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Abstract
Background  Rapid evolution of the therapeutic management of prostate cancer, especially in in second-generation androgen 
inhibitors, has increased the opportunity of transformation from prostate cancer (PCa) to neuroendocrine prostate cancer 
(NEPC). NEPC still lacks effective diagnostic and therapeutic interventions. Researches into the molecular characteristics 
of neuroendocrine differentiation is undoubtedly crucial to the discovery of new target genes for accurate diagnostic and 
therapeutic targets.
Purpose  In this review, we focus on the relevant genes and molecular mechanisms that have contributed to the transfor-
mation in the progression of PCa and discuss the potential targeted molecule that might improve diagnostic accuracy and 
therapeutic effectiveness.
Methods  The relevant literatures from PubMed have been reviewed for this article.
Conclusion  Several molecular characteristics influence the progression of neuroendocrine differentiation of prostate cancer 
which will provide a novel sight for accurate diagnosis and target therapeutic intervention for patients with NEPC.
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Introduction

Androgen deprivation therapy (ADT) has become the stand-
ard treatment for patients with PCa, owing to the unique role 
of the androgen in the growth and progression in prostate 
cancer (Ren et al. 2013; Wong et al. 2014). Tumors receiv-
ing ADT eventually progress to an androgen-resistant state, 
known as CRPC or more lethal NEPC (Attard et al. 2016). 
NEPC is an aggressive variant of prostate cancer, charac-
terized by the negative expression of AR and lower level 
of PSA (Sternberg 2019; Beltran et al. 2014). Patients with 
NEPC have more frequent distant metastases, more frequent 
RB1 and TP53 gene loss and express characteristic neuroen-
docrine markers, such as enolase 2 (eno2), chromogranin A 
(CHGA), synaptophysin (SYP), etc. (Conteduca et al. 2019; 
Sagnak et al. 2011).

Emerging researches on molecular mechanisms of neu-
roendocrine differentiation provide a robust and reliable 
strategy to understand the molecular features, which identify 
sensitive biological makers and novel therapeutic targets to 
improve the lives of the patients with NEPC. Unfortunately, 
NEPC patients still survive less than one year after diagno-
sis (Wang et al. 2014). Identification of new targeted genes 
remains a critical challenge.

NMYC

The aberrant overexpression and amplifications of N-Myc 
and Aurka in NEPC contribute to the progression of neu-
roendocrine differentiation in a synergistic manner (Beltran 
et al. 2011). Beltran H et al. reported the first paper regard-
ing concurrent AURKA and NMYC gene in NEPC while a 
potential relationship between AURKA and NMYC has been 
demonstrated in neuroblastoma (Otto et al. 2009). N-Myc 
(encoded by MYCN), a transcription factor, is responsible 
for the growth of brain during embryogenesis and is a key 
oncogene in oncogenesis of neuroblastoma (Schwab 1993). 
Medulloblastoma (Thomas et al. 2009), and glioblastoma 
multiforme (Tateishi et al. 2016). They further validated the 
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results and indicated that N-Myc improve the stabilization 
of Aurka by inhibiting the interaction with the E3 ubiquitin 
ligase FBXW7, and blinds to the promoters of target genes 
including NSE, Syn and AR to regulate their expression, 
eventually leading to a neuroendocrine phenotype (Beltran 
et al. 2011). Additionally, the application of Aurora A inhibi-
tor for NEPC models shows great sensitivity and result in 
the tumor shrinkage and reversal of the phenotype, which 
identify new therapeutic targets for patients with NEPC 
(Mosquera et al. 2013).

Concurrent ALK and MYCN gene amplifications con-
tribute to the activation of Wnt/β-catenin signaling pathway 
in a synergistic manner, leading to the progression of pros-
tate cancer to NEPC. (Unno et al. 2021) (Fig. 1). Anaplastic 
lymphoma kinase (ALK) is a member of receptor tyrosine 
kinase family, and the most prevalent alterations of ALK are 
chromosomal rearrangements leading to fusion genes, which 
play an oncogenic role in a variety of malignancies, such as 
non-small cell lung cancer (NSCLC) and anaplastic large 
cell lymphoma (ALCL) (Du et al. 2018). 

Wnt/β-catenin signaling is a canonical pathway in the 
Wnt family which is dependent on the presence of β-catenin 
(Wodarz and Nusse 1998).For understanding the underlying 
mechanism of activation of the canonical Wnt signaling, 
UnnoK et al. further found that the amplifications of ALK 

and MYCN gene have a specific impact on the expression 
of Csnk1e (tyrosine kinase 1) and Ddx3x (DEAD-box RNA 
helicase) using a lentivirus-mediated gene transfer and tis-
sue recombination model, which contribute to Dvl2 phos-
phorylation and polymerization in a synergistic manner, 
leading to activation of β-catenin driving neuroendocrine 
differentiation(Unno et al. 2021).

EZH2

The synthesis of N-Myc/AR/EZH2-PRC2 complex is 
notably dependent on the presence of EZH2, and N-MYC 
shows a remarkable synergistic effect with EZH2 and AR 
to inhibit AR signaling by methylation, leading to neuroen-
docrine transformation of prostate cancer (Dardenne et al. 
2016) (Fig. 2). The EZH2 gene is located on chromosome 
7q35 (Cardoso et al. 2000) and is a member of the polycomb 
group gene (PcGs) family. Polycomb repressive complex 2 
(PRC2) is a PcG protein core complex that contributes to 
gene silence through methylation in the promoter of down-
stream genes (Duan et al. 2020). EZH2, as the catalytic 
subunit of PRC2, possesses histone methyltransferase activ-
ity and have a repressive impact on targeted gene through 
histone 3 lysine 3 methylation at position 27 (H3K27me3) 
(Simon and Lange 2008).

Fig. 1   ALK-NMYC and AURKA-NMYC
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Recent researches have found that the expression of EZH2 
is significantly upregulated in advanced prostate cancer with 
distant metastases, supporting the clinical relevance of poor 
diagnosis the emergence of NEPC in enzalutamide-induced 
models (Luo et al. 2019; Nadal et al. 2014; Varambally et al. 
2002). PCa with ADT elevated cAMP levels and induce the 
expression of EZH2 by activation of PKA-CREB1 sign-
aling, resulting in the neuroendocrine differentiation and 
preferentially repressing the expression of TSP1 (Zhang 
et al. 2018) (Fig. 2). TSP1, as an endogenous angiogen-
esis inhibitor inhibits proliferation of endothelial cell and 
induces the apoptosis of endothelial cell (Taraboletti et al. 
1990). CREB1 is a 43 kDa transcription factor (TF) (Steven 
et al. 2020). It functions as a second messenger and activates 
PKA-CREB signaling which is responsible for overexpres-
sion of a variety of downstream genes including the onco-
gene cyclin D1, leading to tumorigenesis and proliferation 
of several tumors. (Zhang et al. 2020).

Currently, the molecular features between CREB1 and 
EZH2 remains controversial. HDAC1 / HDAC2, a down-
stream target gene of CREB, has attracted attention for its 
combination with EZH2 in nasopharyngeal carcinoma, 
suggesting the similar biological role in NEPC (Tong et al. 
2012). Collectively, CREB1-EZH2-TSP axis is inevitably 
involved in the regulation of NE phenotype in prostate can-
cer progression, which guide a potential determinant for 
therapeutic strategy in NEPC patients.

LIN28B

Expression of HMGA2 is significantly elevated by LIN28B 
due to the negative expression of let-7 miRNA. The SOX2 
expression is also considerably high with the upregulation 
of HMGA2, which has been demonstrated to be involved in 
lineage plasticity and lead to neuroendocrine differentiation 
by regulating stem cell-like gene networks in PCa (Lovnicki 
et al. 2020) (Fig. 3). SOX2 belongs to SOX family, located 
on chromosome 3q26.3-Q27, and is a group of transcription 
factors (Stevanovic et al. 1994). Recent researches in SOX2 
have put emphasis on its key role in stem cell maintenance, 
lineage fate determination and reprogramming of somatic 
cells(Sarkar and Hochedlinger 2013).LIN28B, as an RNA-
binding protein, selectively inhibit the expression of let-7 
miRNA which performs as tumor suppressors and are asso-
ciated with the downregulation of oncogenes and regulate 
mitotic pathways including RAS, MYC and HMGA2(Heo 
et al. 2009; Büssing et al. 2008). Recent improvements pro-
vide a novel insight in relationship between LIN28B and 
various tumor types, including colon cancer(King et al. 
2011), ovarian cancer (Lin et al. 2018), liver cancer (Nguyen 
et al. 2014), neuroblastoma (Chen et al. 2020).

The loss of ESE3/EH downregulated the let-7 micro-
RNAs, an inhibitor of Lin28, leading to the imbalance of 
Lin28/let-7 and is involved in transformation and Stem-like 
Phenotype of PCa (Albino et al. 2016). In a word, the Lin28/

Fig. 2   NMYC-EZH2 and 
CREB1-EZH2-TSP1



1816	 Journal of Cancer Research and Clinical Oncology (2022) 148:1813–1823

1 3

let-7 axis plays a key role in the induction of transformation 
of prostate cancer to NEPC which might be conducive to the 
identification of target gene for existing therapies.

ONECUT2

The aberrant expression of ONECUT2 in PCa contrib-
ute to the upregulation of SMAD3, leading to the acti-
vation of hypoxia signaling by HIF1α.The concurrent 
amplifications of ONECUT2 and hypoxia signaling play 
an important role in driving neuroendocrine differentia-
tion and the overexpression of NE marker genes (Guo 
et al. 2019).ONECUT2 is a novel member of the ONE-
CUT family, located on human chromosome 18, and 
usually functions as a transcription factor, which have 
fundamental roles during tumorigenesis proliferation, 
migration and differentiation in hepatocellular carci-
noma (Zhang et al. 2015), ovarian cancer(Lu et al. 2018) 
and lung adenocarcinoma(Ma et al. 2019). The aberrant 
overexpression of ONECUT2 in CRPC downregulate 
AR signaling and FOXA1 which are responsible for the 

neuroendocrine features of CRPC (Rotinen et al. 2018). 
Conceivably, FOXA1 functions as an inhibitor of neu-
roendocrine differentiation (Kim et al. 2017).

Cellular plasticity and upregulation of hypoxia 
response genes in prostate cancer mediated by the overex-
pression of ONECUT2 are involved in the progression of 
NE differentiation. It is suggested that treatment directed 
by inhibition of hypoxia or ONECUT2 might provide a 
novel insight of therapies to inhibit the progression and 
occurrence of NEPC.

PHF8

FOXA2 is incredibly overexpressed due to the remove-
ment of repressive methylated proteins in the FOXA2 
promoter region by PHF8, which allows for elicitation of 
aggressive phenotype (Liu et al. 2021) (Fig. 4). The aber-
rant amplifications of PHF8 are involved in the occurrence, 
progression and invasion in PCa and intensive researches 
regarding unique role of PHF8 imply PHF8 as a regulator 
of neuroendocrine differentiation (Ma et al. 2015; Tong 

Fig. 3   LIN28B/let7/HMGA2/
SOX2

Fig. 4   PHF8 upregulates the 
expression of FOXA2
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et al. 2016). PHF8 (KDM7B), as a histone demethylase, is 
responsible for demethylation of H3K9me1/2, H3K27me2 
and H4K20me1, allowing transcription of downstream genes 
(Liu et al. 2010), and is involved in hepatocellular carci-
noma (Ye et al. 2019), X-chromosome-linked intellectual 
disability (XLID) (Chen et al. 2018), melanoma (Moubarak 
et al. 2022), esophageal cancer (Sun et al. 2013) and so on. 
FOXA2 is a specific biomarker in NEPC (Park et al. 2017) 
and can combine with the Siah2-dependent regulation of 
HIF suggesting the important roles in driving neuroendo-
crine phenotype (Qi et al. 2010).

Further studies are warranted regarding the relationship 
between PHF8 and FOXA2 which is still unknown and it 
might lead to sensitive biological targets for patients with 
NEPC.

MUC1‑C

MYC-BRN2 is directly or indirectly activated by negative 
expression of AR axis, in which MUC1-C plays a unique 
role (Lin et al. 2017; Yasumizu et al. 2020). BRN2, as a 
neural transcription factor, is negatively correlated with AR 
activity and identified as an emerging biologic activator of 
NEPC (Bishop et al. 2017). In addition, MUC1 is a heter-
odimeric protein that is aberrantly overexpressed in multiple 
tumors, which contribute to immune evasion in aggressive 
breast cancer (Maeda et al. 2018; Li et al. 2020a). To date, 
MUC1-C features the function of EMT, drug resistance, 
malignant phenotype maintenance (Rajabi and Kufe 2017).

MUC1-C plays a notable role in expression of MYCN, 
EZH2, and specific biomarkers which have been identi-
fied as drivers of NEPC. The molecular features of MYCN 
and EZH2 in NED have been reported above. Furthermore, 
repression of the p53 pathway shows a remarkable effect 
on OCT4, SOX2, KLF4 and MYC pluripotency and drives 
stemness (Yasumizu et al. 2020). Cell stemness driven by 
MUC1-C mainly depend on the presence of p53 and SOX2, 
which regulates lineage plasticity through the LIN28B/
HMGA2/SOX axis as described above (Lovnicki et  al. 
2020). P53 performs as a tumor suppressor and features its 
alterations in mutations and deletions in a variety of tumors 
(Khemlina et al. 2015; Akamatsu et al. 2015).

WLS

The downregulation of AR by application of androgen potent 
inhibitor acts as an activator of WLS, leading to the acti-
vation of a non-canonical Wnt pathway. Concurrent over-
expression of WLS and Wnt5a contribute to downstream 
ROR2/PKCδ/ERK signaling in a synergistic manner so as to 
drive neuroendocrine phenotype (Bland et al. 2021) (Fig. 5). 
ROR2 is an orphan receptor tyrosine kinase and function as 
a non-canonical Wnt signaling receptor. Wnt5A enhances 
the chemotaxis and proliferation of leukemia by the activa-
tion of ROR1/ROR2 (Yu et al. 2016). Extracellular signal-
regulated kinase 1/2 (ERK) belongs to the mitogen-activated 
protein kinase (MAPK) family and recent improvements 
emphasize on its effect on signal transmission in signaling 

Fig. 5   WLS/Wnt
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cascades (Guo et al. 2020). MAPK/ERK pathway is associ-
ated with neuroendocrine phenotype due to the presence of 
IL-8 (Kim et al. 2017).

WLS (wntless) is a conserved multi-channel endoplasmic 
reticulum (ER) transmembrane protein.

WLS carrier protein plays a fundamental role in transport 
and secretion of the Wnt protein after glycosylated and pal-
mitolated in ER into extracellular medium (Bänziger et al. 
2006; Smolich et al. 1993). The non-canonical signal con-
sists of Wnt-PCP and Wnt-Ca and features its independence 
on β-catenin (Komiya and Habas 2008). Wnt4, Wnt5a, and 
Wnt11 have be reported to be ligands of non-canonical sig-
nal (Veeman et al. 2003). Both the canonical pathway and 
the non-canonical pathway play a vital role in NE differen-
tiation (Unno et al. 2021; Uysal-Onganer et al. 2010). Based 
on this, inhibition of all WNT signaling may potentially have 
a unique role in reversing NE transformation, in which WLS 
is indispensable.

TROP2

Expression of Trop2 is aberrantly upregulated in NEPC and 
influence tumor growth, metastasis and neuroendocrine dif-
ferentiation. Recent studies have identified Trop2 as a driver 
of aggressive neuroendocrine phenotype, in which elevated 
PARP1 plays a key role. Furthermore, Trop2-induced NE 
phenotype can be reversed by PARP1 inhibitors (Hsu et al. 
2020). PARP1 is a DNA-dependent ADP- ribosyltransferase 
has several biologic functions in DNA replication, chromatin 
remodeling and apoptosis (Ray Chaudhuri and Nussenzweig 
2017; Schiewer and Knudsen 2014; Fujimoto et al. 2017). 
Trophoblast surface antigen 2 (Trop2), also known as tumor-
associated calcium signal transducer, is a class of cell sur-
face glycoproteins (Lipinski et al. 1981), elevated levels of 
Trop2 is closely interrelated to poor prognosis and higher 

risk of metastasis in various tumors, such as in oral, gastric, 
thyroid and pancreatic cancer (Fong et al. 2008a, b; Mühl-
mann et al. 2009; Sun et al. 2021). Additionally, in prostate 
cancer it consistently enhances tumor growth, migration, 
metastasis and lineage plasticity (Trerotola et al. 2013).

Elevated levels of Trop2 also contribute to the expression 
of SOX2 and EZH2 (Hsu et al. 2020), which are associated 
with lineage plasticity and drug resistance (Li et al. 2020b). 
To date, although PARP1 is a key factor for TROP2 to act as 
a NED driver, the underlying mechanism by which TROP2 
regulates PARP1 is still unknown. In previous report, c-Myc 
bind to the promoter of PARP1 and activate its expression to 
promotes the generation of IPSC and pluripotency mainte-
nance. Similarly, Trop2 may regulate PARP1 through c-Myc 
to participate in cell reprogramming and NE differentiation 
(Hsu et al. 2020).

ZBTB46

Downregulation of AR signaling in PCa with ADT leads to 
elevated levels of LIF and activate LIF-STAT3 pathway to 
allows for elicitation of aggressive neuroendocrine pheno-
type. ZBTB46 was involved in the transformation by inacti-
vation of AR signaling (Liu et al. 2019) (Fig. 6). Leukemia 
inhibitory factor (LIF) is a member of the IL-6 cytokine fam-
ily. It is a pleiotropic cytokine with a wide range of activities 
(Nicola and Babon 2015) such as survival, proliferation and 
metastasis in various tumors through three pathways: JAK/
STAT (Stahl et al. 1994), MAP kinase (Williams et al. 2009) 
and PI (3) kinase (Oh et al. 1998) pathways.

ZBTB46 is a novel tumorigenic factor in prostate cancer, 
and is negatively correlated with the AR signaling (Chen 
et al. 2017). It acts as an upstream regulator of Snail and 
enhance the tumorigenic capacity, progression, invasion and 
metastasis by regulating the expression of E-cadherin and 

Fig. 6   ZBTB46/LIF/STAT and 
ZBTB46/PTGS1
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RKIP in prostate cancer (Beach et al. 2008; Poblete et al. 
2014). The inhibition of AR contributes to the upregulation 
of ZBTB46 and elevated ZBTB46 binds to the promoter 
of PTGS1 to improve its expression, which is responsible 
for the malignant transformation and tumors progressing to 
NEPC (Chen et al. 2019). The androgen-responsive gene 
SPDEF is prominently down-regulated due to the nega-
tive expression of AR signaling during androgen depriva-
tion therapy, resulting in the aberrant elevation of ZBTB46 
which is identified as a transcriptional coactivator (Tsai et al. 
2018). SPDEF is an E26-specific (ETS) transcription factor 
(Oettgen et al. 2000), and is considered as a tumor suppres-
sor of PCa (Gu et al. 2007). Downregulation of SPDEF is 
closely related to the occurrence, growth and metastasis in 
prostate cancer (Steffan et al. 2016). Prostaglandin G/H syn-
thase 1 (PTGS1) is a physiologically important prostaglan-
din synthase that plays an important role in the progression 
of bone diseases, tumors and inflammatory diseases (Smith 
et al. 2000; Choi et al. 2008; Kargman et al. 1995; Wang 
et al. 2019).

EGFR–LIFR‑SUCLG2

PCa with ADT induces upregulation of EGFR and acts as 
a transcriptional regulator that binds to the LIFR promoter 
to stimulate LIFR expression. The upregulation of LIFR 
is associated with suclg2. ADT upregulates EGFR-LIFR 
signaling, activates suclg2, and in turn promotes metabolic 
changes associated with NE differentiation and an aggressive 
prostate cancer phenotype (Lin et al. 2020). ADT induced 
upregulation of the succinate-CoA ligase GDP-forming beta 
subunit (SUCLG2). Succinate-CoA ligase (SUCL) is a het-
erodimeric enzyme composed of a Suclg1 α-subunit and a 
substrate-specific Suclg2 β-subunit, which generates ATP or 
GTP respectively, this subunit is able to regulate succinate 
metabolism and NE differentiation in prostate cancer (Kacso 
et al. 2016).

Others

Mammalian target of rapamycin (mTOR) acts as an activa-
tor of AKT signaling, and aberrant amplifications of con-
stitutively active mTOR leads to NE differentiation and 
the expression of NSE in LNCaP cells (Kanayama et al. 
2017). The level of FOXB2 is significantly upregulated in 
aggressive PCa which are responsible for NE differentia-
tion by inducing agonistic ligands (mainly WNT7B) to acti-
vate the Wnt pathway (Moparthi et al. 2019). It is obvious 
that the Wnt signaling pathway, both canonical and non-
canonical, plays a critical role in inducing the neuroendo-
crine differentiation process. Heterochromatin protein 1α 
(HP1α) downregulates the expression of androgen recep-
tor and RE1-silencing transcription factors, and enriches 

repressive trimethylated histone H3 at Lys9 marks on their 
respective gene promoters, significantly stimulating NE 
differentiation and enhanced invasiveness (Ci et al. 2018). 
Protocadherin-PC (PCDH-PC), encoded on the human Y 
chromosome, is aberrantly upregulated in prostate cancer 
tumor cells after hormone deprivation. The upregulation of 
PCDH-PC results in the upregulation of nuclear β-catenin 
and induce the NE transformation (Yang et al. 2005; Terry 
et al. 2006). Interleukin (IL)—6 is associated with progres-
sion and differentiation of a variety of tumors (Spiotto and 
Chung 2000), and STAT3 act as an IL-6-acting mediator to 
inhibit growth and induce neurite extension and the amplifi-
cation of NSE expression (Spiotto and Chung 2000). Some 
cytokines including IL-6 and IL-8 are closely related to the 
transformation from prostate cancer to NEPC. IL-6 induces 
NED through SATA3 as described above. IL-8 has direct 
oncogenicity and can significantly induce cell proliferation, 
mediate NED and inhibit apoptosis through the STAT3/
AKT/NF-κB pathway (Guo et al. 2017).

Conclusion

NEPC is usually diagnosed at an advanced stage and shows 
great increase in incidence due to the rapid development of 
drug resistance. Understanding the driving factors of this 
kind of highly invasive tumor may provide a theoretical 
basis for developing the effective treatment strategy. In this 
review, aimed to better understanding of NEPC progression, 
we summarize the literature on several genes and pathways 
that contribute to the development of NEPC. Furthermore, 
we would like to discuss some others potential and compli-
cate mechanisms in this process to provide some references 
for further research.

Androgen, as a steroid hormone, maintains the growth 
and development of PCa by combining with AR. Neverthe-
less, AR signaling is inhibited in NEPC and how do NEPC 
survive catches our attention. Further studies are warranted 
regarding this alternative survival pathway. In the relevant 
literatures, we found that the upregulation of SREBPs influ-
ence the synthesis of enzymes that is critical for lipogenesis 
and cholesterol synthesis during the progression to androgen 
independence and the outcome seems to be consistent with 
our conjecture. Interestingly, CREB interacts with CRTC2 
mediating mTOR signaling to regulate the expression of 
SREBP1 in the liver and PCa with ADT elevated cAMP lev-
els to activate PKA-CREB signaling (Han et al. 2015). On 
the basis of CREB-SREBPs relationship in liver, we put for-
ward a conjecture that the regulatory mechanisms in NEPC 
is similar to that in the liver and infer that the upregulation of 
CREB by elevated cAMP levels in NPEC could interact with 
CRTC2, a critical mediator of mTOR, to regulate COPII, 
leading to the upregulation of SREBP-1 and function as an 
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alternative pathway of AR signal. Furthermore, MYC, as 
an oncogene, activate and cooperate with SREBP-1 to regu-
late the synthesis of fatty acid and lipogenesis (Gouw et al. 
2019). Therefore, we propose the further inference that the 
upregulation of SREBP-1 by CREB-SREBPs interact with 
MYC to regulate the lipogenesis and cholesterol synthesis 
in NEPC and maintain the occurrence and development of 
NEPC.

The canonical Wnt signal stabilizes β- Catenin and 
allows its translocation into the nucleus to interact 
with (TCF/LEF) and coactivators to trigger Wnt tar-
get genes and lead to the neuroendocrine differentiation 
(Ciarlo et al. 2012). During the oviduct development, the 
canonical WNT cascade increases NR5A2 binding to 
the CYP11A1 and 3β-HSD gene promoters to facilitate ster-
oidogenesis and regulate oviductal epithelial secretion (Tan 
et al. 2021). CYP11A1 and 3β-HSD take part in almost all 
steroidogenic processes and NR5A2 has also been identified 
as a critical regulator of steroidogenesis (Miller and Auchus 
2011). Meanwhile, in the progression of gastrointestinal 
tumor, the synergy between NR5A21 and β-catenin/TCF4 
signaling upregulate the expression of cyclin D1, cyclin E1, 
and c-Myc which is the downstream targets of the canoni-
cal Wnt signaling (Schoonjans et al. 2005). C-Myc is an 
oncogene that contributes to the genesis of many human can-
cers and are responsible for proliferation, inflammation, and 
self-renewing (Dang 2012). On basis of these reports, it can 
be inferred that the mediation of the canonical Wnt signal 
might activate the transcription factor NR5A2 and regulate 
transcriptional control of steroidogenesis by CTNNB1(β-
catenin)/NR5A2 signaling in NEPC to replace androgen 
as a main driver of NEPC growth and progression. Mean-
while, the synergy of β-catenin/TCF4/ NR5A2/c-Myc might 
play an inevitably role in proliferation and differentiation of 
NEPC and ALK and MYCN gene amplifications described 
above might function as the triggering factor to mediate the 
β-catenin/TCF4/ NR5A2/c-Myc (Unno et al. 2021).

SREBPs, CYP11A1 and 3β-HSD described above are 
responsible for the formation of steroid hormones, choles-
terol and fatty acid and they are inextricably associated with 
the genes involved in neuroendocrine differentiation like 
Wnt and CREB, and MYC might to be the bridge between 
SREBPs, CYP11A1 and 3β-HSD. Therefore, we have every 
reason to suspect that there is a certain connection between 
them, although it still remains largely elusive. We believe 
that the potential connection between them will be made 
known to the public in the near future to bring hope to 
patients with NEPC.
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