Skip to main content

Advertisement

Log in

Mitochondrial dysfunction and drug targets in multiple myeloma

  • Review
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

A Correction to this article was published on 23 May 2023

This article has been updated

Abstract

Multiple myeloma (MM) is the second most common hematological cancer that has no cure. Although currently there are several novel drugs, most MM patients experience drug resistance and disease relapse. The results of previous studies suggest that aberrant mitochondrial function may contribute to tumor progression and drug resistance. Mitochondrial DNA mutations and metabolic reprogramming have been reported in MM patients. Several preclinical and clinical studies have shown encouraging results of mitochondria-targeting therapy in MM patients. In this review, we have summarized our current understanding of mitochondrial biology in MM. More importantly, we have reviewed mitochondrial targeting strategies in MM treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

Change history

References

  • Allen JE, Krigsfeld G, Mayes PA et al (2013) Dual inactivation of Akt and ERK by TIC10 signals Foxo3a nuclear translocation, TRAIL gene induction, and potent antitumor effects. Sci Transl Med 5(171):117r–171r

    Google Scholar 

  • Allen JE, Krigsfeld G, Patel L et al (2015) Identification of TRAIL-inducing compounds highlights small molecule ONC201/TIC10 as a unique anti-cancer agent that activates the TRAIL pathway. Mol Cancer 14(1):99

    PubMed  PubMed Central  Google Scholar 

  • Annunziata CM, Davis RE, Demchenko Y et al (2007) Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 12(2):115–130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bajpai R, Sharma A, Achreja A et al (2020) Electron transport chain activity is a predictor and target for venetoclax sensitivity in multiple myeloma. Nat Commun 11(1):1228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bellafante E, Morgano A, Salvatore L et al (2014) PGC-1beta promotes enterocyte lifespan and tumorigenesis in the intestine. Proc Natl Acad Sci USA 111(42):E4523–E4531

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bengsch B, Johnson AL, Kurachi M et al (2016) Bioenergetic insufficiencies due to metabolic alterations regulated by the inhibitory receptor PD-1 are an early driver of CD8(+) T cell exhaustion. Immunity 45(2):358–373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Besse L, Besse A, Mendez-Lopez M et al (2019) A metabolic switch in proteasome inhibitor-resistant multiple myeloma ensures higher mitochondrial metabolism, protein folding and sphingomyelin synthesis. Haematologica 104(9):e415–e419

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhalla K, Hwang BJ, Dewi RE et al (2011) PGC1alpha promotes tumor growth by inducing gene expression programs supporting lipogenesis. Cancer Res 71(21):6888–6898

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bisping G, Leo R, Kienast J et al (2003) Paracrine interactions of basic fibroblast growth factor and interleukin-6 in multiple myeloma. Blood 101(7):2775–2783

    CAS  PubMed  Google Scholar 

  • Bodet L, Menoret E, Descamps G et al (2010) BH3-only protein Bik is involved in both apoptosis induction and sensitivity to oxidative stress in multiple myeloma. Br J Cancer 103(12):1808–1814

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bodet L, Gomez-Bougie P, Touzeau C et al (2011) ABT-737 is highly effective against molecular subgroups of multiple myeloma. Blood 118(14):3901–3910

    CAS  PubMed  Google Scholar 

  • Bolzoni M, Chiu M, Accardi F et al (2016) Dependence on glutamine uptake and glutamine addiction characterize myeloma cells: a new attractive target. Blood 128(5):667–679

    CAS  PubMed  Google Scholar 

  • Bustany S, Bourgeais J, Tchakarska G et al (2016) Cyclin D1 unbalances the redox status controlling cell adhesion, migration, and drug resistance in myeloma cells. Oncotarget 7(29):45214–45224

    PubMed  PubMed Central  Google Scholar 

  • Bustoros M, Sklavenitis-Pistofidis R, Park J et al (2020) Genomic profiling of smoldering multiple myeloma identifies patients at a high risk of disease progression. J Clin Oncol 38(21):2380–2389

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carracedo A, Cantley LC, Pandolfi PP (2013) Cancer metabolism: fatty acid oxidation in the limelight. Nat Rev Cancer 13(4):227–232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chamoto K, Chowdhury PS, Kumar A et al (2017) Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity. Proc Natl Acad Sci USA 114(5):E761–E770

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chauhan D, Neri P, Velankar M et al (2007) Targeting mitochondrial factor Smac/DIABLO as therapy for multiple myeloma (MM). Blood 109(3):1220–1227

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chesi M, Mirza NN, Garbitt VM et al (2016) IAP antagonists induce anti-tumor immunity in multiple myeloma. Nat Med 22(12):1411–1420

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chng WJ, Huang GF, Chung TH et al (2011) Clinical and biological implications of MYC activation: a common difference between MGUS and newly diagnosed multiple myeloma. Leukemia 25(6):1026–1035

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cowan AJ, Green DJ, Kwok M et al (2022) Diagnosis and management of multiple myeloma: a review. JAMA 327(5):464–477

    CAS  PubMed  Google Scholar 

  • Czabotar PE, Lessene G, Strasser A et al (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15(1):49–63

    CAS  PubMed  Google Scholar 

  • Da SI, de Castro LE, Pedroso AP et al (2020) Biochemical phenotyping of multiple myeloma patients at diagnosis reveals a disorder of mitochondrial complexes I and II and a Hartnup-like disturbance as underlying conditions, also influencing different stages of the disease. Sci Rep 10(1):21836

    Google Scholar 

  • Dasgupta S, Soudry E, Mukhopadhyay N et al (2012) Mitochondrial DNA mutations in respiratory complex-I in never-smoker lung cancer patients contribute to lung cancer progression and associated with EGFR gene mutation. J Cell Physiol 227(6):2451–2460

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deblois G, Chahrour G, Perry MC et al (2010) Transcriptional control of the ERBB2 amplicon by ERRalpha and PGC-1beta promotes mammary gland tumorigenesis. Cancer Res 70(24):10277–10287

    CAS  PubMed  Google Scholar 

  • Desplanques G, Giuliani N, Delsignore R et al (2009) Impact of XIAP protein levels on the survival of myeloma cells. Haematologica 94(1):87–93

    CAS  PubMed  Google Scholar 

  • Dinndorf PA, Gootenberg J, Cohen MH et al (2007) FDA drug approval summary: pegaspargase (Oncaspar®) for the first-line treatment of children with acute lymphoblastic leukemia (ALL). Oncologist 12(8):991–998

    CAS  PubMed  Google Scholar 

  • Du C, Fang M, Li Y et al (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102(1):33–42

    CAS  PubMed  Google Scholar 

  • Fan J, Kamphorst JJ, Mathew R et al (2013) Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Mol Syst Biol 9:712

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fink EE, Mannava S, Bagati A et al (2016) Mitochondrial thioredoxin reductase regulates major cytotoxicity pathways of proteasome inhibitors in multiple myeloma cells. Leukemia 30(1):104–111

    CAS  PubMed  Google Scholar 

  • Fulda S, Vucic D (2012) Targeting IAP proteins for therapeutic intervention in cancer. Nat Rev Drug Discov 11(2):109–124

    CAS  PubMed  Google Scholar 

  • Gangemi S, Allegra A, Alonci A et al (2012) Increase of novel biomarkers for oxidative stress in patients with plasma cell disorders and in multiple myeloma patients with bone lesions. Inflamm Res 61(10):1063–1067

    CAS  PubMed  Google Scholar 

  • Gao P, Tchernyshyov I, Chang TC et al (2009) c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458(7239):762–765

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gasparre G, Kurelac I, Capristo M et al (2011) A mutation threshold distinguishes the antitumorigenic effects of the mitochondrial gene MTND1, an oncojanus function. Cancer Res 71(19):6220–6229

    CAS  PubMed  Google Scholar 

  • Gonsalves WI, Ramakrishnan V, Hitosugi T et al (2018) Glutamine-derived 2-hydroxyglutarate is associated with disease progression in plasma cell malignancies. JCI Insight. https://doi.org/10.1172/jci.insight.94543

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonsalves WI, Jang JS, Jessen E et al (2020) In vivo assessment of glutamine anaplerosis into the TCA cycle in human pre-malignant and malignant clonal plasma cells. Cancer Metab 8(1):29

    PubMed  PubMed Central  Google Scholar 

  • Graves PR, Aponte-Collazo LJ, Fennell EMJ et al (2019) Mitochondrial protease ClpP is a target for the anticancer compounds ONC201 and related analogues. ACS Chem Biol 14(5):1020–1029

    CAS  PubMed  PubMed Central  Google Scholar 

  • Greer YE, Porat-Shliom N, Nagashima K et al (2018) ONC201 kills breast cancer cells in vitro by targeting mitochondria. Oncotarget 9(26):18454–18479

    PubMed  PubMed Central  Google Scholar 

  • Hartmann FJ, Mrdjen D, McCaffrey E et al (2021) Single-cell metabolic profiling of human cytotoxic T cells. Nat Biotechnol 39(2):186–197

    CAS  PubMed  Google Scholar 

  • Hekmatshoar Y, Nakhle J, Galloni M et al (2018) The role of metabolism and tunneling nanotube-mediated intercellular mitochondria exchange in cancer drug resistance. Biochem J 475(14):2305–2328

    CAS  PubMed  Google Scholar 

  • Hoang PH, Cornish AJ, Chubb D et al (2020) Impact of mitochondrial DNA mutations in multiple myeloma. Blood Cancer J 10(5):46

    PubMed  PubMed Central  Google Scholar 

  • Hu Y, Lu W, Chen G et al (2012) K-ras(G12V) transformation leads to mitochondrial dysfunction and a metabolic switch from oxidative phosphorylation to glycolysis. Cell Res 22(2):399–412

    CAS  PubMed  Google Scholar 

  • Huang Y, Si X, Shao M et al (2022) Rewiring mitochondrial metabolism to counteract exhaustion of CAR-T cells. J Hematol Oncol 15(1):38

    CAS  PubMed  PubMed Central  Google Scholar 

  • Idelchik MDPS, Begley U, Begley TJ et al (2017) Mitochondrial ROS control of cancer. Semin Cancer Biol 47:57–66

    CAS  PubMed  Google Scholar 

  • Ishikawa K, Takenaga K, Akimoto M et al (2008) ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 320(5876):661–664

    CAS  PubMed  Google Scholar 

  • Ishizawa J, Zarabi SF, Davis RE et al (2019) Mitochondrial ClpP-mediated proteolysis induces selective cancer cell lethality. Cancer Cell 35(5):721–737

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jang JS, Li Y, Mitra AK et al (2019) Molecular signatures of multiple myeloma progression through single cell RNA-Seq. Blood Cancer J 9(1):2

    PubMed  PubMed Central  Google Scholar 

  • Jia D, Lu M, Jung KH et al (2019) Elucidating cancer metabolic plasticity by coupling gene regulation with metabolic pathways. Proc Natl Acad Sci USA 116(9):3909–3918

    CAS  PubMed  PubMed Central  Google Scholar 

  • Joseph NS, Kaufman JL, Dhodapkar MV et al (2020) Long-term follow-up results of lenalidomide, bortezomib, and dexamethasone induction therapy and risk-adapted maintenance approach in newly diagnosed multiple myeloma. J Clin Oncol 38(17):1928–1937

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh M, Nakagama H (2014) FGF receptors: cancer biology and therapeutics. Med Res Rev 34(2):280–300

    CAS  PubMed  Google Scholar 

  • Kawano Y, Moschetta M, Manier S et al (2015) Targeting the bone marrow microenvironment in multiple myeloma. Immunol Rev 263(1):160–172

    PubMed  Google Scholar 

  • Keats JJ, Fonseca R, Chesi M et al (2007) Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 12(2):131–144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 11(5):325–337

    CAS  PubMed  Google Scholar 

  • Kumar S, Kaufman JL, Gasparetto C et al (2017) Efficacy of venetoclax as targeted therapy for relapsed/refractory t(11;14) multiple myeloma. Blood 130(22):2401–2409

    CAS  PubMed  Google Scholar 

  • Kumar SK, Harrison SJ, Cavo M et al (2020) Venetoclax or placebo in combination with bortezomib and dexamethasone in patients with relapsed or refractory multiple myeloma (BELLINI): a randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol 21(12):1630–1642

    CAS  PubMed  Google Scholar 

  • Kyle RA, Therneau TM, Rajkumar SV et al (2002) A long-term study of prognosis in monoclonal gammopathy of undetermined significance. N Engl J Med 346(8):564–569

    PubMed  Google Scholar 

  • Kyle RA, Remstein ED, Therneau TM et al (2007) Clinical course and prognosis of smoldering (asymptomatic) multiple myeloma. N Engl J Med 356(25):2582–2590

    CAS  PubMed  Google Scholar 

  • Le A, Lane AN, Hamaker M et al (2012) Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab 15(1):110–121

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lebleu VS, O’Connell JT, Gonzalez HK et al (2014) PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat Cell Biol 16(10):992–1003

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lefebvre P, Benomar Y, Staels B (2010) Retinoid X receptors: common heterodimerization partners with distinct functions. Trends Endocrinol Metab 21(11):676–683

    CAS  PubMed  Google Scholar 

  • Li F, Wang Y, Zeller KI et al (2005) Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol Cell Biol 25(14):6225–6234

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Qiu S, Chen J et al (2020) Chimeric antigen receptor designed to prevent ubiquitination and downregulation showed durable antitumor efficacy. Immunity 53(2):456–470

    CAS  PubMed  Google Scholar 

  • Liu VW, Shi HH, Cheung AN et al (2001) High incidence of somatic mitochondrial DNA mutations in human ovarian carcinomas. Cancer Res 61(16):5998–6001

    CAS  PubMed  Google Scholar 

  • Liu ZG, Tang B, Zeng Y et al (2016) Mitochondrial genome of a spontaneous multiple myeloma bone cancer model mouse C57BL/KaLwRij strain. Mitochondrial DNA A DNA Mapp Seq Anal 27(6):4071–4072

    CAS  PubMed  Google Scholar 

  • Maiso P, Huynh D, Moschetta M et al (2015) Metabolic signature identifies novel targets for drug resistance in multiple myeloma. Cancer Res 75(10):2071–2082

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maiuri MC, Kroemer G (2015) Essential role for oxidative phosphorylation in cancer progression. Cell Metab 21(1):11–12

    CAS  PubMed  Google Scholar 

  • Marlein CR, Piddock RE, Mistry JJ et al (2019) CD38-driven mitochondrial trafficking promotes bioenergetic plasticity in multiple myeloma. Cancer Res 79(9):2285–2297

    CAS  PubMed  Google Scholar 

  • Misund K, Keane N, Stein CK et al (2020) MYC dysregulation in the progression of multiple myeloma. Leukemia 34(1):322–326

    PubMed  Google Scholar 

  • Mizutani Y, Nakanishi H, Yamamoto K et al (2005) Downregulation of Smac/DIABLO expression in renal cell carcinoma and its prognostic significance. J Clin Oncol 23(3):448–454

    CAS  PubMed  Google Scholar 

  • Mizutani Y, Katsuoka Y, Bonavida B (2010) Prognostic significance of second mitochondria-derived activator of caspase (Smac/DIABLO) expression in bladder cancer and target for therapy. Int J Oncol 37(2):503–508

    CAS  PubMed  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417(1):1–13

    CAS  PubMed  Google Scholar 

  • Nakagawa Y, Abe S, Kurata M et al (2006) IAP family protein expression correlates with poor outcome of multiple myeloma patients in association with chemotherapy-induced overexpression of multidrug resistance genes. Am J Hematol 81(11):824–831

    CAS  PubMed  Google Scholar 

  • Neri A, Murphy JP, Cro L et al (1989) Ras oncogene mutation in multiple myeloma. J Exp Med 170(5):1715–1725

    CAS  PubMed  Google Scholar 

  • Nouri K, Feng Y, Schimmer AD (2020) Mitochondrial ClpP serine protease-biological function and emerging target for cancer therapy. Cell Death Dis 11(10):841

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ogando J, Saez ME, Santos J et al (2019) PD-1 signaling affects cristae morphology and leads to mitochondrial dysfunction in human CD8(+) T lymphocytes. J Immunother Cancer 7(1):151

    PubMed  PubMed Central  Google Scholar 

  • Patsoukis N, Bardhan K, Chatterjee P et al (2015) PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun 6:6692

    CAS  PubMed  Google Scholar 

  • Petersen CT, Hassan M, Morris AB et al (2018) Improving T-cell expansion and function for adoptive T-cell therapy using ex vivo treatment with PI3Kdelta inhibitors and VIP antagonists. Blood Adv 2(3):210–223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petros JA, Baumann AK, Ruiz-Pesini E et al (2005) mtDNA mutations increase tumorigenicity in prostate cancer. Proc Natl Acad Sci USA 102(3):719–724

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pluta P, Cebula-Obrzut B, Ehemann V et al (2011) Correlation of Smac/DIABLO protein expression with the clinico-pathological features of breast cancer patients. Neoplasma 58(5):430–435

    CAS  PubMed  Google Scholar 

  • Porporato PE, Payen VL, Pérez-Escuredo J et al (2014) A mitochondrial switch promotes tumor metastasis. Cell Rep 8(3):754–766

    CAS  PubMed  Google Scholar 

  • Robak P, Drozdz I, Szemraj J et al (2018) Drug resistance in multiple myeloma. Cancer Treat Rev 70:199–208

    CAS  PubMed  Google Scholar 

  • Ronca R, Ghedini GC, Maccarinelli F et al (2020) FGF trapping inhibits multiple myeloma growth through c-Myc degradation-induced mitochondrial oxidative stress. Cancer Res 80(11):2340–2354

    CAS  PubMed  Google Scholar 

  • Roth KG, Mambetsariev I, Kulkarni P et al (2020) The mitochondrion as an emerging therapeutic target in cancer. Trends Mol Med 26(1):119–134

    CAS  PubMed  Google Scholar 

  • Sabharwal SS, Schumacker PT (2014) Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? Nat Rev Cancer 14(11):709–721

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scarpulla RC, Vega RB, Kelly DP (2012) Transcriptional integration of mitochondrial biogenesis. Trends Endocrinol Metab 23(9):459–466

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schreier PH, Bankier AT, Roe BA et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290(5806):457–465

    PubMed  Google Scholar 

  • Sedlackova L, Korolchuk VI (2019) Mitochondrial quality control as a key determinant of cell survival. Biochim Biophys Acta Mol Cell Res 1866(4):575–587

    CAS  PubMed  Google Scholar 

  • Soncini D, Minetto P, Martinuzzi C et al (2020) Amino acid depletion triggered by ʟ-asparaginase sensitizes MM cells to carfilzomib by inducing mitochondria ROS-mediated cell death. Blood Adv 4(18):4312–4326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song IS, Kim HK, Lee SR et al (2013) Mitochondrial modulation decreases the bortezomib-resistance in multiple myeloma cells. Int J Cancer 133(6):1357–1367

    CAS  PubMed  Google Scholar 

  • Soriano GP, Besse L, Li N et al (2016) Proteasome inhibitor-adapted myeloma cells are largely independent from proteasome activity and show complex proteomic changes, in particular in redox and energy metabolism. Leukemia 30(11):2198–2207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan LB, Chandel NS (2014) Mitochondrial reactive oxygen species and cancer. Cancer Metab 2:17

    PubMed  PubMed Central  Google Scholar 

  • Tanaka H, Matsumura I, Ezoe S et al (2002) E2F1 and c-Myc potentiate apoptosis through inhibition of NF-κB activity that facilitates MnSOD-mediated ROS elimination. Mol Cell 9(5):1017–1029

    CAS  PubMed  Google Scholar 

  • Thompson RM, Dytfeld D, Reyes L et al (2017) Glutaminase inhibitor CB-839 synergizes with carfilzomib in resistant multiple myeloma cells. Oncotarget 8(22):35863–35876

    PubMed  PubMed Central  Google Scholar 

  • Touzeau C, Ryan J, Guerriero J et al (2016) BH3 profiling identifies heterogeneous dependency on Bcl-2 family members in multiple myeloma and predicts sensitivity to BH3 mimetics. Leukemia 30(3):761–764

    CAS  PubMed  Google Scholar 

  • Tu Y, He J, Liu H et al (2017) The imipridone ONC201 induces apoptosis and overcomes chemotherapy resistance by up-regulation of bim in multiple myeloma. Neoplasia 19(10):772–780

    CAS  PubMed  PubMed Central  Google Scholar 

  • Urak R, Walter M, Lim L et al (2017) Ex vivo Akt inhibition promotes the generation of potent CD19CAR T cells for adoptive immunotherapy. J Immunother Cancer 5:26

    PubMed  PubMed Central  Google Scholar 

  • Vafa O, Wade M, Kern S et al (2002) c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell 9(5):1031–1044

    CAS  PubMed  Google Scholar 

  • van de Donk N, Richardson PG, Malavasi F (2018) CD38 antibodies in multiple myeloma: back to the future. Blood 131(1):13–29

    PubMed  Google Scholar 

  • van de Donk N, Pawlyn C, Yong KL (2021a) Multiple myeloma. Lancet 397(10272):410–427

    PubMed  Google Scholar 

  • van de Donk NWCJ, Usmani SZ, Yong K (2021b) CAR T-cell therapy for multiple myeloma: state of the art and prospects. Lancet Haematol 8(6):e446–e461

    PubMed  Google Scholar 

  • van Gisbergen MW, Voets AM, Starmans MH et al (2015) How do changes in the mtDNA and mitochondrial dysfunction influence cancer and cancer therapy? Challenges, opportunities and models. Mutat Res Rev Mutat Res 764:16–30

    PubMed  Google Scholar 

  • Vardhana SA, Hwee MA, Berisa M et al (2020) Impaired mitochondrial oxidative phosphorylation limits the self-renewal of T cells exposed to persistent antigen. Nat Immunol 21(9):1022–1033

    CAS  PubMed  PubMed Central  Google Scholar 

  • Villena JA (2015) New insights into PGC-1 coactivators: redefining their role in the regulation of mitochondrial function and beyond. FEBS J 282(4):647–672

    CAS  PubMed  Google Scholar 

  • Wang Q, Zhao D, Xian M et al (2020) MIF as a biomarker and therapeutic target for overcoming resistance to proteasome inhibitors in human myeloma. Blood 136(22):2557–2573

    PubMed  PubMed Central  Google Scholar 

  • Wise DR, Thompson CB (2010) Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 35(8):427–433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wise DR, Deberardinis RJ, Mancuso A et al (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA 105(48):18782–18787

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang Y, Fang B, Liu Y et al (2020) SR18292 exerts potent antitumor effects in multiple myeloma via inhibition of oxidative phosphorylation. Life Sci 256:117971

    CAS  PubMed  Google Scholar 

  • Yu M, Wan Y, Zou Q (2010) Decreased copy number of mitochondrial DNA in Ewing’s sarcoma. Clin Chim Acta 411(9–10):679–683

    CAS  PubMed  Google Scholar 

  • Yu Y, Imrichova H, Wang H et al (2020) Disturbed mitochondrial dynamics in CD8(+) TILs reinforce T cell exhaustion. Nat Immunol 21(12):1540

    CAS  PubMed  Google Scholar 

  • Zhan X, Yu W, Franqui-Machin R et al (2017) Alteration of mitochondrial biogenesis promotes disease progression in multiple myeloma. Oncotarget 8(67):111213–111224

    PubMed  PubMed Central  Google Scholar 

  • Zhang H, Li L, Chen Q et al (2018) PGC1beta regulates multiple myeloma tumor growth through LDHA-mediated glycolytic metabolism. Mol Oncol 12(9):1579–1595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng W, O’Hear CE, Alli R et al (2018) PI3K orchestration of the in vivo persistence of chimeric antigen receptor-modified T cells. Leukemia 32(5):1157–1167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Zhang Y, Leng Y et al (2019) The IAP antagonist birinapant potentiates bortezomib anti-myeloma activity in vitro and in vivo. J Hematol Oncol 12(1):25

    PubMed  PubMed Central  Google Scholar 

  • Zu XL, Guppy M (2004) Cancer metabolism: facts, fantasy, and fiction. Biochem Biophys Res Commun 313(3):459–465

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the hard and dedicated work of all the staff that implemented the intervention and evaluation components of the study.

Funding

The Henan Province Young and Middle-aged Health Science and Technology Innovation Leading Talent Training Project (No. YXKC2020007); Zhongyuan Science and Technology Innovation Leadership Program (214200510023).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: BJ.F; manuscript writing: all authors; final approval of manuscript: all authors.

Corresponding author

Correspondence to Baijun Fang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Institutional review board statement

This study is a literature review and does not require the informed consent of patients.

Informed consent statement

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: To correct the affiliation of one of the author.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Y., Wang, F. & Fang, B. Mitochondrial dysfunction and drug targets in multiple myeloma. J Cancer Res Clin Oncol 149, 8007–8016 (2023). https://doi.org/10.1007/s00432-023-04672-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-023-04672-8

Keywords

Navigation