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Abstract
Purpose Tumor location and tumor node metastasis (TNM) stage guide treatment decisions in colorectal cancer (CRC) 
patients. However, patients with the same disease stage do not benefit equally from adjuvant therapy. Hence, there remains an 
urgent clinical need to identify prognostic and/or predictive biomarker(s) to personalize treatment decisions. In this explora-
tory study, we investigated whether our previously defined metabolic Warburg-subtypes can predict which CRC patients 
might derive survival benefit from adjuvant therapy.
Methods Information regarding treatment (surgery only: n = 1451; adjuvant radiotherapy: n = 82; or adjuvant chemotherapy: 
n = 260) and Warburg-subtype (Warburg-low: n = 485, -moderate: n = 641, or –high: n = 667) was available for 1793 CRC 
patients from the Netherlands Cohort Study (NLCS). Kaplan–Meier curves and Cox regression models were used to inves-
tigate survival benefit from adjuvant therapy compared to surgery-only for the different Warburg-subtypes.
Results Patients with Warburg-moderate CRC  (HRCRC-specific 0.64; 95% CI 0.47–0.86,  HRoverall 0.61; 95% CI 0.47–0.80), and 
possibly Warburg-high CRC  (HRCRC-specific 0.86; 95% CI 0.65–1.14,  HRoverall 0.82; 95% CI 0.64–1.05), had survival benefit 
from adjuvant therapy. No survival benefit was observed for patients with Warburg-low CRC  (HRCRC-specific 1.07; 95% CI 
0.76–1.52,  HRoverall 0.95; 95% CI 0.70–1.30). There was a significant interaction between Warburg-subtype and adjuvant 
therapy for CRC-specific survival (p = 0.049) and overall survival (p = 0.035).
Conclusion Our results suggest that Warburg-subtypes may predict survival benefit from adjuvant therapy in CRC patients. 
A survival benefit from adjuvant therapy was observed for patients with Warburg-moderate and possibly Warburg-high CRC, 
but not for patients with Warburg-low CRC. Future prospective studies are necessary to validate our findings.
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MMR  Mismatch repair
NLCS  Netherlands Cohort Study
OXPHOS  Oxidative phosphorylation
PALGA  Dutch Pathology Registry
TMA  Tissue MicroArray
TNM  Tumor node metastasis

Introduction

Colorectal cancer (CRC) is the third most commonly diag-
nosed cancer and the second-leading cause of cancer-related 
death worldwide, accounting for more than 900,000 deaths 
in 2020 (Rawla et al. 2019; Ferlay et al. 2020). Currently, 
tumor location and tumor node metastasis (TNM) stage 
guide treatment decisions in CRC patients (Kawakami et al. 
2015; Roelands et al. 2017). However, patients with the 
same disease stage can have different survival and response 
to adjuvant therapy (Kawakami et al. 2015; Sinicrope et al. 
2016, Roelands et al. 2017; Zhai et al. 2017; Ji et al. 2018). 
This may be due to heterogeneity in patient or tumor charac-
teristics (Kawakami et al. 2015; Sinicrope et al. 2016; Roe-
lands et al. 2017; Zhai et al. 2017; Ji et al. 2018).

Currently, there is only a limited number of biomarkers 
to identify CRC patients who are most likely to benefit from 
adjuvant therapy (Ji et al. 2018). Molecular classification of 
CRC may identify patient subgroups at high risk for recur-
rence and death, thereby facilitating the selection of patients 
for (personalized) therapy (Kawakami et al. 2015; Sinicrope 
et al. 2016). However, to date, only assessment of DNA mis-
match repair (MMR) status and RAS and BRAF mutation 
status have been integrated into routine clinical practice to 
select patients for specific therapies (Fontana et al. 2019, 
Ten Hoorn et al. 2022). Hence, there remains an urgent 
clinical need to identify novel prognostic and/or predictive 
biomarker(s) to improve survival and quality of life in CRC 
patients (Ji et al. 2018, Ten Hoorn et al. 2022).

Metabolic reprogramming is one of the recognized hall-
marks of cancer (Hanahan and Weinberg 2011). Otto War-
burg first described in the 1920s, that cancer cells increase 
their glucose uptake and lactate secretion, even in the 
presence of oxygen (Warburg et al. 1927; Bensinger and 
Christofk 2012; Kato et al. 2018; Wolpaw and Dang 2018). 
This phenomenon of aerobic glycolysis, also known as the 
“Warburg-effect”, has since been observed in a variety of 
cancer types, including CRC (Sakashita et al. 2001; Potter 
et al. 2016).

We previously classified CRC as Warburg-low (i.e., low 
probability of the presence of the Warburg-effect), War-
burg-moderate, or Warburg-high using a pathway-based 
sum score based on the expression levels of six glycolytic 
proteins, including transcriptional regulators, indicative of 
the Warburg-effect (LDHA, GLUT1, MCT4, PKM2, p53, 

and PTEN) (Jenniskens et al. 2021a; Offermans et al. 2021; 
Jenniskens et al. 2022). Our previous results, based on the 
total cohort of CRC patients, indicated that the Warburg-
high subtype was associated with a poor survival in CRC 
patients, independent of known prognostic factors like TNM 
stage (Offermans et al. 2021).

Many studies have investigated the relationship between 
cellular metabolism and therapy resistance in CRC (Liu 
et al. 2021). The majority of studies suggested that the War-
burg-effect promotes tumor characteristics that contribute to 
adjuvant therapy resistance (Morandi and Indraccolo 2017; 
Zhong and Zhou 2017; Zaal and Berkers 2018; Desbats 
et al. 2020; Kitazawa et al. 2020; Liu et al. 2021; Dong et al. 
2022). However, most current evidence is based on in vitro 
cell culture studies, whereas—to the best of our knowl-
edge—evidence from prospective cohort studies is lacking.

We hypothesized that patients with Warburg-high CRC 
will not derive a survival benefit from adjuvant chemo- or 
radiotherapy, whereas patients with Warburg-low CRC will 
derive survival benefit from adjuvant therapy. In this explor-
atory study, we therefore aimed to investigate whether our 
previously defined Warburg-subtypes can be used to predict 
survival benefit from adjuvant therapy in CRC patients.

Methods

Design and study population

The population-based series of colorectal cancer (CRC) 
patients in this study was derived from the prospective Neth-
erlands Cohort Study (NLCS), which has been described 
in detail previously (van den Brandt et al. 1990a). Briefly, 
the NLCS was initiated in September 1986 and included 
120,852 men and women, aged 55–69 years old, who com-
pleted a mailed, self-administered questionnaire on diet and 
other cancer risk factors at baseline (van den Brandt et al. 
1990a). Participants agreed to participate in the study by 
completing and returning the questionnaire.

The entire prospective cohort was followed up for cancer 
incidence by annual record linkage with the Netherlands 
Cancer Registry and PALGA, the nationwide Dutch Pathol-
ogy Registry (van den Brandt et al. 1990b; Casparie et al. 
2007), covering 20.3 years of follow-up (September 17, 
1986 until January 1, 2007). The completeness of cancer 
incidence follow-up was estimated to be > 96% (Goldbohm 
et al. 1994). After excluding patients who reported a history 
of cancer (excluding non-melanoma skin cancer) at baseline, 
4597 incident CRC patients were available (Fig. 1).

The NLCS was approved by the institutional review 
boards of the TNO Quality of Life Research Institute (Zeist, 
the Netherlands) and Maastricht University (Maastricht, the 
Netherlands). Ethical approval for this study was obtained 
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Fig. 1  Flow diagram of the number of CRC patients available for analyses in the Netherlands Cohort Study (NLCS), 1986–2006. CRC  colorectal 
cancer, PALGA Netherlands pathology database, TMA Tissue MicroArray
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from the Medical Ethical Committee (METC) of Maastricht 
University Medical Center + .

Establishing Warburg‑subtypes based 
on Immunohistochemistry

Formalin-fixed paraffin-embedded (FFPE) tissue blocks 
from CRC resection specimens, excluding CRC patients who 
received neo-adjuvant chemotherapy (n = 10), were collected 
as part of the Rainbow-Tissue MicroArray (TMA) project 
(van den Brandt 2018). Details regarding TMA construction 
have been described previously (Offermans et al. 2021).

In total, 78 TMA blocks were constructed containing 
three 0.6 mm cores from tumor and three from normal epi-
thelium of 2694 CRC patients (Fig. 1). Serial sections (5 µm) 
were subjected to immunohistochemistry (IHC) for War-
burg-related proteins (LDHA, GLUT1, MCT4, PKM2, 
p53, PTEN) and mismatch-repair (MMR)-related proteins 
(MLH1, MSH2), as described previously (Jenniskens et al. 
2021a, b; Offermans et al. 2021; Jenniskens et al. 2022).

Requiring at least one tumor core per patient, 2497 CRC 
patients passed quality control (Fig. 1). Multiple core-level 
IHC scores were combined into patient-level Warburg-sub-
types as described previously (Jenniskens et al. 2021a, b; 
Offermans et al. 2021; Jenniskens et al. 2022). After exclud-
ing patients with missing IHC data, 2394 CRC patients were 
categorized as “Warburg-low” (n = 695, 29.0%), “Warburg-
moderate” (n = 858, 35.8%) or “Warburg-high” (n = 841, 
35.1%) subtype.

Clinical characteristics and follow‑up

Follow-up for vital status of the CRC patients was carried 
out through linkage to the Central Bureau of Genealogy and 
the municipal population registries until December 31, 2012. 
Patients who were found to have CRC at autopsy (n = 5), 
patients with incomplete data regarding initial treatment 
(n = 21), patients who did not receive any treatment (no sur-
gery, chemo- or radiotherapy; n = 8), patients who received 
another type of therapy (n = 7), or patients who received neo-
adjuvant radiotherapy (n = 143) were excluded. Furthermore, 
patients with TNM stage I CRC (n = 422), who were mostly 
treated with surgery only (n = 412, 97.6%), were excluded 
from analyses to ensure that patients in the surgery only 
subgroup had similar clinical characteristics as patients in 
the adjuvant therapy subgroup. Hence, 1,793 CRC patients 
were available for analyses (Fig. 1).

Causes of death were retrieved from Statistics Nether-
lands. CRC-specific deaths included patients with an under-
lying cause attributed to malignant neoplasms of the colon, 
rectosigmoid junction, or rectum. Overall vital status was 
available for 1,792 (99.9%) patients and CRC-specific vital 
status for 1,765 (98.4%) patients.

Information about age at diagnosis, pTNM stage, tumor 
location, tumor differentiation grade, and primary adjuvant 
therapy (i.e., treatments included in the initial treatment plan 
drawn up after diagnosis) was retrieved from the cancer reg-
istry or PALGA histopathology reports. The cancer registry 
only registered information regarding the primary treatment 
that was performed.

Statistical analyses

Descriptive statistics were calculated for clinical character-
istics, using mean (standard deviation) or median (range) 
for continuous data and frequencies (percentage) for cat-
egorical data. For categorical variables, differences across 
treatment subgroups (i.e., surgery only, surgery and adju-
vant radiotherapy, surgery and adjuvant chemotherapy) were 
evaluated using chi-squared (χ2) tests. For continuous vari-
ables, the distributions across groups were evaluated using 
Kruskal–Wallis tests.

The primary outcomes were CRC-specific survival (time 
from CRC diagnosis to CRC-related death or end of follow-
up) and overall survival (time from CRC diagnosis to death 
from any cause or end of follow-up). Survival analyses were 
restricted to 10 years of follow-up because of the limited 
number of events in the later period (CRC-specific deaths: 
n = 22; overall deaths: n = 175). Kaplan–Meier curves were 
estimated to examine survival benefit from adjuvant therapy 
for the different Warburg-subtypes (Warburg-low, Warburg-
moderate, and Warburg-high). Differences between survival 
curves were investigated using Wilcoxon tests.

In addition, Cox proportional hazards regression was 
used to estimate Hazard ratios (HRs) and 95% confidence 
intervals (CIs) for associations between adjuvant therapy 
and survival by Warburg-subtype. The proportional hazards 
assumption was tested using the scaled Schoenfeld residu-
als (Schoenfeld 1982), by evaluating -log–log transformed 
survival curves or by introducing time–covariate interac-
tions into the models. HRs were adjusted for a set of a priori 
selected prognostic factors: age at diagnosis (years); sex 
(men, women); tumor location (colon, rectosigmoid, rec-
tum); pTNM stage (II, III, IV, unknown); differentiation 
grade (well, moderate, poor/undifferentiated, unknown); 
and MMR deficiency (no, yes, unknown). Year of diagnosis 
and pTNM version were considered as potential confound-
ers and were retained in the models if they altered HRs by 
more than 10% (Kamangar 2012; Alexander et al. 2015). A 
separate category (‘unknown’) was used for patients with 
unknown clinical information regarding pTNM stage or dif-
ferentiation grade to enable inclusion of these patients in the 
Cox proportional hazards models.

Disease stage was based on the pTNM classification 
according to the edition valid at the time of surgery, resulting 
in the use of five different TNM editions (UICC TNM editions 
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3–6), as described previously (Offermans et al. 2021). How-
ever, the main TNM stage groupings (I/II/III/IV) remained 
essentially unchanged (Sobin et al. 2010).

Sensitivity analyses, excluding CRC patients with 
unknown clinical information regarding TNM stage and 
differentiation grade (n = 143), yielded similar results (data 
not shown).

All analyses were conducted in Stata Statistical Software: 
Release 16 (StataCorp., College Station, TX). Two-sided p 
values < 0.05 were considered significant.

Results

Clinical characteristics

Clinical characteristics of the 1793 included colorectal 
cancer (CRC) patients according to therapy are presented 
in Table 1. The large majority (n = 1451, 80.9%) of CRC 
patients from the prospective Netherlands Cohort Study 
(NLCS) were treated with surgery only, while 82 (4.6%) 
and 260 (14.5%) patients were treated with adjuvant radio- 
or chemotherapy, respectively. The use of adjuvant chemo-
therapy increased over time (from 1.3% in 1986–1988 to 
13.4% in 2004–2006), whereas the administration of adju-
vant radiotherapy decreased (from 10.5% in 1986–1988 to 
0.0% in 2004–2006; p < 0.001).

CRC patients treated with adjuvant radio- or chemother-
apy were younger compared to patients treated with surgery 
only (median age at diagnosis 69.0 years and 72.0 years ver-
sus 75.0 years, respectively; p < 0.001). Men were more 
frequently treated with adjuvant radio- or chemotherapy 
compared to women (5.4% and 16.4% of men versus 3.6% 
and 12.2% of women, respectively; p = 0.004). Patients with 
colon cancers were more often treated with surgery only 
compared to patients with rectosigmoid or rectal cancers 
(84.4% versus 75.8% and 61.0%, respectively; p < 0.001). 
Furthermore, patients with rectal cancers were more often 
treated with adjuvant radiotherapy compared to patients with 
rectosigmoid or colon cancers (28.8% versus 7.9% and 0.7%, 
respectively). Patients with pTNM stage III or IV CRC more 
often received adjuvant chemotherapy compared to patients 
with pTNM stage II CRC (27.3% and 25.8% versus 2.2%, 
respectively; p < 0.001). Patients who were treated with 
adjuvant radio- or chemotherapy were, in retrospect, more 
likely to have MMR proficient CRC  (MMRproficient 5.1% 
and 15.3% versus  MMRdeficient 0.9% and 9.4%, respectively; 
p = 0.002).

Warburg‑subtypes and survival after adjuvant 
therapy

The median follow-up time since diagnosis was 3.72 years 
(range: 0.0027 to 25.49  years). Survival analyses were 

restricted to 10 years of follow-up, because of the limited 
number of events in the later period. During these first 
10 years of follow-up, 1243 (69.3%) deaths were observed, 
of which 848 (68.2%) were CRC-related deaths.

Association between adjuvant therapy and survival 
according to Warburg‑subtype

In patients with Warburg-low CRC, univariable 
Kaplan–Meier curves showed significant differences in 
CRC-specific survival  (pCRC-specific = 0.047), but not over-
all survival  (poverall = 0.394), between treatment groups 
(Figs. 2A,  3A). Patients with Warburg-low CRC treated 
with adjuvant (chemo)therapy had a significantly worse 
CRC-specific survival compared to patients with Warburg-
low CRC treated with surgery only  (HRadjuvant therapy 1.63; 
95% CI 1.20–2.20 and  HRadjuvant chemotherapy 1.75; 95% CI 
1.25–2.45; Table 2). These associations with survival dis-
appeared after adjustment for confounders in multivariable-
adjusted analyses  (HRadjuvant therapy 1.07; 95% CI 0.76–1.52 
and  HRadjuvant chemotherapy 1.03; 95% CI 0.70–1.51; Table 2).

In patients with Warburg-moderate CRC, univariable 
Kaplan–Meier curves showed significant differences in over-
all survival  (poverall = 0.041), but not CRC-specific survival 
 (pCRC-specific = 0.397), between treatment groups (Figs. 2B, 
3B). Patients with Warburg-moderate CRC treated with 
adjuvant (chemo)therapy had a better overall survival com-
pared to patients with Warburg-moderate CRC treated with 
surgery only  (HRadjuvant therapy 0.81; 95% CI 0.64–1.03 and 
 HRadjuvant chemotherapy 0.77; 95% CI 0.58–1.02; Table 2). In 
multivariable-adjusted analyses, these inverse associations 
with survival became even stronger and reached statistical 
significance for both CRC-specific  (HRadjuvant therapy 0.64; 
95% CI 0.47–0.86 and  HRadjuvant chemotherapy 0.53; 95% CI 
0.38–0.75; Table 2) and overall survival  (HRadjuvant therapy 
0.61; 95% CI 0.47–0.80 and  HRadjuvant chemotherapy 0.50; 95% 
CI 0.37–0.67; Table 2).

In patients with Warburg-high CRC, univariable 
Kaplan–Meier curves showed significant differences in 
CRC-specific survival  (pCRC-specific = 0.019), but not over-
all survival  (poverall = 0.288), between treatment groups 
(Figs. 2B, 3B). Patients with Warburg-high CRC treated 
with adjuvant (chemo)therapy had a significantly worse 
CRC-specific  (HRadjuvant therapy 1.58; 95% CI 1.23–2.02, 
 HRadjuvant chemotherapy 1.67; 95% CI 1.27–2.18) and over-
all survival  (HRadjuvant therapy 1.31; 95% CI 1.05–1.62, 
 HRadjuvant chemotherapy 1.31; 95% CI 1.03–1.67) compared to 
patients with Warburg-high CRC treated with surgery only 
(Table 2). In multivariable-adjusted analyses, these associa-
tions with survival changed direction but did not reach sta-
tistical significance (CRC-specific survival:  HRadjuvant therapy 
0.86; 95% 0.65–1.14; overall survival:  HRadjuvant therapy 
0.82; 95% CI 0.64–1.05; Table 2). However, the association 
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Table 1  Clinical characteristics of colorectal cancer patients (n = 1793) within the Netherlands Cohort Study (NLCS, 1986–2006), according to 
adjuvant therapy (surgery, surgery and radiotherapy, surgery and chemotherapy)

CRC  colorectal cancer, RT radiotherapy, CHT chemotherapy, TNM tumor node metastasis, dMMR mismatch repair-deficient
a P value for the χ2 test, unless otherwise specified
b P value for the Kruskal–Wallis test

Clinical characteristics Total CRC 
(n = 1793)

Surgery only
(n = 1451)

Adjuvant therapy P  valuea

Surgery + RT
(n = 82)

Surgery + CHT
(n = 260)

Year of diagnosis, n (%)
 1986–1988 76 (4.2) 67 (88.2) 8 (10.5) 1 (1.3)  < 0.001
 1989–1991 149 (8.3) 118 (79.2) 18 (12.1) 13 (8.7)
 1992–1994 243 (13.6) 190 (78.2) 19 (7.8) 34 (14.0)
 1995–1997 336 (18.7) 262 (78.0) 20 (6.0) 54 (16.1)
 1998–2000 330 (18.4) 256 (77.6) 16 (4.9) 58 (17.6)
 2001–2003 323 (18.0) 267 (82.7) 1 (0.3) 55 (17.0)
 2004–2006 336 (18.7) 291 (86.6) – 45 (13.4)

Age at diagnosis in years, median (range) 74.0 (55.0–89.0) 75.0 (55.0–89.0) 69.0 (56.0–79.0) 72.0 (60.0–86.0)  < 0.001b

Sex, n (%)
 Men 980 (54.7) 766 (78.2) 53 (5.4) 161 (16.4) 0.004
 Women 813 (45.3) 685 (84.3) 29 (3.6) 99 (12.2)

Tumor location, n (%)
 Colon 1423 (79.4) 1201 (84.4) 10 (0.7) 212 (14.9)  < 0.001
 Rectosigmoid 165 (9.2) 125 (75.8) 13 (7.9) 27 (16.4)
 Rectum 205 (11.4) 125 (61.0) 59 (28.8) 21 (10.2)

pTNM stage, n (%)
 II 860 (48.0) 806 (93.7) 35 (4.1) 19 (2.2)  < 0.001
 III 578 (32.2) 379 (65.6) 41 (7.1) 158 (27.3)
 IV 322 (18.0) 236 (73.3) 3 (0.9) 83 (25.8)
 Unknown 33 (1.8) 30 (90.9) 3 (9.1) –

Tumor extension (pT), n (%)
 T1 8 (0.5) 5 (62.5) 1 (12.5) 2 (25.0)  < 0.001
 T2 69 (3.9) 41 (59.4) 7 (10.1) 21 (30.4)
 T3 1448 (80.6) 1188 (82.0) 62 (4.3) 198 (13.7)
 T4 229 (12.8) 182 (79.5) 9 (3.9) 38 (16.6)

Unknown 39 (2.2) 35 (89.7) 3 (7.7) 1 (2.6)
Lymph node involvement (pN), n (%)
 N0 817 (45.6) 752 (92.0) 32 (3.9) 33 (4.0)  < 0.001
 N + 813 (45.3) 546 (67.2) 44 (5.4) 223 (27.4)
 Unknown 163 (9.1) 153 (93.9) 6 (3.7) 4 (2.5)

Differentiation grade, n (%)
 Well 133 (7.4) 112 (84.2) 3 (2.3) 18 (13.5) 0.100
 Moderate 1165 (65.0) 943 (80.9) 62 (5.3) 160 (13.7)
 Poor/undifferentiated 267 (20.5) 286 (77.9) 14 (3.8) 67 (18.3)
 Unknown 128 (7.2) 110 (85.9) 3 (2.3) 15 (11.7)

dMMR, n (%)
 No 1560 (87.0) 1241 (79.6) 80 (5.1) 239 (15.3) 0.002
 Yes 214 (11.9) 192 (89.7) 2 (0.9) 20 (9.4)
 Unknown 19 (1.1) 18 (94.7) – 1 (5.3)

Warburg-subtype, n (%)
 Warburg-low 485 (27.1) 395 (81.4) 23 (4.7) 67 (13.8) 0.950
 Warburg-moderate 641 (35.8) 518 (80.8) 31 (4.8) 92 (14.4)
 Warburg-high 667 (37.2) 538 (80.7) 28 (4.2) 101 (15.1)
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between adjuvant chemotherapy and overall survival did 
reach statistical significance  (HRadjuvant chemotherapy 0.75; 95% 
CI 0.57–0.98; Table 2).

The interaction between Warburg-subtype and adjuvant 
therapy as calculated in a multivariable-adjusted Cox pro-
portional hazard model, adjusted for age at diagnosis, sex, 
tumor location, TNM stage, differentiation grade, MMR 
status and year of diagnosis was statistically significant 
for CRC-specific survival (p = 0.049) and overall survival 
(p = 0.035).

In stratified analyses according to disease stage (Supple-
mentary Table S1), similar trends were observed for patients 
with pTNM stage III CRC. However, in patients with pTNM 
stage II CRC, no significant association between adjuvant 
therapy and survival was observed for any of the Warburg-
subtypes. In contrast, in patients with pTNM stage IV CRC, 
a significantly better survival was observed for patients with 
Warburg-low or Warburg-moderate CRC receiving adju-
vant (chemo)therapy compared to patients who received 

surgery only. In stratified analyses according to tumor loca-
tion (Supplementary Table S2), a significantly better sur-
vival was observed for patients with Warburg-moderate or 
Warburg-high cancers located in the colon who received 
adjuvant (chemo)therapy compared to patients who received 
surgery only. Furthermore, a significant survival benefit 
was observed for patients with Warburg-moderate cancers 
located in the rectum who received adjuvant (radio)therapy.

Discussion

In this large, population-based series of colorectal cancer 
(CRC) patients, we investigated whether our previously 
defined immunohistochemistry (IHC)-based Warburg-sub-
types can be used to predict survival benefit from adjuvant 
therapy. Our results indicate that Warburg-subtypes may 
predict treatment benefit in CRC patients. While in gen-
eral patients with stage II–IV CRC who received adjuvant 

Fig. 2  Univariable Kaplan–Meier curves showing CRC-specific sur-
vival of colorectal cancer patients within the Netherlands Cohort 
Study (NLCS, 1986–2006) for A Total CRC, B Warburg-low CRC, C 
Warburg-moderate CRC, or D Warburg-high CRC, according to the 

treatment received (surgery only, surgery and adjuvant radiotherapy, 
surgery adjuvant chemotherapy). RT radiotherapy, CHT chemother-
apy
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(chemo)therapy had a significantly favorable CRC-specific 
and overall survival compared to patients who received 
surgery only, this benefit was only observed in patients 
with Warburg-moderate CRC. Patients with Warburg-high 
CRC also seemed to benefit from adjuvant therapy, but 
associations did not reach statistical significance. In con-
trast, no benefit from adjuvant (chemo)therapy was found 
for patients with Warburg-low CRC.

Since the 1950s, 5-fluorouracil (5-FU)-based chemother-
apy remains the main pharmacological treatment modality 
for patients with CRC (Van der Jeught et al. 2018). Although 
the administration of chemotherapy can improve the survival 
of cancer patients, chemotherapy resistance remains a major 
problem (Liu et al. 2021). In CRC, 5-FU-based chemother-
apy remains ineffective in approximately 30% of patients 
(Kitazawa et  al. 2020). Hence, there remains an urgent 
clinical need to identify novel prognostic and/or predictive 
biomarker(s) to improve survival and quality of life in CRC 
patients (Ji et al. 2018; Ten Hoorn et al. 2022).

To the best of our knowledge, we are the first to prospec-
tively investigate whether Warburg-subtypes are associated 
with adjuvant (chemo)therapy resistance in a large popu-
lation-based cohort of CRC patients. Nevertheless, many 
studies have investigated the relationship between cellular 
metabolism and therapy resistance in vitro (Liu et al. 2021). 
Moreover, one retrospective study has investigated the rela-
tion between expression patterns of proteins related to the 
Warburg-effect and response to therapy in patient tissue 
samples (Kitazawa et al. 2020). On the one hand, the major-
ity of studies suggest that aerobic glycolysis promotes tumor 
characteristics that contribute to adjuvant therapy resistance 
(Morandi and Indraccolo 2017; Zhong and Zhou 2017; Zaal 
and Berkers 2018; Desbats et al. 2020; Kitazawa et al. 2020; 
Liu et al. 2021; Dong et al. 2022). On the other hand, there 
are studies that suggest that therapy resistance is accompa-
nied by a metabolic shift from aerobic glycolysis toward 
oxidative phosphorylation (OXPHOS) (Denise et al. 2015; 
Vellinga et al. 2015; Taniguchi et al. 2016). Assuming that 

Fig. 3  Univariable Kaplan–Meier curves showing overall survival 
of colorectal cancer patients within the Netherlands Cohort Study 
(NLCS, 1986–2006) for A Total CRC, B Warburg-low CRC, C 
Warburg-moderate CRC, or D Warburg-high CRC, according to the 

treatment received (surgery only, surgery and adjuvant radiotherapy, 
surgery and adjuvant chemotherapy). RT radiotherapy, CHT chemo-
therapy
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the Warburg-high subtype represents CRC that rely mainly 
on aerobic glycolysis to meet their metabolic demands, 
whereas the Warburg-low subtype represents a more oxida-
tive metabolic phenotype (i.e., OXPHOS), our results are in 
contrast with those of the majority of previous studies which 
showed that aerobic glycolysis is associated with adjuvant 
therapy resistance (Liu et al. 2021; Dong et al. 2022; Zaal 
and Berkers 2018; Desbats et al. 2020; Zhong and Zhou 
2017; Morandi and Indraccolo 2017).

Even though future studies are necessary to validate our 
results and to further investigate the biological mechanisms, 

the discrepancy in results might be explained by the fact 
that previous reports were mostly based on in vitro cell cul-
ture studies (Morandi and Indraccolo 2017) or were con-
ducted retrospectively (Kitazawa et al. 2020). It has been 
reported that in vitro conditions differ drastically from the 
conditions found in vivo in the tumor microenvironment 
(Pampaloni et al. 2007; Vermeersch et al. 2014). Further-
more, it has been suggested that the effect of therapy might 
differ depending on the environment in which the cancer 
cells reside (Jo et al. 2018). For example, research suggests 
that cancer cells may be sensitive to chemotherapy in cell 

Table 2  Univariable and multivariable-adjusted hazard ratios for 
associations between adjuvant therapy (surgery, surgery plus radio-
therapy, surgery plus chemotherapy) and CRC-specific and overall 

survival for the Warburg-subtypes (Warburg-low, Warburg-moderate, 
and Warburg-high) within the Netherlands Cohort Study (NLCS, 
1986–2006)

CRC  colorectal cancer, HR hazard ratio, CI confidence interval, RT radiotherapy, CHT chemotherapy
a Adjusted for age at diagnosis (years), sex (male/female), tumor location (colon/rectosigmoid/rectum), TNM stage (II, III, IV, unknown), differ-
entiation grade (well/moderate/poor/undifferentiated/unknown), MMR deficiency (no/yes/unknown), and year of diagnosis (per 3 years)

N CRC-specific survival Overall survival

CRC deaths (%) HR (95% CI) Deaths (%) HR (95% CI)

Univariable Multivariable-
adjusteda

Univariable Multivariable-
adjusteda

Total CRC 
 Surgery only 1451 644 (44.4) 1.00 (ref) 1.00 (ref) 992 (68.4) 1.00 (ref) 1.00 (ref)
 Surgery + adjuvant 

therapy
342 204 (59.6) 1.31 (1.12–1.53) 0.80 (0.68–0.96) 251 (73.4) 1.07 (0.94–1.23) 0.78 (0.67–0.91)

  Surgery + adjuvant 
RT

82 46 (56.1) 1.15 (0.85–1.55) 1.14 (0.81–1.61) 63 (76.8) 1.05 (0.81–1.35) 1.22 (0.91–1.63)

  Surgery + adjuvant 
CHT

260 158 (60.8) 1.37 (1.15–1.63) 0.74 (0.61–0.90) 188 (72.3) 1.08 (0.93–1.27) 0.69 (0.58–0.82)

Warburg-low
 Surgery only 395 159 (40.3) 1.00 (ref) 1.00 (ref) 255 (64.6) 1.00 (ref) 1.00 (ref)
 Surgery + adjuvant 

therapy
90 57 (63.3) 1.63 (1.20–2.20) 1.07 (0.76–1.52) 65 (72.2) 1.20 (0.91–1.57) 0.95 (0.70–1.30)

  Surgery + adjuvant 
RT

23 13 (56.5) 1.31 (0.74–2.30) 1.26 (0.67–2.36) 15 (65.2) 0.93 (0.55–1.57) 1.17 (0.66–2.09)

  Surgery + adjuvant 
CHT

67 44 (65.7) 1.75 (1.25–2.45) 1.03 (0.70–1.51) 50 (74.6) 1.31 (0.97–1.78) 0.90 (0.63–1.27)

Warburg-moderate
 Surgery only 518 245 (47.3) 1.00 (ref) 1.00 (ref) 362 (69.9) 1.00 (ref) 1.00 (ref)
 Surgery + adjuvant 

therapy
123 62 (50.4) 0.92 (0.69–1.21) 0.64 (0.47–0.86) 81 (65.9) 0.81 (0.64–1.03) 0.61 (0.47–0.80)

  Surgery + adjuvant 
RT

31 16 (51.6) 0.94 (0.57–1.56) 1.23 (0.67–2.24) 23 (74.2) 0.93 (0.61–1.42) 1.32 (0.80–2.18)

  Surgery + adjuvant 
CHT

92 46 (50.0) 0.91 (0.66–1.25) 0.53 (0.38–0.75) 58 (63.0) 0.77 (0.58–1.02) 0.50 (0.37–0.67)

Warburg-high
 Surgery only 538 240 (44.6) 1.00 (ref) 1.00 (ref) 375 (69.7) 1.00 (ref) 1.00 (ref)
 Surgery + adjuvant 

therapy
129 85 (65.9) 1.58 (1.23–2.02) 0.86 (0.65–1.14) 105 (81.4) 1.31 (1.05–1.62) 0.82 (0.64–1.05)

  Surgery + adjuvant 
RT

28 17 (60.7) 1.29 (0.79–2.12) 1.22 (0.67–2.21) 25 (89.3) 1.29 (0.86–1.93) 1.25 (0.77–2.03)

  Surgery + adjuvant 
CHT

101 68 (67.3) 1.67 (1.27–2.18) 0.81 (0.60–1.09) 80 (79.2) 1.31 (1.03–1.67) 0.75 (0.57–0.98)



6280 Journal of Cancer Research and Clinical Oncology (2023) 149:6271–6282

1 3

culture, but become resistant when transplanted into animal 
models (Trédan et al. 2007).

A potential explanation for the observation that patients 
with Warburg-low CRC had no survival benefit from adju-
vant (chemo)therapy has been described by Vellinga et al. 
(2015). Normally, the amount of adenosine 5’-triphosphate 
(ATP) that is generated by aerobic glycolysis is sufficient 
to support tumor cell growth and basal DNA repair activity 
(Gottesman et al. 2002; Vellinga et al. 2015). However, when 
chemotherapy is administered, the cellular ATP demand 
in cancer cells increases significantly as many enzymes 
involved in DNA repair, drug efflux, and drug detoxifica-
tion require ATP to function (Gottesman et al. 2002; Vel-
linga et al. 2015). As OXPHOS is the most efficient way to 
generate ATP (Vander Heiden et al. 2009), cancer cells may 
switch from aerobic glycolysis to OXPHOS at times of high 
ATP demand (Vellinga et al. 2015). In line with our results, 
this may suggest that patients with Warburg-low CRC (i.e., 
patients with cancers that rely mainly on oxidative metabo-
lism) are more capable of repairing DNA damage and regu-
lating drug metabolism compared to patients with Warburg-
moderate and Warburg-high CRC (i.e., patients with cancers 
that rely mainly on aerobic glycolysis), rendering them more 
resistant to adjuvant therapy.

Our results suggest that the predictive value of Warburg-
subtypes may be limited to TNM stage III CRC. In TNM 
stage II, no survival benefit from adjuvant (chemo)therapy 
was observed for any of the Warburg-subtypes, while in 
TNM stage IV, all CRC patients had survival benefit from 
adjuvant (chemo)therapy regardless of Warburg-subtype. As 
adjuvant chemotherapy is the standard of care for TNM stage 
III CRC (Kornmann et al. 2008), and chemotherapy resist-
ance is still a major problem in clinical practice (Kitazawa 
et al. 2020; Liu et al. 2021), Warburg-subtypes may in future 
help to determine which stage III CRC patients will benefit 
most from adjuvant (chemo)therapy.

The main strengths of the present study include the use 
of a large population-based series of incident CRC patients, 
the prospective design, the nearly complete follow-up, and 
the availability of tumor material for a large number of CRC 
patients. Our study has some limitations. First, we did not 
have a validation cohort available to confirm the observed 
associations. Second, we did not have any detailed clinical 
information available regarding the dosage, duration or exact 
type of treatment. Third, we did not adjust for multiple test-
ing which may have potentially resulted in chance findings. 
Fourth, in the Netherlands Cohort Study (NLCS), the large 
majority of CRC patients were treated with surgery only, 
resulting in a relatively small number of patients that were 
treated with adjuvant therapy, thereby limiting the power 
of our analyses. However, the limited amount of patients 
treated with adjuvant therapy was representative for this 
time period (1986–2006) (Van Steenbergen et al. 2010). 

Lastly, limitations with regard to Warburg-subtyping were 
described in detail previously (Offermans et al. 2021).

Conclusion

In conclusion, Warburg-subtypes may predict treatment ben-
efit in CRC patients. Our results suggest that survival benefit 
from adjuvant (chemo)therapy in patients with CRC may 
depend on Warburg-subtype. Opposite to expectation, a sur-
vival benefit from adjuvant (chemo)therapy was observed for 
patients with Warburg-moderate and possibly also Warburg-
high CRC, but not for patients with Warburg-low CRC.

All in all, our results highlight the importance of molecu-
lar classification of CRC based on Warburg-related proteins, 
in addition to TNM stage and tumor location, to identify 
subgroups of patients who are more likely to benefit from 
adjuvant (chemo)therapy. However, as this is an explora-
tory study, our results should be interpreted with caution 
and future prospective studies are necessary to validate our 
findings.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00432- 023- 04581-w.
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