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Abstract
Purpose A wide therapeutic repertoire has become available to oncologists including radio- and chemotherapy, small 
molecules and monoclonal antibodies. However, drug efficacy can be limited by genetic heterogeneity. Here, we designed 
a webtool that facilitates the data analysis of the in vitro drug sensitivity data on 265 approved compounds from the GDSC 
database in association with a plethora of genetic changes documented for 1001 cell lines in the CCLE data.
Methods The webtool computes odds ratios of drug resistance for a queried set of genetic alterations. It provides results 
on the efficacy of single compounds or groups of compounds assigned to cellular signaling pathways. Webtool availability: 
https:// tools. hornl ab. org/ GDSC/.
Results We first replicated established associations of genetic driver mutations in BRAF, RAS genes and EGFR with drug 
response. We then tested the ‘BRCAness’ hypothesis and did not find increased sensitivity to the assayed PARP inhibitors. 
Analyzing specific PIK3CA mutations related to cancer and mendelian overgrowth, we found support for the described 
sensitivity of H1047 mutants to GSK690693 targeting the AKT pathway. Testing a co-mutated gene pair, GATA3 activation 
abolished PTEN-related sensitivity to PI3K/mTOR inhibition. Finally, the pharmacogenomic modifier ABCB1 was associ-
ated with olaparib resistance.
Conclusions This tool could identify potential drug candidates in the presence of custom sets of genetic changes and moreo-
ver, improve the understanding of signaling pathways. The underlying computer code can be adapted to larger drug response 
datasets to help structure and accommodate the increasingly large biomedical knowledge base.

Keywords Association test · Candidate compound · Data repository · Discovery approach

Introduction

Genetic diversity across cancers modifies the tumor’s drug 
responsiveness and impedes the use of widely applicable 
drugs without patient stratification (Lin and Sheltzer 2020). 
The BRAF V600-specific inhibition of tumor growth across 
various tumor entities is a prime example of personalized 
cancer treatment (Subbiah et al. 2020) and depends on the 
availability of diagnostic biomarkers with predictive power 
for drug response (Chin et al. 2011). To identify and estab-
lish those powerful decisive markers, it is crucial to associate 
specific genetic changes with drug response data. Complex 
datasets have been generated for cancer cell lines to pro-
vide information on genetic changes and drug response. The 
Genomics of Drug Sensitivity in Cancer Project (GDSC) 
and The Cancer Cell Line Encyclopedia (CCLE) represent 
two of such databases (Iorio et al. 2016; Ghandi et al. 2019). 
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While GDSC provides drug response data including bioin-
formatically estimated concentration–response curves,  IC50 
values as well as tested genomic associations, the CCLE 
dataset holds information on altered gene copy number, 
point mutations, mRNA levels, and gene fusions. Although 
public webtools were developed for ready access and analy-
sis of the above datasets (Cerami et al. 2012; Yang et al. 
2013; Piñeiro-Yáñez et al. 2018; Basu et al. 2013; Najge-
bauer et al. 2020), these tools often lack the possibility to 
analyze a custom set of mutations or a combination of co-
occurring gene alterations. Here, we designed a straight-
forward publicly accessible tool that combines the GDSC 
drug response data and genetic data collected for the CCLE 
samples. It enables researchers to query individual combi-
nations of genetic alterations to assess drug sensitivity for 

a larger variety of cell lines (Fig. 1A). Our approach allows 
any combination of genetic changes in the query genes to 
address cellular pathways. Since different genetic changes 
of the same gene can mediate various functional effects, we 
offer custom queries for hypothesis testing and discovery of 
drugs for potential repurposing.

Materials and methods

Implementation

The webtool was implemented using R shiny in R version 
4.0.5. To avoid duplications of 15 compounds screened 
twice, the screenings with higher data availability were used. 

Fig. 1  Workflow of the webtool and verification of the BRAF–MAPK 
pathway association. A Users define custom genetic changes and 
test across cell lines from various cancer entities. Categorization in 
‘resistant’ or ‘sensitive’ from Iorio et al. (Iorio et al. 2016): cell via-
bility measured using the CellTiter-Glo® Assay, IC50 values subse-
quently estimated by a non-linear mixed effects model, binarization 
threshold for each drug. B Principle of testing the gain of function 

(GOF) BRAF V600-mutated cell lines revealing moderate resistance 
to EGFR and strong sensitivity to ERK/MAPK pathway compounds. 
Odds ratios (OR) for resistance in the altered cell lines (mut) above 
each bar plot (Fisher’s tests). Numbers of cell lines pooled in each 
pathway category differ by available data indicated in the bars. Using 
Bonferroni correction for testing 22 pathways, p-values < 0.0023 are 
considered significant
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Drugs were assigned to one of 22 target pathways as previ-
ously described (Iorio et al. 2016). Further information on 
compounds can be retrieved in the GDSC database at https:// 
www. cance rrxge ne. org/ and the compounds of the GDSC1 
dataset are included in our webtool. Here, we analyzed genes 
across all available cell lines as the majority of cell lines 
were profiled for the queried alterations. The ‘BRCAness’ 
analysis was additionally performed on breast cancer cell 
lines only. Users can specify which genetic changes and cell 
lines shall be included in the analysis, for every gene the type 
of genetic changes can be selected independently. Further-
more, cell lines with missing data, which were not profiled 

for a specific type of alteration, can be excluded to avoid 
ascertainment biases in the analyses, e.g., of gene fusions 
which have not been profiled for the majority of cell lines 
(Fig. 2). Plots and data tables are provided for download.

Statistical analysis

From the contingency tables of genetically changed and 
wild-type groups, odds ratios (OR) for resistance and Fish-
er’s exact tests (two-sided) were computed, within each path-
way as well as for every single compound. Bonferroni-cor-
rected p value thresholds are < 0.0023 testing 22 pathways 

Fig. 2  Step-by-step user workflow. A Obtain genetic alterations of 
query genes in the ‘alterations_across_samples.tsv’ file from www. 
cBioP ortal. org as described at https:// tools. hornl ab. org/ GDSC/ Man-
ual. pdf and in Supplementary Fig. 1–2. B Based on this file, cell lines 
are classified in ‘genetically changed’ and ‘wild type’ as reference. 
Option 1: tumor entities (tissue origins) of interest can be selected. 
Up to three genes can be chosen for analysis. The webtool provides 
automated assignment of cell lines into groups, by default ‘presum-
ably activating’: amplifications (CNV up), high mRNA as defined by 
cBioportal. Default: ‘presumably deactivating’: homozygous dele-
tions (CNV down), low mRNA, nonsense- and frameshift mutations. 

Users can additionally select missense mutations, splice variants 
and gene fusions. For two or three genes, cell lines can be defined as 
‘mutated’ if at least one of the genes is changed or optionally, if all 
genes are changed (co-mutation). Option 2: custom grouping based 
on a tab-delimited text file and used in the upload option of the webt-
ool. It should contain 3 columns named ‘Sample.ID’, ‘Patient.ID’, 
and ‘changed’. The first two columns are retrieved from the ‘altera-
tions_across_sample.tsv’ file and the third column, added by the user, 
defines the cell lines as ‘mut’ for mutated/genetically changed and 
‘wt’ for wild type (empty cells to exclude cell lines)

https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
http://www.cBioPortal.org
http://www.cBioPortal.org
https://tools.hornlab.org/GDSC/Manual.pdf
https://tools.hornlab.org/GDSC/Manual.pdf
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and p < 0.0002 testing 250 drugs. For counts of zero, it was 
not possible to calculate OR and ratios of resistant and sensi-
tive cell lines are shown in percent above the bar plot.

Results and discussion

As a proof of principle, we tested established gene–drug 
associations across tumor entities. Specific gene mutations 
are routinely used as biomarkers to guide targeted therapies, 
such as BRAF V600 mutations for the targeted MAP kinase 
inhibition (MAPKi) therapy of cancer patients (Subbiah 
et al. 2020). We replicated this established association with 
strong statistical support in our webtool. BRAF V600-pos-
itive cell lines were sensitive to compounds targeting the 
ERK–MAPK signaling pathway (OR 0.16, p = 3.2e−125, 
Fig. 1B) such as PLX4720 (OR 0.03, p = 6.2e−38) and dab-
rafenib (OR 0.02, p = 3.87e−36, Supplementary Fig. 3). 
Of note, BRAF V600-mutated cell lines were resistant to 
compounds targeting the PI3K/mTOR pathway (OR 1.72, 
p = 1.12e−7), EGFR pathway (OR 3.10, p = 2.37e−7), and 
the RTK pathway (OR 1.82, p = 1.47e−9, Supplementary 
Fig. 4A).

Since RAS proteins activate the MAPK-signaling path-
way (Bonni et  al. 1999), we expected cancer cell lines 
carrying one of the recurrent point mutations in NRAS, 
HRAS or KRAS to be sensitive to compounds targeting the 
ERK–MAPK signaling pathway as well. This alleged asso-
ciation was confirmed across entities with great statistical 
support (OR 0.49, p = 3.71e−33, Supplementary Fig. 4B). 
As the role of EGFR and ERBB2 overexpression and ampli-
fication in cancer is well described (Olayioye et al. 2000), we 
expected to replicate a sensitivity to compounds inhibiting 
the EGFR-signaling pathway in EGFR- or ERBB2-altered 
cell lines. Cell lines with potentially activating changes 
including gene amplifications as well as high mRNA lev-
els in either EGFR or ERBB2, or both genes were associ-
ated with sensitivity to EGFR pathway compounds (OR 
0.51, p = 3.05e−8, Supplementary Fig. 5). Compounds that 
showed sensitivity in EGFR/ERBB2-altered cell lines almost 
exclusively target the EGFR pathway (Fig. 3A). Further-
more, as PTEN loss results in hyperactive PI3K signaling 
(Carracedo and Pandolfi 2008) we tested cell lines with 
PTEN deactivating changes (homozygous deletions, splice 
variants, frameshift and nonsense mutations) and con-
firmed those to be sensitive to compounds inhibiting the 
PI3K/mTOR pathway (OR 0.75, p = 2.94e−5, Supplemen-
tary Fig. 6A, B). Hence, we replicated several established 
associations of genetic changes and drug sensitivity across 
cancer entities, indicating the reliability of the presented 
webtool to detect true strong associations.

Next, we tested proposed gene–drug associations, at first 
the ‘BRCAness’ hypothesis (Lord and Ashworth 2016), 

comparing cancer cell lines with deactivating changes 
(homozygous deletions, splice variants, frame shift, and 
nonsense mutations) in at least one of the following ‘BRCA-
ness’ genes: BRCA1, BRCA2, ATM, ATR , RAD51C, and 
RAD51D with wild types across entities. The sensitizing 
effect of BRCA  deactivation for poly (ADP-ribose) poly-
merase inhibition (PARPi) therapy has been shown multiple 
times across cancer entities (Fong et al. 2009). However, we 
found no evidence for an increased sensitivity to the assayed 
PARP inhibitors neither across entities nor in breast cancer 
cell lines (Supplementary Table 2). These results indicate 
that ‘BRCAness’ may not be an obligate prerequisite for 
benefit from PARPi in line with recent studies (Shen et al. 
2019). As a second test of a previously reported association 
we tested PI3K/AKT/mTOR inhibitors and PIK3CA muta-
tions. Somatic mutations have been reported to occur in 
cancer as well as pathogenic germline variants in PIK3CA-
related overgrowth. We tested a set of 21 drugs from the 
group of PI3K/AKT/mTOR inhibitors and observed support 
for the described sensitivity of the H1047 mutant cell lines 
(Janku et al. 2013) for at least one inhibitor in the pathway, 
the AKT-inhibitor GSK690693 (OR 0.21, p = 0.00028 at 
alpha = 0.002, Fig. 3B, Supplementary Table 3). Further-
more, PIK3CA E545K or E542K mutated cancer cell lines 
had been described to be less sensitive (Janku et al. 2013) 
and indeed were not associated with an apparent response to 
GSK690693 (OR 0.81, p = 0.69). Beyond cancer, the muta-
tional spectra of PIK3CA-related cancer and PIK3CA-related 
overgrowth syndromes (PROS) overlap (Venot et al. 2018). 
Patients with PROS showed improvements in disease symp-
toms following treatment with the PI3K inhibitor BYL719 
and we, thus, tested the most frequent PROS PIK3CA 
mutations H1047, E542 and C420. Although BYL719 is 
not included in our drug dataset, cell lines harboring one of 
the 3 mutations also showed sensitivity to the Akt inhibitor 
GSK690693 (OR 0.28, p = 0.00019). Hence, we support the 
notion that blocking Akt is efficient in the presence of one 
of the three most frequent PIK3CA-overgrowth mutations.

To test drug resistance of co-mutations in a large can-
cer entity we chose the significantly co-mutated gene pair 
PTEN and GATA3 (co-mutation p < 0.001, Supplementary 
Fig. 6C–E). GATA3 expression was described to delay tumor 
progression and reduce Akt activation in PTEN-deficient 
mouse prostate cancer (Nguyen et al. 2013) and resulted 
in differential drug sensitivity in breast cancer (Mair et al. 
2016). While here, PTEN deactivation was again associ-
ated with the previously observed sensitivity to compounds 
targeting the PI3K/MTOR pathway, a concomitant GATA3 
activation (amplification, mRNA high) conferred resistance 
(OR 1.59, p = 0.0018, Fig. 3C, Supplementary Table 4). A 
concomitant GATA3 deactivation (homozygous deletions, 
splice variants, frameshift and nonsense mutations) did not 
yield a significant result (OR 1.38, p = 0.029, significance 
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level testing 22 pathways: 0.002) although an opposite effect 
could be expected from GATA3 deactivation leading to either 
no changes in PI3K/mTOR inhibition retaining sensitivity or 
even enhancing sensitivity. These results may prompt more 
experiments to test if GATA3 is indeed functionally involved 
in the PTEN-axis of PI3K/mTOR inhibitor sensitivity.

Next, we tested putatively activating genetic changes of 
the pharmacogenomic modifier ABCB1 vs. the wild type 
and found resistance to compounds from various pathways 
(Supplementary Table 5). Olaparib efflux has been reported 
for advanced prostate cancer over-expressing ABCB1 (Lom-
bard et al. 2019) and also here all of the ABCB1-activated 
cell lines were resistant to olaparib (n = 76, p = 0.00015, 
Fig. 3D), while 12.4% of wild-type cell lines were sensitive. 
A deactivation of ABCB1 in 21 cell lines had no significant 
association with olaparib efficacy (OR 0.82, p = 0.7373).

Conclusion

In conclusion, we present a powerful webtool to analyze 
associations of genetic alterations and drug response from 
the CCLE and GDSC datasets and enable fast hypothesis 
testing and discovery approaches across and within cancer 
entities. The swift analysis of molecular tumor heterogene-
ity may help to identify compounds for drug repurposing 
and prioritization and to understand settings of co-mutation. 
More broadly, beyond cancer it could be applied to investi-
gate mechanisms of cell signaling pathways. As the public 
data sets are currently growing fast, larger sample sizes will 
improve statistical power, McInnes et al. recently released 
a pharmacogenetic analysis including 487,409 participants 
(McInnes, Lavertu et al. 2021). The open source of our webt-
ool is technically applicable to these larger datasets with 

Fig. 3  Verification of EGFR pathway association and new drug 
dependencies. A Compounds that show activity in EGFR/ERBB2-
activated cell lines almost exclusively belong to the EGFR path-
way. Forest plot with OR > 1 shows resistance of altered cell lines 
to drugs, OR < 1 indicates sensitivity. Compounds shown if p < 0.05 
from Fisher’s exact tests for candidate approaches. For discovery test-
ing 250 compounds, Bonferroni-corrected p < 0.0002 are considered 
significant. B Within frequent PIK3CA point mutations only H1047 

mutant cell lines were sensitive to AKT-inhibitor GSK690693 (Sup-
plementary Table  3). Frequencies and image for CCLE 2019 from 
www. cbiop ortal. org. Colored regions: protein domains. Light green: 
missense variants of unknown significance, dark green: driver mis-
sense mutations. C GATA3 activation and abolished PTEN-related 
sensitivity to PI3K/mTOR inhibition. D Model of olaparib exclusion 
with activated ABCB1. GOF/LOF: gain/loss of function

http://www.cbioportal.org


5544 Journal of Cancer Research and Clinical Oncology (2023) 149:5539–5545

1 3

binary and continuous measures for drug response. Hence, 
it will be possible to further expand it as a functional tool 
to bridge from big drug sensitivity screens to bench-side 
researchers.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00432- 022- 04503-2.
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