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Abstract
Predictive biomarkers are the mainstay of precision medicine. This review summarizes the advancements in tissue-based 
diagnostic biomarkers for gastric cancer, which is considered the leading cause of cancer-related deaths worldwide. A disease 
seen in the elderly, it is often diagnosed at an advanced stage, thereby limiting therapeutic options. In Western countries, 
neoadjuvant/perioperative (radio-)chemotherapy is administered, and adjuvant chemotherapy is administered in the East. 
The morpho-molecular classification of gastric cancer has opened novel avenues identifying Epstein–Barr-Virus (EBV)-
positive, microsatellite instable, genomically stable and chromosomal instable gastric cancers. In chromosomal instable 
tumors, receptor tyrosine kinases (RKTs) (e.g., EGFR, FGFR2, HER2, and MET) are frequently overexpressed. Gastric 
cancers such as microsatellite instable and EBV-positive types often express immune checkpoint molecules, such as PD-L1 
and VISTA. Genomically stable tumors show alterations in claudin 18.2. Next-generation sequencing is increasingly being 
used to search for druggable targets in advanced palliative settings. However, most tissue-based biomarkers of gastric cancer 
carry the risk of a sampling error due to intratumoral heterogeneity, and adequate tissue sampling is of paramount importance.
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Introduction

Gastric adenocarcinoma (GC) is the fifth most common 
cancer and the third most common cause of cancer-related 
deaths, accounting for almost 800.000 deaths world-wide 
(Smyth et al. 2020). The incidence and prevalence of GC 
varies geographically, and its prevalence is twice as high 
among men than in women. Emerging data show that East 
Asia, Central Europe, and Eastern Europe have the high-
est rates of GC, collectively accounting for 87% of all new 
cases registered worldwide. In Africa and North America, 
significantly lower rates have been observed (Smyth et al. 
2020). During the past 30–50 years, the standardized inci-
dence rates of non-cardia GC have declined worldwide. 
However, cancer of the proximal stomach/cardia and esoph-
agogastric junction has either been stable or even increased. 
Typically, the incidence of GC is predominantly observed 
in the elderly, often peaking at the 7th and 8th decade of 

life; moreover, with a rapidly aging population, the preva-
lence of GC is relatively high (Smyth et al. 2020). In regions 
reporting low incidence of the disease, it is diagnosed at 
an advanced stage, thereby restricting targeted therapeutic 
treatment options, with patient prognosis remaining rather 
dismal. The disease specific 5 year survival rate for both 
sexes ranges between 30% and 35%.

Etiology

Gastric adenocarcinoma has a diverse etiology, and the main 
risk factors include dietary factors, such as high salt intake, 
tobacco consumption, and Helicobacter pylori (H. pylori) 
infection (Smyth et al. 2020). Correa proposed a model 
for gastric carcinogenesis: chronic atrophic gastritis leads 
to intestinal metaplasia, dysplasia, and finally GC (Correa 
1992). In recent years, multiple bacterial virulence factors 
have been identified for colonization, persistence, ulcers, and 
cancer risk, such as CagA, DupA, IceA1, NapA, oipA, and 
VacA (Malfertheiner et al. 2014). Host factors, e.g., poly-
morphisms in genes coding for pro- and anti-inflammatory 
cytokines, environmental factors, and socioeconomic sta-
tus further modulate the individual cancer risk. Proximal 
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GC and esophagogastric junction carcinoma are associated 
with gastroesophageal reflux disease and Barrett’s mucosa 
(Smyth et al. 2020).

Approximately 10% of all GC cases have a familial or 
hereditary trait (Smyth et al. 2020). In familial GC, the main 
predisposing factors include H. pylori infection, dietary 
habits, and gene polymorphisms. The underlying germ line 
mutations causing hereditary type GC are found in 1–3% 
of all cases (Moehler et al. 2019). Genes which have been 
linked with hereditary type GC are CDH1 (coding for E-cad-
herin), CTNNA1 (α-E-catenin) (Majewski et al. 2013; Petro-
vchich et al. 2016), FBXO24 (F-Box-protein 24), DOT1L 
(DOT1-like histone H3K79 methyltransferase), INSR (insu-
lin receptor), MAP3K6 (mitogen-activated protein kinase 
6), PRSS1 (protease serine 1) (Donner et al. 2015; Petro-
vchich et al. 2016), and mutations in the APC promoter 1 B 
(Worthley et al. 2012; Li et al. 2016). GC can also arise in a 
setting of other well defined hereditary cancer syndromes, 
such as familial adenomatous polyposis (APC), Cowden 
syndrome (PTEN), Lynch syndrome (hMLH1, hMLH2), 
juvenile polyposis (BMPR1A), MUTYH-associated 

adenomatous polyposis (MUTYH), Li-Fraumeni syndrome 
(TP53), Peutz–Jeghers syndrome (STK11), and hereditary 
breast and ovarian cancer (BRCA1/2) (van der Post et al. 
2015).

Histology of gastric cancer

The World Health Organization (WHO) subclassifies adeno-
carcinomas of the stomach into tubular, parietal cell, mixed 
type, papillary, micropapillary, mucoepidermoid, mucinous, 
poorly cohesive (including signet-ring cell carcinoma), med-
ullary carcinoma, hepatoid adenocarcinoma, and Paneth cell 
carcinoma (Board 2019). In spite of that, the Laurén classifi-
cation is still used in cancer research and many clinical trials 
(Fig. 1) (Lauren 1965). Laurén classified GC into intestinal, 
diffuse, mixed, and unclassified types (Lauren 1965). Most 
GCs (> 90%) are adenocarcinomas. Molecular characteriza-
tion studies have been conducted and applied to Laurén’s 
classification (Wang et al. 2014). The morpho-molecular 
classification system for GC (see below) corresponds only 

Fig. 1  Histology of gastric cancer. Intestinal type (A), diffuse type 
(B), Epstein–Barr-virus positive (C) and microsatellite instable (D) 
gastric cancer. Note the tumor-associated inflammatory reaction (C). 
The microsatellite instable gastric cancer shows expression of PD-L1 

(E). An example of immunostaining for Claudin 18.2 is shown in (F). 
Hematoxylin and eosin-staining (A–D), anti-PD-L1-antibody (E), 
anti-Claudin 18.2-antibody (F). Original magnifications: 400-fold
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rudimentarily with the current WHO classification (Cancer 
Genome Atlas Research 2014; Smyth et al. 2020).

Molecular subtypes of gastric cancer

The Cancer Genome Atlas Research Network had performed 
an integrative genomic analysis and proposed four molecular 
subtypes, which can be used to stratify patients and design 
clinical trials for targeted therapy: Epstein–Barr virus-asso-
ciated (EBV), microsatellite instable (MSI), chromosomal 
instable (CIN), and genomically stable (GS) GC (Cancer 
Genome Atlas Research 2014; Wang et al. 2014). These 
studies linked distinct molecular subtypes with some histo-
logical phenotypes. It forms the basis for novel therapeutic 
strategies and precision medicine (Cancer Genome Atlas 
Research 2014, Wang et al. 2014).

Microsatellite instability in gastric cancers (MSI‑GC)

MSI-GCs are characterized by a very high mutational load 
and CpG-island methylator phenotype (CIMP). The DNA 
mismatch repair protein MLH1 is frequently silenced in 
these tumors. MSI-GCs account for 0–44.5% of all GC cases 
(Cortes-Ciriano et al. 2017; Mathiak et al. 2017; Guan et al. 
2021). They are predominantly observed in elderly patients 
and located in the distal stomach. MSI-GCs harbor signifi-
cantly lower numbers of lymph node metastases, and have 
a better overall and tumor-specific survival (Cortes-Ciriano 
et al. 2017; Mathiak et al. 2017; Smyth et al. 2017; Guan 
et al. 2021; Quaas et al. 2021a, b). Different from sporadic 
microsatellite instable colorectal cancer, MSI-GCs lack 
BRAF-mutations (Cancer Genome Atlas Research 2014) 
and BRAF cannot be used as predictive biomarker like in 
malignant melanomas (Warneke et al. 2013a, b).

Frequently, MSI-GCs exhibit rare and indicative histo-
logical phenotypes (Fig. 1) (Mathiak et al. 2017) and an 
abundant tumor-associated inflammatory cell infiltration 
comprising either neutrophils and/or lymphocytes is com-
monly noted, with little or no desmoplastic stromal compo-
nents (Mathiak et al. 2017; Smyth et al. 2020).

For two reasons, MSI-GC classification is clinically 
relevant: (1) MSI-GCs predict improved patient outcomes 
(Mathiak et al. 2017; Pietrantonio et al. 2019; Guan et al. 
2021); (2) MSI-GCs frequently express immune check-
point molecules such as PD-L1 (Fig. 1) making them eli-
gible for treatment with immune checkpoint inhibitors 
(Cancer Genome Atlas Research 2014; Böger et al. 2016; 
Pietrantonio et al. 2021). MSI-GCs can be classified and 
identified using antibodies directed against MLH1, PMS2, 
MSH2, and MSH6, and mononucleotide markers BAT-25, 
BAT-26, NR-21, NR-24, and NR-27 (Mathiak et al. 2017). 
In most cases, histological phenotypes could raise a doubt 

(see above). However, as one-third of tumors do not show 
a particular phenotype, a more general approach may be 
required for MSI-testing, that is, upfront testing irrespective 
of the histological phenotype. Most MSI-GCs demonstrate 
loss of MLH1-expression. Thus, detecting loss of MLH1 by 
immunostaining may be a cost-effective approach to search 
for MSI-GC (Gonzalez et al. 2016). However, other mem-
bers of the DNA-repair machinery, such as MSH2, albeit 
rarely observed in GC, can be lost and may indicate Lynch 
syndrome (Matsubayashi et al. 2022).

The significantly better outcome of MSI-GC compared 
with microsatellite stable GC raised concerns regarding 
the necessity of neoadjuvant/perioperative (radio-)chemo-
therapy and adjuvant chemotherapy in this patient subgroup 
(Mathiak et al. 2017). In support of this notion, an explora-
tive analysis of the MAGIC trial showed that patients with 
non-metastatic MSI-GC had a better prognosis after surgery 
compared to those with microsatellite stable GCs. How-
ever, MSI-GCs had a worse prognosis when treated with 
perioperative chemotherapy (median overall survival 9.6 vs. 
19.5 months; hazard ratio [HR] 2.18), also showing no major 
pathological responses to chemotherapy (Smyth et al. 2017; 
Petrillo et al. 2020). These data were further supported by a 
large meta-analysis performed by Pietrantonio et al. (Pietran-
tonio et al. 2019) including individual patient data from four 
multicenter randomized clinical trials. Again, patients with 
MSI-GC, who were treated with surgery alone, performed 
well even without adjunctive chemotherapy. In contrast, 
patients with MSI-GC, who were treated with chemotherapy 
(perioperative or adjuvant), did not benefit from this treat-
ment (Pietrantonio et al. 2019). However, these studies suffer 
from their retrospective nature and large prospective trials 
are urgently needed.

MSI may also serve as a predictive biomarker for the 
administration of immune checkpoint inhibitors (Pietranto-
nio et al. 2021). MSI-GC frequently express PD-L1 (Fig. 1) 
(Böger et al. 2016; Cho et al. 2021), and anti-PD-1 agents 
with or without chemotherapy significantly and consist-
ently improved overall survival, progression free survival, 
and objective response rate vs. chemotherapy alone in the 
subgroup of patients with advanced MSI-GC (Pietrantonio 
et al. 2021).

Epstein–Bar‑virus‑associated gastric cancer 
(EBVaGC)

EBVaGC is another molecular subtype, which accounts for 
2–20% of all GC cases (Cancer Genome Atlas Research 
2014, Wang et al 2014; Böger et al. 2017a, b; Saito et al. 
2021), and also shows a CIMP-phenotype. It frequently 
harbors mutations in PIK3CA and ARID1A, copy-number 
amplifications of JAK2 and CD274/PDCD1LG2, and a 
dysregulation of immune cell signaling molecules. Data 
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show that EBVaGC is more prevalent among Caucasians 
than Asians, predominantly among males, and younger-aged 
patients. It occurs primarily in the proximal stomach and 
postgastrectomy remnant stomach. Multiplicity of EBVaGC 
is frequently encountered (Fukayama et al. 2011; Saito et al. 
2021), and lymph node metastases are less often detected 
compared with EBV-negative GCs (Tokunaga et al. 1998). 
In Asian populations, EBVaGC may have a better progno-
sis than EBV-negative GCs (Liu et al. 2015a, b). EBVaGC 
and MSI-GC are mutually exclusive (Mathiak et al. 2017). 
Histologically, EBVaGC may show a tubular and intestinal 
differentiation. A dense infiltrate of lymphocytes is often 
noted presenting as an undifferentiated phenotype (lymphoe-
pithelioma-like or medullary) (Fig. 1). Hence, any unusual 
histological phenotype should be forwarded to EBV-testing. 
This is best done by EBER-in-situ-hybridization providing 
a nuclear signal. Immunostaining is less sensitive. GC is 
commonly of type 1 latency and antibodies directed against 
EBNA2, LMP1, and ZEBRA may not immunoreact with the 
tumor cells (Tokunaga et al. 1993; Fukayama et al. 2011). 
In view of the broad morphological spectrum of EBVaGC, 
testing should be performed at liberty (Park et al. 2016).

EBVaGCs, like MSI-GC, also express PD-L1 and may 
respond to immune checkpoint inhibitors (Böger et al. 2016; 
Wei et al. 2021; Zhang et al. 2021). However, data on the 
efficacy of immune checkpoint inhibitors in EBVaGC are 
limited. In a recent review, data from 39 patients were sum-
marized (Wei et al. 2021). Among these 39 patients, 12 had 
survival information, including progression-free and overall 
survival. Compared to PD-L1 negative patients, PD-L1 posi-
tive patients had superior progression-free survival. Thus, 
while the identification and diagnosis of EB-VaGC may be 
clinically relevant, further research is required.

Chromosomal instable gastric cancers (CIN GC)

Chromosomal instability drives intratumoral heterogeneity, 
which supports microenvironmental selection and evolution 
of cancer cell populations, leading to cancer resistance (Tan-
nock et al. 2016). Thus, recognition of CIN GC is highly 
important. Although, it may not constitute a distinct sub-
group but may rather be a compilation of a more heterogene-
ous group of tumors (Maleki et al. 2017). Currently, there is 
no validated simple diagnostic method for the identification 
of CIN besides somatic copy number alteration analysis or 
defined molecular markers. According to Laurén classifica-
tion, CIN GC often shows an intestinal phenotype. Geneti-
cally, CIN GC are characterized by frequent mutations in 
the TP53-tumor suppressor gene (Cancer Genome Atlas 
Research 2014). The Cancer Genome Atlas Program iden-
tified TP53 mutations and the loss of its protein’s pathway 
to be one of its key characteristics; 71% of their CIN tumors 
had a TP53 mutation (Cancer Genome Atlas Research 2014). 

Detection of TP53 mutations might, therefore, be an accurate 
method to diagnose CIN in GC. In this context, the immu-
nohistochemical staining of protein p53 was considered a 
useful diagnostic tool, and some groups tried to classify this 
type of cancer based on p53 protein status (Cristescu et al. 
2015; Gonzalez et al. 2016; Setia et al. 2016). However, our 
own studies provided evidence that p53-immunostaining is 
unsuitable to predict TP53-mutational status in individual 
cases and hence CIN GC (Schoop et al. 2020a, b). Other 
markers might be needed.

Meanwhile, CIN GC also frequently harbors amplifica-
tions of genes coding for RTKs, such as EGFR, FGFR2, 
HER2, and MET (Deng et al. 2012; Kiyose et al. 2012), 
which represent either validated or putative therapeutic 
targets, and several are being explored in ongoing clinical 
trials.

Human epidermal growth factor receptor 2 (HER2)

The European Medicines Agency approved in 2010 tras-
tuzumab, a monoclonal anti-body targeting the human 
epidermal growth factor receptor 2 (HER2; also known as 
ERBB2), in combination with chemotherapy for first-line 
treatment of HER2-positive advanced gastric or esoph-
agogastric junction cancer. The addition of trastuzumab to 
chemotherapy improved survival in these patients’ cancer 
compared with chemotherapy alone [13.8 months (95% 
confidence interval (CI) 12–16) vs. 11.1 months (10–13)] 
(Bang et al. 2010). Following official approval, testing HER2 
became the first predictive biomarker for GC (Ruschoff et al. 
2012). Many subsequent studies demonstrated that overex-
pression of HER2 correlates significantly with HER2-gene 
amplification. Overexpression of HER2 can be heterogene-
ously distributed in both, the primary tumor as well as in 
metastases (Fig. 2), and is more commonly found in proxi-
mal and intestinal type GCs, respectively (Warneke et al. 
2013a, b; Roviello et al. 2022).

The assessment of HER2-overexpression is complicated 
and necessitates training as well as expertise (Haffner et al. 
2021). The HER2 scoring system of GC is different from 
breast cancer scoring and also distinguishes biopsy and 
resection specimens (Ruschoff et al. 2012). HER2 positive 
GC resection specimens are defined by ≥ 10% of tumor cells 
showing basolateral immunostaining intensity of 2 + and a 
confirmatory in situ hybridization showing HER2 ampli-
fication or a strong (3 +) basolateral immunostaining. In 
biopsy specimens, the cutoff is set at ≥ 5 adjacent cancer 
cells (Ruschoff et al .2012). Accurate and validated assay 
methods should be used and participation in external qual-
ity assurance schemes is recommended. The difficulties of 
accurate assessment of the HER2 status and its impact on 
patient outcome was demonstrated recently by a prospec-
tive multicenter study (VARIANZ) (Haffner et al. 2021). 
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The VARIANZ study enrolled prospectively patients at 35 
German sites receiving medical treatment for metastatic GC. 
Follow-up lasted up to 48 months. HER2 status was assessed 
centrally using immunohistochemistry and chromogenic 
in situ hybridization. Central HER2 test results were com-
pared with those obtained previously at local sites: central 
and local test results were available from 374 patients. In 77 
cases (20.6%), central testing revealed HER2-positive GC. 
However, in 22.7% of patients, the locally assessed HER2 
status was not confirmed by central testing. In the majority 
of these cases, a local HER2 + status was not confirmed cen-
trally, whereas, in nine patients, HER2 was tested positive 
centrally and negative locally. Most interestingly, patients 

with centrally confirmed HER2-positive GCs had a signifi-
cantly longer overall survival when treated with trastuzumab 
plus chemotherapy as compared with patients who tested 
negative centrally and positive locally [20.5 months (95% 
CI 15.7–31.5) vs. 10.9 months (95% CI 8.2–14.4; HR 0.42)] 
(Haffner et al. 2021). The VARIANZ study also refined the 
test algorithm, and alternative criteria for HER2-directed 
treatment were proposed. The mean survival in patients 
with ≥ 40% of HER2-positive tumor cells was 20.5 months 
(95% CI 15.6–32.6) vs. 11.4 months (95% CI 9.3–15.0; HR 
0.46). The optimized HER2/CEP17 ratio for indicating ben-
efit from trastuzumab was 3.0 with a median survival of 
22.8 months (95% CI 16.5–81.7) in patients with a HER2/

Fig. 2  Intratumoral heterogeneity of HER2. Ten biopsy specimens 
with gastric cancer (A) and an intestinal phenotype (B) show overex-
pression of Her2/neu only in a single biopsy specimen (A, C). Chro-
mogenic in  situ hybridization confirms HER2 amplification only in 

the tumor cells with very strong (3 +) Her2/neu immunostaining (D). 
Hematoxylin and eosin (B), anti-Her2/neu-antibody (A, C), HER2 
chromogenic in  situ hybridization (D). Original magnifications 0.5-
fold (A), 100-fold (B, C), 400-fold (D)
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CEP17 ratio ≥ 3.0 vs. 11.7 months (95% CI 9.3–14.8) for 
patients with a HER2/CEP17 ratio < 3.0 (HR 0.36) (Haffner 
et al .2021). The VARIANZ study confirms findings made 
previously by two small Asian studies, in which the effect of 
homogeneous and heterogeneous expression of HER2 was 
compared in biopsy and resection specimens (Wakatsuki 
et al. 2018; Yagi et al. 2019). GCs showing homogeneous 
overexpression are more likely to respond to HER2-targeted 
therapy compared with GC overexpressing HER2 heteroge-
neously (Wakatsuki et al. 2018; Yagi et al. 2019).

Per the HER2 observations and its marked intratumoral 
heterogeneity (Fig. 2) (Warneke et al. 2013a, b), experts 
from an interdisciplinary German group accepted GC-spe-
cific HER2 testing protocols and recommended a minimum 
of five tumor-bearing biopsies from the primary site of the 
tumor growth (Baretton et al. 2016). Similar recommenda-
tions for HER2 testing were released by a group of North 
American organizations (Bartley et al. 2016). The updated 
recommendation is testing multiple biopsy fragments from 
either a primary tumor metastasis site or from the resected 
primary tumor. In the case of biopsy specimens, the present 
protocol recommends a minimum of five biopsy specimens, 
optimally, six to eight are required for interpreting intratu-
moral heterogeneity and providing necessary tumor material 
for diagnosis and biomarker testing (Bartley et al. 2016).

Hepatocyte growth factor receptor (MET)

MET has pleiotropic effects and induces proliferation, sur-
vival, motility, cell scattering, angiogenesis, tubulogenesis, 
drives epithelial–mesenchymal transition and tumor invasion 
(Graveel et al. 2013; Hack et al. 2014). Most commonly, 
the MET pathway is activated in GC by protein overexpres-
sion, which can be detected by immunohistochemistry and 
occurs in 50–65% of cases. MET can be overexpressed in 
pre-cancerous intestinal metaplasia and dysplastic lesions, 
underscoring its critical role in gastric carcinogenesis. It is 
frequently found in well-differentiated tubular adenocar-
cinoma (67%), intestinal-type (35%), and less commonly 
in diffuse-type GCs (15–51%). Overexpression of MET 
has been linked to a more aggressiveness phenotype, i.e., 
advanced local tumor growth, nodal spread, distant metas-
tasis, advanced tumor stage, recurrence, and poor survival 
(Metzger et al. 2016). MET can also be activated by gene 
amplification and, although infrequent, co-amplification 
with other RTKs can occur in GC. Other activating genetic 
mutations of MET remain exceedingly rare in GC (for a 
review see (El Darsa et al. 2020)).

MET was also explored as druggable target in GC (Len-
nerz et al. 2011; Shah et al. 2013; Teng et al. 2013; Hack 
et al. 2014; Jardim et al. 2014; Kang et al. 2014), and efficacy 
may depend on its expression pattern detected by immu-
nohistochemistry and/or in situ hybridization (Hack et al. 

2014). Many studies investigated the tumor-biological and 
clinicopathological characteristics of MET-positive GCs. 
The prevalence ranged from 3.8 to 85% (Drebber et al 2008; 
Betts et al. 2014). In our study, any immunostaining of MET, 
i.e., weak, moderate or strong, was observed in 192 (42.1%) 
cases (Metzger et al. 2016). The wide spectrum of immu-
nopositivity in the various studies stems from the usage of 
different types of antibodies and different, non-standardized 
scoring systems. In fact, until now, no standardized scoring 
system was established for MET in GC. Furthermore, like 
HER2, MET shows intratumoral heterogeneity: amplified 
and unamplified tumor cell clones occur in the same tumor 
distinguishable on a cell-by-cell level (Catenacci et al. 2011; 
Nagatsuma et al. 2015; Metzger et al. 2016), further compro-
mising its usage as a predictive biomarker. However, diverse 
MET inhibitors have been developed and are also currently 
under investigation in clinical trials (El Darsa et al. 2020). 
Until now, none has reached formal approval.

Fibroblast growth factor receptor (FGFR2)

The dysregulation of the fibroblast growth factor receptor 
(FGFR) pathway has been studied as therapeutic target in 
many different tumor types (Babina et al. 2017). Activation 
of FGFR signaling is caused by gene amplification, activat-
ing mutation, and chromosomal translocations/fusions. In 
GC, FGFR2 is most frequently mutated among the FGFR 
family members occurring in approximately 4.0% of the 
cases with advanced GC. The frequencies of amplifications, 
mutations, translocations/fusions, and multiple alterations 
among FGFR2-dysregulated GCs are given as 72, 13, 8.6, 
and 6.3%, respectively (Ooki et al. 2021) and gene amplifica-
tion is the common mechanism of FGFR2 overexpression. 
So far, no association has been established between FGFR2-
amplification and gender, anatomical site, histological sub-
type, or TNM classification (Deng et al. 2012; Silva et al 
2018). FGFR2-amplification is not limited to CIN GCs, it 
was detected in genomically stable GCs (Schrumpf et al. 
2022).

The protein can be detected in the cytoplasm and at 
the cell membrane in both, intestinal and diffuse type GC 
(Schrumpf et al. 2022). There are two major FGFR2 iso-
forms, i.e., FGFR2-IIIb and IIIc, which are determined 
by alternative splicing of a ternary extracellular immu-
noglobulin (Ig) domain III. In GC, FGFR2-IIIb is the 
predominantly overexpressed isoform (Ooki et al. 2021). 
Ueki et al. were the first to report on the potential prog-
nostic significance of FGFR2 in GC (Ueki et al. 1995). 
FGFR2 gene amplification occurs in 2–9% of the cases 
(Jung et al. 2012; Matsumoto et al. 2012; Betts et al. 2014; 
Cancer Genome Atlas Research 2014; Su et al. 2014; Seo 
et al. 2017; Hur et al. 2020) and has been shown to be 
an independent prognostic factor for patient survival (Su 
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et al 2014). Overexpression was found in up to 60% of 
the patients (Tokunaga et al. 2016; Hosoda et al. 2018), 
the significance of which has been explored in a number 
of studies. Matsunoba et al. linked high expression with 
favourable outcome (Matsunobu et al. 2006). To the con-
trary, four Asian studies linked FGFR2 overexpression to 
poor overall and tumor-specific survival (Murase et al. 
2014; Nagatsuma et al. 2015; Ahn et al. 2016; Hosoda 
et al. 2018). Inokuchi et al. demonstrated prognostic sig-
nificance of FGRR2 overexpression only in diffuse-type 
GC (Inokuchi et al 2017). Recently, a meta-analysis pro-
vided evidence that FGFR2 overexpression is associated 
with greater depth of tumor invasion, higher rates of lymph 
node metastasis, more advanced disease stage and worse 
outcome (Kim et  al. 2019). However, FGFR2 protein 
expression in GC was most commonly studied in Asian 
populations, and data on White patients are scarce (Kim 
et al. 2019; Schrumpf et al. 2022).

In our own study on FGFR2 in a Western cohort, pro-
tein expression detected by immunohistochemistry did not 
correlate with patient outcome. However, using different 
cutoff values, a negative correlation between FGFR2-
expression and patient survival was found for diffuse type 
GC. FGFR2 expression was associated with lower tumor 
grade and intestinal phenotype (p ≤ 0.0001). FGFR2-
positive diffuse type GCs classified as a small subset of 
patients with a poor tumor specific survival (5.29 ± 1.3 
vs. 14.67 ± 1.9 months; p = 0.004) (Schrumpf et al. 2022).

FGFR2 is currently explored for the treatment of GC; 
however, no standardized test algorithm has been devel-
oped yet, and no drug has passed formal approval by the 
European Medicines Agency for GC treatment.

Epidermal growth factor receptor (EGFR)

The epidermal growth factor receptor (EGFR) is frequently 
mutated in diverse types of carcinomas, including GC. 
The signaling pathway consists of several overlapping and 
interconnecting networks including the phosphatidylino-
sitol 3-kinase (PI3K)/Akt (PKB) pathway, the Ras/Raf/
MEK/ERK1/2 pathway, and the phospholipase C (PLCγ) 
pathway. Overexpression and/or gene amplification of 
EGFR/EGFR are found in 2–35% of GCs and significantly 
impact patient prognosis and survival rate. The EGFR-
amplified GCs show a preponderance of male patients and 
affect the distal stomach (Park et al. 2016). EGFR has been 
and is still being explored for the treatment of GC. Again, 
no standardized test algorithm has been developed, and no 
drug has reached routine clinical application.

Ramucirumab is a human IgG1 monoclonal antibody 
that targets VEGF receptor 2. However, no companion 

diagnostics is required prior to its administration (Fuchs 
et al. 2014; Nakamura et al. 2021).

Genomically stable gastric cancers

Genomically stable GCs are characterized by a diffuse histo-
logical phenotype according to Laurén classification. They 
frequently harbor mutations in CDH1 and RHOA, and show 
rearrangements between CLDN18 and ARHGAP26 or ARH-
GAP6 (Cancer Genome Atlas Research 2014; Kakiuchi et al. 
2014). However, apart from CLDN18 mutations, Claudin 
18.2 is also currently explored as therapeutic target in GC 
irrespective of the molecular subtype.

Claudin 18.2 (CLDN18.2)

CLDN18.2, a member of the claudin family, is a component 
of tight junctions, regulating paracellular barrier functions 
(Oshima et al. 2013). The expression of the isoform 2 of 
CLDN18.2 (CLDN18.2) is restricted to differentiated epi-
thelial cells of the gastric mucosa and primary GC (Fig. 1), 
underscoring its potential as druggable target. Ectopic 
expression is also commonly detected in other tumor types, 
such as lung, esophageal, pancreatic, and ovarian cancer 
(Sahin et al. 2008). A limited number of studies explored 
CLDN18.2 in GC. In a Japanese study, moderate-to-strong 
CLDN18.2 expression [≥ 2 + membrane staining intensity 
in ≥ 40% of tumor cells (FAST eligibility criterion; see 
below)] was observed in 52% of primary tumors and 45% 
of lymph node metastases. Expression was significantly 
higher in GCs of the diffuse type according to Lauren and 
in high grade (G3) tumors (Rohde et al. 2019). Moentenich 
et al. detected CLDN18.2 in 18.4% of their cases (Moen-
tenich et al. 2020). No correlations were found between 
expression and clinicopathological data (sex, age, local 
tumor growth, nodal spread, and tumor grade). However, 
a significantly decreased expression was observed in tumor 
types with upregulated HER2 expression. Neoadjuvant 
treatment had no impact on the expression (Moentenich 
et al. 2020). Arnold et al. observed a high expression of 
CLDN18.2 in 17.1% of their primary tumors, in 26.7% of 
lymph nodes, and 16.7% of distant metastasis (Arnold et al. 
2020). Expression in lymph node metastasis and primary 
tumors correlated significantly. High expression did not cor-
relate with histological phenotype, tumor stage, or overall 
survival (Arnold et al. 2020). In our study, the expression of 
CLDN18.2 correlated with mucin phenotype, EBV-status, 
the integrin αvβ5, the EpCAM extracellular domain EpEX 
and lysozyme. CLDN18.2 status did not correlate with 
Laurén phenotype, survival, or any other clinicopathologi-
cal patient characteristic (Dottermusch et al. 2019). These 
conflicting results largely stem from different antibodies, 
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staining, and scoring systems. However, harmonization is to 
be expected in the near future due to ongoing clinical trials.

The phase II-FAST study investigated CLDN18.2 tumor 
expression and therapy with the chimeric monoclonal anti-
CLDN18.2 antibody zolbetuximab in combination with first 
line chemotherapy (EOX: epirubicin + oxaliplatin + capecit-
abine) in patients with advanced cancer of the esophagogas-
tric junction and stomach and a moderate to strong expres-
sion of CLDN18.2 in ≥ 40% tumor cells. Both progression 
free survival (95% CI 0.29–0.67; HR 0.44;) and overall 
survival (95% CI 0.39–0.77; HR 0.55) were significantly 
improved with zolbetuximab + EOX compared with EOX 
alone. This significant progression free survival benefit was 
retained in patients with moderate to strong CLDN18.2 
expression in > 70% of tumor cells (95% CI 0.23–0.62; HR 
0.38) (Sahin et al. 2021).

Next generation sequencing

Molecular tumor boards are now increasingly used to search 
for druggable targets by next generation sequencing (NGS), 
which may also include GC (Hoefflin et al. 2021). These 
studies are often done on small biopsy specimens or a lim-
ited number of tissue samples. However, a few studies illus-
trate the substantial intraprimary and intermetastatic genetic 
heterogeneity of GC (Röcken et al 2021). A substantial 
variation in the extent of mutational overlap or mutational 
heterogeneity between primary and lymph node metastasis 
genomes was found by Lee et al. in 15 pairs of primary GC 
and their matched lymph node metastases, which were stud-
ied by whole-exome sequencing (Lee et al. 2019). Pectasides 
et al. studied two independent patient cohorts (Pectasides 
et al 2018). In the first cohort, a single biopsy sample was 
obtained from the primary tumor of 11 patients and was 
compared with biopsies from synchronous metastates. In 
a second cohort, more than 100 samples obtained from the 
primary tumors and metastatic sites of 26 patients were for-
warded to targeted sequencing (Pectasides et al. 2018). Dis-
crepant pathogenic alterations between primary tumors and 
paired metastatic lesions were found in 45% of the patients. 
With regard to RTKs, 9 of 12 cases (75%) were discordant 
across all matched samples (Pectasides et al. 2018). Four 
MSI GCs were forwarded to multiregional sequencing by 
Loga et al. An extreme intratumoral heterogeneity as well 
as evidence of parallel evolution in this special subtype was 
discovered (von Loga et al. 2020).

We performed multiregional sequencing in nine GCs 
and harbored 16,537 non-synonymous mutations (Röcken 
et al. 2021). Intratumoral heterogeneity of somatic muta-
tions and copy number variants were present in all tumors. 
53–91% of the non-synonymous mutations were not present 
in each patient’s sample; 399 genes harbored 2–4 different 

non-synonymous mutations in the same patient; 175 genes 
showed copy number variations, the majority being hetero-
geneous, including CD274 (PD-L1). Multisample tree-based 
analyses provided evidence for branched evolution being 
most complex in a MSI GC (Röcken et al. 2021). Collec-
tively, these data illustrate the risk of misinterpreting tumor 
genetics in GC based on single sample analysis. Thus, when 
NGS is utilized, caution must be taken regarding the validity 
and significance of the findings.

Immune checkpoint molecules

In their seminal updated review on the Hallmarks of Cancer, 
Hanahan and Weinberg added immune evasion as a strategy 
of malignant tumors to escape destruction by the immune 
system (Hanahan et al. 2011). Observational, experimen-
tal, and clinical data strongly support the importance of 
the immune system in combating tumor development and 
progression (Hanahan et al. 2011). As a result, checkpoint 
inhibitors gained considerable attention and are now widely 
explored and used as novel treatment options in cancer, 
including GC (Bolandi et al. 2021).

The B7 family of immune checkpoint molecules encom-
passes eleven members: B7-1, B7-2, B7–H1 (PD-L1), 
B7-DC (PD-L2), B7–H2, B7–H3, B7–H4, B7–H5 (VISTA), 
B7–H6, B7–H7, and Ig-like domain-containing receptor 2 
(ILDR2). The interaction of the B7 family of immune-reg-
ulatory ligands with their corresponding receptors induces 
and inhibits T cell responses by sending co-stimulatory and 
co-inhibitory signals, respectively (Bolandi et al. 2021). 
Several of these members are explored as druggable targets 
or have already been successfully implemented as such in 
patient care. However, efficacy of immune checkpoint inhibi-
tors varies between patients and patient selection is of cru-
cial importance here as well.

PD‑L1

PD-L1 (B7-H1) is a 290 amino acid type I transmembrane 
surface glycoprotein. It is encoded by CD274, which is 
located on chromosome 9. Several cell types of the immune 
system express PD-L1, such as lymphocytes and dendritic 
cells. Aberrant expression is observed in diverse solid 
tumors. PD-L1 is the ligand of programmed cell death 1 
(PD-1), another member of the immunoglobulin superfamily 
B7. PD-1 is expressed by activated T-cells on the germinal 
center of lymph follicles, tumor infiltrating lymphocytes 
and other immune cells (Keir et al. 2008) and involved in 
immunemodulation (Freeman et  al. 2000). Binding of 
PD-L1 to PD-1 suppresses T-cell receptor signaling. This 
in turn down regulates the immune response and enables 
cancer cells to escape the destruction by the immune system 
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(Zou et al. 2008). Administration of PD-1/PD-L1 checkpoint 
inhibitors target the PD-1/PD-L1 interaction and restore can-
cer cell-directed immune response (Poole 2014). PD-L1 is 
expressed by GCs and is significantly more prevalent in men, 
GCs of the proximal stomach, un-classified, papillary, Her2/
neu-positive, EBVaGc, and MSI-GC (Böger et al. 2016).

In diagnostic surgical pathology, immunohistochem-
istry is used to assess the PD-L1 status by applying the 
tumor proportion score (TPS; percentage of PD-L1 posi-
tive tumors cells) and the combined positivity score [CPS; 
number of PD-L1 staining cells (tumor cells, lymphocytes, 
macrophages) divided by the total number of viable tumor 
cells, multiplied by 100]. Although CPS can exceed 100, the 
maximum score is defined as CPS 100.

Recently, the CheckMate-649 study showed that 
nivolumab, an anti-PD-1-antibody, in combination with 
chemotherapy significantly improved overall survival (98.4% 
CI 0.59–0.86; HR 0.71) and progression-free survival (98% 
CI 0.56–0.81; HR 0.68) vs. chemotherapy alone in patients 
with a PD-L1 CPS ≥ 5 and advanced gastric, esophagogas-
tric junction, and esophageal adenocarcinoma (Janjigian 
et al. 2021). Nivolumab was also shown to be efficacious 
in resected esophageal or esophagogastric junction cancer 
after neoadjuvant chemoradiotherapy (Kelly et al. 2021). 
The KEYNOTE-590 study explored the efficacy of prem-
bolizumab, another anti-PD-1 antibody, in advanced esopha-
geal and Siewert type 1 esophagogastric junction adenocar-
cinomas. Overall survival was longer in the pembrolizumab 
plus chemotherapy group than in the placebo plus chemo-
therapy group [median 11.6 months (95% CI 9.7–15.2) vs. 
9.9 months (95% CI 0.54–1.02); HR 0.74] (Sun et al. 2021).

Based on these data, pembrolizumab in combination 
with platinum and fluoropyrimidine based chemotherapy, 
was approved for the first-line treatment of patients with 
locally advanced unresectable or metastatic carcinoma of the 
esophagus or HER2 negative esophagogastric junction ade-
nocarcinoma in adults whose tumors express PD-L1 with a 
CPS ≥ 10 (https:// www. ema. europa. eu/ en/ medic ines/ human/ 
EPAR/ keytr uda). Nivolumab in combination with fluoropy-
rimidine- and platinum-based combination chemotherapy 
was granted approval by the European Medicines Agency 
for first-line treatment of adult patients with HER2-negative 
advanced or metastatic gastric, esophagogastric junction 
cancer or esophageal adenocarcinoma whose tumors express 
PD-L1 with CPS ≥ 5 (https:// www. ema. europa. eu/ en/ medic 
ines/ human/ EPAR/ opdivo).

Following HER2, PD-L1 is the second predictive bio-
marker for GC. It has to be tested before treatment with 
approved immune checkpoint inhibitors can be administered. 
In general, PD-L1 scoring is sensitive to antibody selection, 
staining protocols, and expertise in the assessment of immu-
nostaining (Munari et al. 2018; Ahn et al. 2021; Narita et al. 
2021; Noske et al. 2021a, b; Noske et al. 2021a, b). However, 

the interchangeability of PD-L1 assays in GC has been dem-
onstrated (Ahn et al. 2021; Narita et al. 2021).

VISTA

V-domain immunoglobulin (Ig)-containing suppressor 
of T-cell activation (VISTA) is a 311 amino acid type 
I-membrane protein. Various hematopoietic cells, such as 
myeloid, granulocytic, and T cells, express predominantly 
VISTA (Wang et al. 2019). P-selectin glycoprotein ligand 
1 (PSGL-1) and V-Set and Immunoglobulin domain con-
taining 3 (VSIG3) were proposed as binding partner(s). In 
addition, VISTA may function both as a ligand (for antigen 
presenting cells) and a receptor (for T cells). It suppresses 
T cell activation. In murine tumor models, monoclonal 
antibodies targeting VISTA boost antitumor immunity by 
increasing the number and elevating the function of intratu-
moral T cells (Le Mercier et al. 2014). It is noteworthy that 
VISTA-induced T cell activation appears to be nonredundant 
from the PD-1/PD-L1 pathway. Thus, a blockade of both, 
VISTA and PD-1, might open novel avenues for cancer treat-
ment, as it was shown in murine tumor models (Liu et al. 
2015a, b; Kondo et al. 2016). Recently, one phase I study 
using an anti-VISTA monoclonal antibody (JNJ-61610588; 
NCT02671955) and a phase I study that targets both VISTA 
and PD-L1/PD-L2 in solid tumors using a small molecule 
(CA-170; NCT02812875) have started.

Data on VISTA are limited. Böger et al. (Böger et al. 
2017a, b) showed that the VISTA expression was associ-
ated with the tumor localization, Laurén phenotype, EBV, 
KRAS- and PIK3CA-mutational status, and PD-L1 expres-
sion. However, no significant correlation was observed with 
patient outcomes. A change in immune cell expression of 
VISTA during tumor progression was observed (Böger et al. 
2017a, b). Loeser et al. (Loeser et al. 2019) observed strong 
positive outcomes for VISTA-positive tumors in the pT1/
T2 stages, with lower expression levels of VISTA in pT3/T4 
tumor samples. However, the expression of both PD-L1 and 
VISTA is sensitive to neoadjuvant (radio-) chemotherapy 
and is associated with poor tumor regression. Schoop et al. 
compared a cohort of therapy naïve GCs with a cohort of 
neoadjuvantly/perioperatively treated GCs. They found a 
major increase in overall immune cell density coupled with 
an over proportional increase in PD-1 and VISTA positive 
immune cells in neoadjuvantly/perioperatively treated GCs 
(Schoop et al. 2020a, b). The frequency of VISTA expres-
sion in tumor cells also substantially increased. In contrast, 
PD-L1 expression was decreased in immune cells and tumor 
cells of neoadjuvantly treated GCs (Schoop et al. 2020a, b). 
Currently, two phase 1/2 clinical trials are listed at www. 
clini caltr ials. gov, exploring monoclonal antibodies targeting 
VISTA in solid tumors.

https://www.ema.europa.eu/en/medicines/human/EPAR/keytruda
https://www.ema.europa.eu/en/medicines/human/EPAR/keytruda
https://www.ema.europa.eu/en/medicines/human/EPAR/opdivo
https://www.ema.europa.eu/en/medicines/human/EPAR/opdivo
http://www.clinicaltrials.gov
http://www.clinicaltrials.gov
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B7–H3

B7 homolog 3 protein (B7–H3, or CD276), a 534 amino 
acid protein, is another member of the B7 family of immune 
checkpoint molecules involved in immune evasion. The 
exact receptor of B7–H3 is currently unknown (Castel-
lanos et al. 2017). It is overexpressed in various cancers 
(Castellanos et al. 2017; Ni et al. 2017) and may inhibit 
CD8 + T cells (Lee et al. 2017). B7–H3 is found both in 
tumor cells and the tumor immune microenvironment, i.e., 
endothelial cells, fibroblasts, B-lymphocytes, macrophages, 
natural killer cells, and dendritic cells (Zhan et al. 2019). 
B7–H3 seems to be linked to cancer progression, metastatic 
behavior, and worse prognosis in several cancers including 
cancers of the lung, breast, prostate, kidney, and colon (Ni 
et al. 2017). So far, only a few studies examined the expres-
sion of B7–H3 in relation to the distribution of CD8 + T cells 
in GC (Guo et al . 2019). Again, data are scarce. Recently, 
we used double immunohistochemical staining to study the 
spatial distribution of CD8 + T cells in relation to B7–H3 
positive cells. B7–H3 was expressed mainly in the tumor 
stroma of GC (76% of all cases). GCs with high expression 
of B7–H3 showed larger spatial differences of CD8 + T cells 
(86.4/mm2 in tumor center vs. 414.9/mm2 in invasive front) 
compared to the B7–H3-low group (157.7/mm2 vs. 218.7/
mm2, respectively) (Ulase et al. 2021).

Several trials are listed in www. clini caltr ials. gov targeting 
B7–H3. None has reached clinical application, yet.

Sexual dimorphism

The susceptibility of GC shows a striking sex-specific dif-
ference. According to the European Network of Cancer 
Registries, the estimated GC incidence in men is almost 
double that of women. This also applies to mortality, with 
an estimated 63,600 gastric cancer deaths in men and 43,700 
in women (ENCR Factsheet Stomach Cancer; https:// ec. 
europa. eu/ jrc/ en/ scien ce- update/ new- facts heet- stoma ch- 
cancer- europe- relea sed). These differences are unlikely 
related to H. pylori infection, the major risk factor for GC 
(Group 2001; Brusselaers et al. 2017). More importantly, 
the immune response exhibits sex-specific differences with 
regard to infectious diseases, vaccination, and autoimmunity. 
Both, estrogen and androgen exposure influence the effector 
functions of immune cells (Markle et al. 2014). This sexual 
dimorphism in immune response capacity is now well recog-
nized. Immune surveillance competence differ between men 
and women and may contribute to the sex effect observed in 
malignant tumors (Dorak et al. 2012).

Sex influences the development and progression of cancer 
(Mauvais-Jarvis et al. 2020), since men and women differ in 
their immune response (Mirandola et al. 2015; Klein et al. 
2016; De Martinis et al. 2020). Therapy response after an 

immune checkpoint inhibitor therapy is less effective for 
women (Conforti et al. 2018). One reason is the higher anti-
genicity in male cancers. To the contrary, the combination 
of immune checkpoint inhibitors with chemotherapy is less 
effective for men (Irelli et al. 2020). Response rates most 
likely depend on the different innate and adaptive immune 
systems of men and women (Cook et al. 2009; Klein et al. 
2016). Despite this evidence, sexual dimorphism in biomed-
ical science is often not specifically addressed and many 
studies fail to analyze results by sex (Beery et al. 2011). All 
this possibly also applies to GC. We and others have shown 
a gender-specific effect for GC (Caruso et al. 2002; Clausen 
et al. 2020; Quaas et al. 2021a, b). For women with GC, the 
density of tumor associated neutrophils especially located in 
the invasion front is an independent predictor of tumor-spe-
cific survival. In contrast to men, where no association was 
found (Caruso et al. 2002; Clausen et al. 2020). Thus, future 
studies on the application of immune checkpoint inhibitors 
also need to consider gender as a “tale-telling” biomarker.

Limitations

This review addresses mainly recent advancements in 
established and putative predictive biomarkers for tailor-
ing GC treatment. It does not cover research on, e.g., the 
growing field of long non-coding RNA. So far, research on 
long non-coding RNA has focused on tumor biology and 
patient prognosis, rather than predictive biomarker for drug 
administration.

Conclusions

Predictive biomarkers are the mainstay of precision oncol-
ogy. In recent years, major achievements have been made 
in GC treatment. While targeting HER2 remains the main 
therapy for a limited number of patients with advanced 
GC, novel targets have been developed, specifically those 
addressing immune checkpoint molecules. However, 
immune oncology must consider sexual dimorphism in tis-
sue-based diagnostics, drug regimens, and patient outcomes. 
Currently, CLDN18.2 is being explored among several other 
targets, and further advancements are expected in the near 
future. The major obstacle to precision medicine for GC 
is intratumoral heterogeneity, which affects tissue-based 
diagnostics due to the risk of sampling errors and patient 
outcomes, and this may likely cause primary and secondary 
drug resistance.
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