590016).

Blood sample collection and miRNA extraction 
from serum

All blood samples were collected in serum-separating tubes. 
After blood collection, these sera were separated by centrifu-
gation, and aliquoted into cryotubes. Then, these sera were 
frozen at − 80 °C until miRNA extraction. RNA samples 
containing miRNA were extracted from the serum using the 
Maxwell® RSC miRNA Plasma and Serum kit (Promega). 
For monitoring RNA extraction, QIAseq miRNA Library 
QC Spike-ins (Qiagen) were spiked into each serum sam-
ples. miRNA concentrations were quantified using Qubit™ 
microRNA Assay Kits (Thermo Fisher Scientific). These 
RNA samples were stored at − 80 °C until NGS library 
preparation.

NGS library preparation and NGS

miRNA libraries were constructed using a QIAseq 
miRNA Library Kit (Qiagen) and the QIAseq miRNA NGS 
96 Index IL (96) (Qiagen) with Agilent Bravo NGS (Agi-
lent Technologies). The library size distribution was checked 
using a TapeStation HS D1000 system (Agilent Technolo-
gies). The library samples were pooled, and then the DNA 
solution, including PhiX control library (Illumina), was 
spiked in the sample mixture, consistent with the manufac-
ture’s recommendations. The pooled sample was sequenced 
on four lanes of a NextSeq 500/550 High Output Kit (75 
cycles) sequenced using a NextSeq 550 platform (Illumina). 
The reads were annotated using the QIAseq miRNA primary 
analysis pipeline provided by the GeneGlobe Data Analy-
sis Center (https://​geneg​lobe.​qiagen.​com/​jp/​analy​ze/). The 
sequencing output was mapped to miRBase v21 using the 
QIAseq miRNA Primary Analysis Pipeline.

miRNA data normalization and production

Raw read counts were normalized using reads per million 
(RPM) in each of the samples, and then the normalized data 
were log2-transformed (Campbell et al. 2015). The offset did 
not include miRNAs with near-zero read counts in the dis-
covery dataset because it was filtered to include only miR-
NAs with minimum read count values ≥ 15 reads in each 
of the profiled samples. The remaining 181 miRNAs were 
used for subsequent analyses and are shown in Table S1. 
In Table S1, the miRNAs were sorted in descending order 
based on their average RPM values among the samples in 
discovery dataset.

Reproducibility verification of the reproducibility 
of comprehensive miRNA NGS analysis

We conducted pairwise correlation analysis of miRNAs 
to verify the reproducibility to determine comprehensive 
miRNA profile (Figs. 1 and 2). In Fig. 1, we analyzed 
miRNA expressions between 48 samples derived from a 
single pooled RNA. All the sample data were acquired 
through a single NGS measurement. In Fig. 2, we ana-
lyzed miRNA expressions between 12 samples derived 
from a single pooled RNA. Each measurement included 
two samples, and six measurements were performed in 
total. The single pooled RNA samples were derived from 
blood donated by the employees of ARKRAY, Inc., and 
the miRNAs analyzed are shown in Table S1.

Screening of the cancer discrimination model using 
AutoML

To construct and screen cancer diagnostic models, we used 
the automated classification algorithm h2o.automl in the 
Java application H2O Flow of version 3.34.0.1, which 
was downloaded from https://​www.​h2o.​ai/ (LeDell and 
Poirier 2020). To construct models, default random forest, 
extremely randomized forest, gradient boosting machine 
(GBM), and eXtream gradient boosting were used. A total 
of 181 miRNAs were used to construct miRNA-based 
diagnostic models (Table S1). The constructed models 
were ranked using a five-fold cross-validation area under 
the curve (AUC) score calculated by the H2O application 
in the discovery dataset to estimate the diagnostic perfor-
mance without sacrificing a validation split. For further 
analysis, we then selected the primary model that exhib-
ited the best five-fold cross-validation AUC score. Finally, 
the performance of the miRNA-based diagnostic model 
that was selected as the best model was evaluated using the 
validation dataset (Fig. 4). The highest F1 score computed 
by the H2O application in the five-fold cross-validation 
was used as the threshold of the best diagnostic model in 
the validation analysis.

Tumor marker assays

Serum carcinoembryonic antigen (CEA) levels were deter-
mined using Alinity CEA Reagent Kit (Abbott Laborato-
ries), whereas cytokeratin 19 fragment 21-1 (CYFRA21-1) 
levels were determined using Alinity CYFRA 21-1 Rea-
gent Kit (Abbott Laboratories). Their reference range was 
respectively 0 to 5 ng/ml for CEA and 0 to 3.5 ng/ml for 
CYFRA 21-1.

https://geneglobe.qiagen.com/jp/analyze/
https://www.h2o.ai/
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Statistical analysis

Pairwise correlation analysis, principal component analysis, 
box plots, and AUC calculation were conducted using the 
statistical analysis software R (version 4.0.3) and H2O Flow. 
Student’s t test for continuous variables and Fisher's exact 
test for categorical variables were used to analyze patient 
characteristics and diagnostic performance. To evaluate 
model performance (sensitivity and specificity), 95% confi-
dence intervals (CIs) were calculated using the Wilson score 
method.

Results

Characteristics of the subjects

To generate miRNA expression profiles using NGS, 131 
lung cancer serum samples from the JRCN and 131 healthy 
samples from the OPHACH, OCROMC, and ToCROMC 
were subjected to comprehensive NGS analysis. Lung can-
cer samples were divided into discovery (recruited from 
February 2021 to July 2021) and validation (recruited from 
August 2021 to June 2022) datasets. In both these datasets, 
healthy participants were selected so that the age distribution 

Fig. 1   Pairwise correlation 
analysis of miRNA expressions 
between 48 samples derived 
from a single pooled RNA. All 
the sample data were acquired 
through a single NGS measure-
ment. Each sample is assigned 
a sample number, and the 
correlation coefficients between 
samples are color coded in 
matrices
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Fig. 2   Pairwise correlation analysis of miRNA expressions between 
12 samples derived from a single pooled RNA. Each measurement 
included two samples. Six measurements were performed in total 
(first measurement, NGS1; second measurement, NGS2; third meas-
urement, NGS3; fourth measurement, NGS4; fifth measurement, 
NGS5; and sixth measurement, NGS6). The correlation coefficients 
between samples are color coded in matrices
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matched that of patients with lung cancer. The discovery 
dataset included 57 lung cancer samples and 57 healthy 
samples, and the validation dataset included 74 lung can-
cer samples and 74 healthy samples. The detailed patient 
characteristics for both datasets are shown in Table 1. In the 
validation dataset, we observed no significant differences in 
age and sex; however, the proportion of smokers was signifi-
cantly higher among patients with lung cancer than among 
healthy participants (Fisher's exact test, P < 0.001).

Technical validation of comprehensive NGS analysis 
of miRNA

First, we evaluated the reproducibility of our analytical 
system in identifying sample miRNA profiles by analyz-
ing healthy samples from six different NGS measurements. 
Each measurement (NGS1, NGS2, NGS3, NGS4, NGS5, 
and NGS6) showed high percentages of reads mapping to 
miRNAs in the total reads, with an above averaging 30% 
(Fig. S1A). To explore NGS measurement biases, we per-
formed principal component analysis (PCA) and boxplot 
analysis (BA) for each miRNA profile among healthy sam-
ples. The PCA and BA results showed no noticeable differ-
ences among NGS measurements (Fig. S1B, C). In addition, 

we evaluated the measurement reproducibility by analyzing 
the Pearson’s correlation coefficients of the miRNA profiles 
among 48 samples derived from a single pooled RNA sam-
ple in one NGS measurement. The results showed that all 
correlation coefficients were ≥ 0.99 (Fig. 1). Furthermore, 
pairwise correlation analysis showed remarkably high cor-
relation coefficients ranging from 0.98 to 1.00 among 12 
samples, which were derived from a single pooled RNA and 
prepared for six different NGS measurements (Fig. 2). These 
results demonstrated that our constructed system had a high 
reproducibility in identifying serum miRNA profiles.

Screening of miRNA‑based diagnosis models 
to select a best model for detecting lung cancer 
with high accuracy

AutoML enables the construction of ML models without 
requiring immense time for coding and manually tuning 
hyper-parameters (Papoutsoglou et al. 2021). Among the 
discovery set (lung cancer, n = 57; healthy, n = 57), 1123 
miRNA-based diagnostic models for lung cancer detection 
were constructed and screened using AutoML technology. 
A total of 181 miRNAs were used to construct the diag-
nostic models (Table S1). To select the best miRNA-based 

Table 1   Clinical characteristics of lung cancer and healthy participants in the discovery and validation datasets

NSCLC non-small cell lung carcinoma, AC adenocarcinoma, SCC squamous cell carcinoma, Others other non-small cell carcinoma, SCLC small 
cell lung carcinoma
a Student’s t test
b Fisher's exact test

Characteristics Discovery set (N = 114) Validation set (N = 148)

Lung cancer (N = 57) Healthy (N = 57) Lung cancer (N = 74) Healthy (N = 74) P-value

Age, years mean(SD) 72.1 (8.8) 70.0 (9.9) 73.9 (8.5) 71.4 (9.9) 0.18a

Sex, n (%) 1b

 Men 45 (78.9) 28 (49.1) 47 (63.5) 47 (63.5)
 Women 12 (21.1) 29 (50.9) 27 (36.5) 27 (36.5)

Smoking status, n (%) 3.6 × 10–4 b

 Current or Former 45 (78.9) 17 (29.8) 56 (75.7) 34 (45.9)
 Never 10 (17.5) 40 (70.2) 18 (24.3) 40 (54.1)
 NA 2 (3.5) – – –

Subtype, n (%)
 NSCLC 52 (91.2) – 67 (90.5) –
 AC 35 (61.4) – 37 (50.0) –
 SCC 11 (19.3) – 21 (28.4) –
 Others 6 (10.5) – 9 (12.2) –
 SCLC 5 (8.8) – 7 (9.5) –

Stage, n (%)
 0/I 29 (50.9) – 28 (37.8) –
 II 4 (7.0) – 7 (9.5) –
 III 9 (15.8) – 17 (23.0) –
 IV 15 (26.3) – 22 (29.7) –
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diagnostic model for the accurate detection of lung cancer, 
all 1123 models were ranked based on their five-fold cross-
validation AUC scores in the discovery dataset (Fig. 3A). 
Finally, we selected the best five-fold cross-validation AUC 
score model, based on the GBM-algorithm, for further 
analysis. This miRNA-based diagnostic model exhibited a 
five-fold cross-validation AUC score (0.99) in the discovery 
dataset (Fig. 3B), suggesting that this model has high diag-
nostic performance.

Evaluation of the diagnostic faculty of the selected 
miRNA‑based diagnostic model for lung cancer

We evaluated the performance of the selected miRNA-
based diagnostic model for detecting lung cancer by apply-
ing it without further modification to a validation dataset 
(lung cancer, n = 74; healthy, n = 74). This model exhibited 
an AUC value of the 0.98 in the validation dataset with a 
high sensitivity [89.2% (95% CI 80.1–94.4%; n = 74)] and 
specificity [95.9% (95% CI 88.7–98.6%; n = 74)] (Fig. 4A, 
B). We also statistically analyzed the relation between pre-
diction result of the miRNA-based model and smoking 
history. Our diagnostic model exhibited high lung cancer 
diagnostic performance in both smoking [Sensitivity, 91.1% 
(95% CI 80.7–96.1%; n = 56); Specificity, 94.1% (95% CI 
80.9–98.3%; n = 34)] and non-smoking groups [Sensitiv-
ity, 83.3% (95% CI 60.8–94.2%; n = 28); Specificity, 97.5% 
(95% CI 87.1–99.6%; n = 40)] (Fig. S2).

Furthermore, we investigated the diagnostic ability of this 
model based on stage and histological subtype of lung can-
cer. Our miRNA-based diagnostic model also detected early-
stage lung cancer (Stage 0/I) with high sensitivity [Stage 0/I, 
85.7% (95% CI 68.5–94.3%; n = 28); Stages II–IV, 91.3% 
(95% CI: 79.7–96.6%; n = 46)] (Fig. 4C). Furthermore, it 

exhibited a high sensitivity, irrespective of the histologi-
cal subtype. The sensitivity by each subtype is as follows: 
non-small cell lung carcinoma (NSCLC), 88.1% (95% CI: 
78.2–93.8%; n = 67); adenocarcinoma (AC), 83.8% (95% 
CI 68.9–92.3%; n = 37); squamous cell carcinoma (SCC), 
95.2% (95% CI 77.3–99.2%; n = 21); other non-small cell 
carcinoma (Others), 88.9% (95% CI 56.5–98.0%; n = 9); 
and small cell lung carcinoma(SCLC), 100.0% (95% CI 
64.6–100.0%; n = 7) (Fig. S3). We also analyzed the sen-
sitivity of two other well-known biomarkers of lung can-
cer, CEA and CYFRA21-1, corresponding to AC and SCC, 
respectively. Compared to CEA and CYFRA21-1, our model 
detected AC and SCC with higher sensitivity [(CEA, 41.7% 
(95% CI 27.1–57.8%; n = 36); CYFRA21-1, 57.1% (95% CI 
36.5–75.5%; n = 21)] (Figs. 4D and S4). In particular, for 
early-stage AC, the sensitivity of this model was remark-
ably higher than that of CEA [miRNA, 77.8% (95% CI 
54.8–91.0%; n = 18); CEA, 27.8% (95% CI 12.5–50.9%; 
n = 18)] (Fig. 4D). These results suggest that miRNA-based 
diagnostic models can detect lung cancer, including early-
stage tumors, accurately.

Discussion

CT scan is essential for the screening and diagnosing lung 
cancer. The National Lung Screening Trial showed that low-
dose CT screening reduces lung cancer mortality among 
high-risk participants by 20% (National Lung Screen-
ing Trial Research Team 2011). In contrast, low-dose CT 
screening exhibits a high false-positive rate, possibly result-
ing in unnecessary examinations, such as invasive biopsies 
(Bach et al. 2012). Although collecting blood specimens 
only requires minimally invasive procedures and space 
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occupancy without any radiation exposure, conventional 
serum biomarkers, such as CEA and CYFRA21-1, are not 
optimal especially for detecting early-stage cancer because 
of their low sensitivity and cancer stage-dependent differ-
ences (Rastel et al. 1994; Pujol et al. 1996; Bombardieri 
et al. 1994; Urabe et al. 2020; Molina et al. 1994). Thus, 
additional biomarkers for the early detection of lung cancer 
are strongly desirable in clinical practice. In the field of lung 
cancer research, two previous studies reported that several 
miRNAs in the blood, selected via comprehensive analysis 
of miRNA, showed high sensitivity for discriminating lung 
cancer, suggesting their efficacy as biomarkers (Jin et al. 
2017; Asakura et al. 2020). However, numerous studies have 
revealed that each miRNA directly or indirectly controls 
the expression of various genes (Hermeking 2012), indi-
cating the complexity of miRNA-mediated gene regulation 

in various diseases. Therefore, we focused on the possibil-
ity of comprehensive analysis using whole information of 
miRNAs without selection. NGS is a revolutionary tech-
nology for the simultaneous and accurate quantification of 
miRNAs, thereby enabling high-throughput comprehensive 
analysis of miRNA expressions (Tam et al. 2013). Further-
more, AutoML technology provides scientists with powerful 
ML-based insights without significant coding knowledge, 
time and effort (Papoutsoglou et al. 2021). In this study, we 
combined the comprehensive NGS analysis and AutoML 
technology to develop an miRNA-based diagnostic model 
for detecting lung cancer without the immense effort of 
programming and technical bias. Using the discovery set, 
AutoML constructed 1123 models, screened them and 
finally proposed the model with the outstanding performance 
(Figs. 3, 4). The sensitivity of our miRNA-based diagnostic 
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model was higher than that of CEA and CYFRA21-1 for AC 
and SCC, respectively (Figs. 4D, S4). Furthermore, it should 
be noted that our model exhibited higher sensitivity than 
CEA for detecting early-stage lung AC (Fig. 4D). Our results 
suggest that the miRNA-based diagnostic model is more 
sensitive than the conventional cancer biomarkers in blood 
specimens. Interestingly, Sozzi et al. previously reported that 
a combination of low-dose CT and a miRNA discrimination 
model decreased the high false-positive rate of low-dose CT 
by 19.4–3.7% (Sozzi et al. 2014). Thus, a miRNA-based 
diagnosis combined with existing imaging examinations, can 
potentially improve diagnostic accuracy for early-stage lung 
cancer without unnecessary invasive procedures.

There are significant hurdles to overcome before the 
miRNA profile for cancer diagnosis can be used in clinical 
practice. When generating a comprehensive miRNA profile 
at the research level, NGS measurement is cost-effective 
and offers high-throughput compared to reverse transcrip-
tion–quantitative PCR. However, compared to existing diag-
nostic methods, NGS is much more expensive for routine 
clinical use. Therefore, development of a cost-effective ana-
lytical method for miRNA-based diagnosis remains an issue 
warranting further study. However, considering the patient 
as a whole, a comprehensive miRNA profile may be versatile 
as NGS analysis can provide almost all the information on 
miRNA expression for each patient at the time of blood sam-
pling. Numerous studies have reported that miRNA profiles 
enabled the detection of various diseases, such as other can-
cers and neurodegenerative diseases including Alzheimer’s 
disease (Jin et al. 2017; Asakura et al. 2020; Zhong et al. 
2021; Zhu et al. 2017; Ying et al. 2020; Cheng et al. 2015; 
Suzuki et al. 2022; Geekiyanage et al. 2012). Hence, miRNA 
profiles can be available to perform other analyses of vari-
ous disorders simultaneously, with minimally invasiveness.

One limitation of this study was the small sample size 
of healthy controls and patients with lung cancer due to the 
high cost of comprehensive NGS analysis. This limitation 
mainly affects the CIs of sensitivity to each histological 
subtype of lung cancer, making it difficult to interpret the 
diagnostic performance of this model (Figs. 4D, S2, S3, S4). 
Although the total number of comprehensive NGS analyses 
in this study was the three times larger than those in other 
previous study (Jin et al. 2017), further studies are needed 
to evaluate the capability of miRNA-based diagnostic mod-
els for each histological subtype of lung cancer. Another 
limitation of this study was difference in smoking history. 
Although our statistical analysis revealed that there was no 
significant relation between smoking history and lung cancer 
prediction in our validation dataset (Data not shown), smok-
ing, especially, is well known as one of the major risk factor 
of lung cancer (Hecht. 1999). Moreover, in our validation 
dataset, CEA exhibited the considerably high sensitivity of 
about 30% for early-stage lung adenocarcinoma (Fig. 4D), 

suggesting that our validation dataset could be biased due to 
small sample size described above. Therefore, there remains 
a possibility that our datasets contain sample selection bias 
effecting on diagnostic performance.

In conclusion, using technologies of NGS and AutoML, 
we constructed a miRNA-based diagnostic model to detect 
early-stage lung cancer with high accuracy. Our results 
strongly support the clinical utility of serum miRNA profiles 
for lung cancer diagnosis, even in early-stage, encouraging 
further research toward clinical application.
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