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Abstract
Background  Hairy cell leukemia (HCL) is a rare chronic B cell malignancy, characterized by infiltration of bone marrow, 
blood and spleen by typical “hairy cells” that bear the BRAFV600E mutation. However, in addition to the intrinsic activation 
of the MAP kinase pathway as a consequence of the BRAFV600E mutation, the potential participation of other signaling 
pathways to the pathophysiology of the disease remains unclear as the precise origin of the malignant hairy B cells.
Materials and methods  Using mRNA gene expression profiling based on the Nanostring technology and the analysis of 290 
genes with crucial roles in B cell lymphomas, we defined a 17 gene expression signature specific for HCL.
Results  Separate analysis of samples from classical and variant forms of hairy cell leukemia showed almost similar mRNA 
expression profiles apart from overexpression in vHCL of the immune checkpoints CD274 and PDCD1LG2 and underex-
pression of FAS. Our results point to a post-germinal memory B cell origin and in some samples to the activation of the 
non-canonical NF-κB pathway.
Conclusions  This study provides a better understanding of the pathogenesis of HCL and describes new and potential targets 
for treatment approaches and guidance for studies in the molecular mechanisms of HCL.
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Introduction

Hairy cell leukemia (HCL) is a rare mature B cell malig-
nancy, with an incidence of approximately 0.3 per 100,000 
and is characterized by an accumulation of malignant 
B-lymphoid cells with a particular “hairy” appearance. The 
classical HCL (cHCL) is characterized by the expression 
of CD19, CD20, CD22, FMC7 and also CD11c, CD25, 
CD103, CD123 expression on the surface of the hairy cells 
(Swerdlow et al. 2017). In the variant HCL (vHCL), the 
cells are typically CD25neg (Swerdlow et al. 2017). In 2011, 
E. Tiacci et al. showed that 100% of cHCL presented the 
oncogenic BRAF mutation V600E and proposed that the 
mutation was a driver mutation (Tiacci et al. 2011). Inter-
estingly, none of the vHCL samples sequenced so far had 
shown the BRAF mutation (Waterfall et al. 2013). In our 
mRNA study using NanoString technology on a code Set of 
290 genes, we demonstrate a specific mRNA signature of 
cHCL and vHCL based on 17 genes. We find minor differ-
ences between the classical and the variant form, confirm the 
specific expression of several already published genes such 
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as CCND1 and ITGAE/CD103, and describe new ones, sug-
gesting an activation of the non-canonical NF-kB pathway 
in some samples, and a post-germinal memory B cell origin 
of hairy cell leukemia cells.

Methods

Patients

Samples were obtained from 13 newly diagnosed HCL 
patients (11 cHCL, 2 vHCL) of the Hematology Services 
of the Geneva, Mulhouse and Caen hospitals with > 30% of 
abnormal hairy cells in the peripheral blood. All participants 
were recruited following written informed consent and after 
approval of the research protocol by the local ethics commit-
tees. All patient data were analyzed anonymously. cHCL and 
vHCL were diagnosed in accordance with the WHO 2016 
classification based on clinical criteria, cytology, immu-
nophenotyping and presence of BRAFV600 (Swerdlow et al. 
2017). All the relevant patient information are presented in 
Online Resource Table S1.

From each sample, mononuclear cells were obtained 
by FICOLL gradient centrifugation and then (a) either 
lysed directly in RNA lysis buffer (Qiagen, Venlo, Nether-
lands) and stored at − 80 °C (Geneva), or (b) resuspended 
in DMSO, stored in liquid nitrogen, thawed for the present 
study, and then put into RNA lysis buffer (Mulhouse), or (c) 
lysed in RNA lysis buffer, followed by RNA extraction and 
storage at − 80 °C (Caen).

Normal blood samples were obtained from healthy blood 
donors of the Geneva blood transfusion center. Mononu-
clear cells (nMNC) were prepared by FICOLL gradient cen-
trifugation and contained between 12 and 30% of normal 
mature B cells. CD19 + B cells were further enriched using a 
CD19pos Selection Kit from Stemcell Technologies, accord-
ing to the manufacturer’s instructions. Purity of the isolated 
B cell populations was verified by flow cytometry with spe-
cific anti-CD19 and anti-CD20 antibodies and was > 95% in 
all cases (nB; not shown).

mRNA analysis

We performed an extensive literature search and extracted 
a set of 290 B cell lymphoma-specific genes from pub-
lished articles and public databases with the aim of 
defining a set of genes described to be either over- or 
underexpressed in HCL compared to other mature B 
cells neoplasms or compared to normal B lymphocytes 
(Basso et al. 2004; Cornet et al. 2015). Nine normaliza-
tion genes were added to this list to obtain a set of 299 
genes which was used for the analysis with the nCounter 
system (Online Resource Table S2). mRNA analysis and 

counting were performed with NanoString technologies, 
according to the manufacturer’s protocol (Nanostring H 
Technologies, Seattle, WA, USA). Each mRNA species 
was extracted, pre-processed, analyzed with the nCoun-
ter system then normalized using R (NanostringNorm R 
package; version 1.2.0, http://​cran.r-​proje​ct.​org/​packa​ge=​
NanoS​tring​Norm) (Waggott et al. 2012).

Raw data were adjusted against the geometric mean 
of spiked-in positive probes to account for differences in 
hybridization and recovery, background-corrected (back-
ground = mean of negative probes + 2 SD), and normalized 
against housekeeping genes (ACTB, TBP, RPL19, RPLP0, 
G6PD, ABCF1, B2M, TPT1, RPS23) to account for differ-
ences in sample content. The technical specificities of the 
NanoString technology (linearity, reproducibility, sensitiv-
ity, etc.) have all been previously described (Geiss et al. 
2008; Beaume et al. 2011; Fernandez et al. 2012).

The data were submitted to GEO and can be accessed 
via Access Number GSE161279.

Since our samples were constituted of total white blood 
cells containing malignant B cells in various percentages 
together with contaminating other white blood cells such 
as monocytes and T lymphocytes, we used a special decon-
volution algorithm to extract B cell-specific signatures 
from the total mRNA signatures obtained. We compared 
the mean of the total counts obtained from the samples 
of each group of samples (HCL, nMNC and purified nB 
cells) and considered only those genes that fulfilled the 
arbitrary criteria of an expression level  ≥  20 counts, and 
a  ≥  twofold change difference in expression as preferen-
tially expressed by one group or not. In this way, the gene 
set preferentially expressed by normal B cells (nB) was 
obtained by the comparison of nB versus nMNC; the gene 
set overexpressed in HCL by the comparison of HCL with 
nB and nMNC samples, and the gene set underexpressed 
by HCL by the comparison of HCL samples with nMNC 
samples.

Gene Ontology enrichment was performed with the 
open source Enrichr analysis tool (http://​amp.​pharm.​
mssm.​edu/​Enric​hr) (Chen et al. 2013). Gene Set Enrich-
ment Analysis (GSEA) was conducted using GSEA soft-
ware (Subramanian et al. 2007).

Statistical analysis

R version 3.4.2 software was used for statistical cal-
culations and data presentation. For gene expression 
analyses, genes with expression levels ≥ 20 counts, fold-
changes > or < 2 compared to reference values, with cor-
rected p values < 0.05 (according to Benjamini correction 
for multiple testing (Benjamini and Hochberg 1995)) were 
considered as significant.

http://cran.r-project.org/package=NanoStringNorm
http://cran.r-project.org/package=NanoStringNorm
http://amp.pharm.mssm.edu/Enrichr
http://amp.pharm.mssm.edu/Enrichr
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Results

Samples from hairy cell leukemia patients were analyzed 
with the aim to develop molecular mRNA signatures specific 
for this lymphoma and to gain new insights into the patho-
physiology of the disease.

Patient characteristics

Eleven samples were obtained from patients with the cHCL 
defined by cytology, immunophenotyping and presence 
of the BRAFV600E mutation. Two vHCL were studied and 
did not show the BRAFV600E mutation, but an activating 
MAP2K1 mutation (Online Resource Table S1).

mRNA‑specific signature in hairy cell leukemia

We studied the expression of 290 genes described to be cru-
cial in the pathophysiology of B cell lymphomas based on 
information of published articles and public databases. Thir-
teen samples from HCL patients, eight samples from normal 
blood donors (nMNC) and three samples of sorted normal 
B cells (nB) were analyzed with the Nanostring technol-
ogy. Quantitative, relative values for mRNA copy numbers 
for all 290 genes in all the samples tested were obtained 
(GEO Access No. GSE161279). As the patient samples did 
not consist of sorted B cells but of total nucleated white 
blood cells, we developed a special deconvolution algorithm 
which allowed us to obtain B cell-specific mRNA signatures 

despite the presence of contaminating other cells in the sam-
ples (see “Methods”). Using this algorithm, we compared 
the expression of genes in HCL samples to the expression in 
nMNC and in sorted nB. In the samples of sorted nB cells, 
typical B cells genes were found to be highly expressed, 
such as surface markers CD19, CD22 and CD79A/B, immu-
noglobulin genes, and B cell transcription factors such as 
PAX5. Out of the total 290 genes analyzed 107 genes were 
thus considered to be B cell-specific (expression level  ≥  
20 counts,  ≥  twofold increase in expression compared to 
nMNC samples, p value ≤ 0.05) (Online Resource Table S2). 
Unsupervised clustering resulted in a clear separation of the 
13 HCL from the nMNC and nB (Fig. 1). In this unsuper-
vised analysis, vHCL samples (samples 19 and 22) were 
intermixed with cHCL, suggesting a comparable gene 
expression signature. As shown in Online Resource Fig. 
S1, there was a close correlation in differentially expressed 
genes between cHCL and vHCL when comparing to nB 
(r = 0.82, p = 2.2 × 10− 16). To find among the 290 genes that 
could differentiate most effectively between HCL, nMNC 
and nB, we compared the mean of all the gene counts from 
the 13 HCL samples to the mean from the nMNC samples 
and to the mean of the nB, selecting only genes, that fulfilled 
the criteria mentioned above. Figure 2a shows the intersec-
tion for the genes overexpressed in HCL compared to nMNC 
(65 genes) and compared to nB cells (35 genes); Fig. 2b and 
c shows the graphical representation of gene expression by 
volcano plots, and the Online Resource Table S4a, the list of 
genes. Among the overexpressed genes, 17 were common to 
both lists (HCL vs nMNC and HCL vs nB) (Table 1): CD19, 

Fig. 1   Unsupervised cluster-
ing analysis. Thirteen samples 
from peripheral blood samples 
of HCL patients were analyzed 
in parallel to 8 samples from 
nMNC (normal mononuclear 
cells) and 3 samples of purified 
nB cells (normal B cells). The 
heatmap shows the expression 
of 290 genes expressed in the 
13 HCL samples compared to 
nMNC and nB cell samples
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IGHG, CCND1, ITGAE, GAS7, FGF2, FGFR1, RECK, TTN, 
CHL1, SEPINT10, RGS13, AICDA, EBI3, CD180, LAIR1, 
and FCGR2B. As expected, this set of 17 genes contained 
genes well known to be expressed in HCL (CCND1, ITGAE/
CD103) and served as internal quality control to validate the 
analysis (Matutes et al. 1994; Bosch et al. 1995).

Enrichment analysis with gene ontology (GO) annota-
tion showed that among the 65 overexpressed genes in HCL 
compared to nMNC were included genes characteristically 

expressed in B cells, such as B cell activation genes (CD79B, 
CD79A, CD40, MEF2C, BANK1, BLNK, BTK, MS4A1, 
HDAC9 and AICDA), B cell receptor pathway genes (BLK, 
CD79B, IGHM, CD79A, MEF2C, SYK, CD19, IGHD and 
BTK), genes with a negative regulatory role in cell cycle 
arrest (CCND1, CDK4, and SETMAR) and genes impli-
cated in the regulation of the MAPK cascade (EPHB6, 
CD74, CD40, SYK, ROR1 and FGFR) (Online Resources 
Fig. S2a and Table S4a). Among the 35 overexpressed gene 

Fig. 2   Venn diagram and 
volcano plots of differentially 
expressed genes. a The Venn 
diagram shows the number of 
genes overexpressed in HCL 
samples, compared to nMNC 
and nB cell samples, respec-
tively. b Volcano plot of genes 
expressed differentially in 13 
HCL samples compared to 8 
nMNC samples. c Volcano plot 
of genes expressed differentially 
in 13 HCL samples compared 
to 3 nB cell samples. To be con-
sidered preferentially expressed, 
genes had to fulfill the following 
criteria: expression levels ≥ 20 
counts, a ≥ twofold difference in 
expression between the sample 
groups, and a corrected p 
value ≤ 0.05
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comparing HCL to nB, enrichment analysis with GO showed 
in HCL enrichment of groups of genes mostly involved in 
positive regulation of protein serine/threonine kinase activity 

(CCND3, CCND2, CCND1, FLT3, FGF2 and FGFR1) or 
in extracellular matrix organization (ITGB2, ITGAX/CD11c, 
ITGAE/CD103, TIMP1, TGFBI, FGF2 and RECK) (Online 

Table 1   List of 17 genes overexpressed in HCL samples

Nanostring analysis showed mRNAs of 17 genes overexpressed in HCL samples compared to normal B cell (nB) and normal MNC samples 
(nMNC), fulfilling the following criteria: expression levels ≥ 20 counts, a ≥ twofold difference in expression between sample groups, and a cor-
rected p value ≤ 0.05
Genes were grouped according to their function in different cellular activities
# Previously described in gene expression analysis
* Previously described in phenotypic analysis

Name Description Average fold change 
compared to nB

Adjusted p value 
compared to nB

Average fold change 
compared to nMNC

Adjusted p value 
compared to nMNC

Previously 
described 
in HCL

References

Cytokines/chemokines and their modulators
 EBI3 Epstein–Barr Virus 

Induced 3
3.1 1.60E-02 2.9 9.20E-03 No

Differentiation
 RGS13 Regulator of G pro-

tein signaling 13
9.1 8.70E-05 9.5 4.10E-07 No Vanhentenrijk et al. 

(2004) (CGH/
CESH)

 AICDA Activation-induced 
cytidine deami-
nase

3.6 5.60E-03 7.3 1.80E-06 Yes * Navarro et al. (2017), 
Hockley et al. 
(2010)

BCR pathway/B cell activation
 CD19 1 1.60E-04 5.9 1.10E-11 Yes * Matutes et al. (1994)

Cell adhesion/migration/cytoskeleton
 FGF2 Fibroblast growth 

factor 2 = basic-
FGF

9.1 1.80E-06 8.8 5.00E-07 Yes *, # Basso et al. (2004), 
Gruber et al. (1999)

 FGFR1 Fibroblast growth 
factor receptor 1

8.3 1.80E-06 6.3 2.10E-05 Yes # Basso et al. (2004)

 GAS7 Growth arrest 
specific 7

6.2 2.10E-02 1.1 2.80E-02 Yes # Basso et al. (2004)

 CHL1 Cell adhesion mol-
ecule L1 like

4.7 2.80E-02 5.3 4.80E-05 No

 RECK Reversion inducing 
cysteine-rich 
protein with Kazal 
motifs

1.6 2.60E-02 4.8 1.50E-04 Yes # Basso et al. (2004)

 ITGAE CD103 1.4 1.90E-03 1.5 1.30E-03 Yes * Matutes et al. (1994)
 SEPTIN10 Septin family 3.9 1.90E-03 2.8 1.50E-02 No
 TTN Titin 1.5 8.70E-05 3.5 3.60E-09 No

Proliferation
 CCND1 Cyclin D1, cell 

cycle
3.7 2.90E-04 9.3 6.40E-10 Yes *, # Bosh et al. (1995), 

Basso et al. (2004)
Immunoreceptor/cell surface receptor/antigen presentation
 IGHG Immunoglobulin 

heavy constant 
gamma

2.8 1.80E-06 4.2 2.30E-05 Yes * Golomb et al. (1982)

 FCGR2B Fc fragment of 
IgG receptor IIb, 
CD32

1.6 3.00E-02 3.2 3.10E-07 No

 LAIR1 Leukocyte-associ-
ated immunoglob-
ulin-like receptor 
1, CD305

1.4 1.70E-02 1.2 3.40E-03 Yes * Garnache Ottou et al. 
(2014)

 CD180 Belongs to the 
family of Toll-like 
receptors

1.3 7.00E-04 3.6 1.10E-08 Yes * Favre et al. (2018)
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Resource Fig. S2b). In addition, gene set enrichment analysis 
(GSEA) of genes involved in positive regulation of mitotic 
cell cycle and positive regulation of MAP kinase activity 
were significantly overexpressed in HCL samples compared 
to normal cells (Online Resource Fig. S2c).

Eighty genes were found to be specifically underex-
pressed in HCL compared to normal B cell samples (Fig. 2 
and Online Resource Table S4b). The most underexpressed 
genes were CXCR5, IL-6, VPREB3, CNN3, and ADAM28 
and the surface markers CD69, CD70 and CD83. Accord-
ing to the enrichment analysis with GO, groups of underex-
pressed genes were part of the cytokine-mediated signaling 
and the regulation of I-κB kinase/NF-κB signaling path-
ways, with underexpression of CD40, PRKCB, IL1B, REL, 
TNFAIP3, BCL10, NLRP1, BIRC2 and BIRC3 genes (Online 
Resources Fig. S2b and Table S4b).

Genes differentially expressed in cHCL and vHCL

Using unsupervised clustering, we identified a similar 
signature between cHCL and vHCL (Fig. 1) with minor 
differences, when comparing the gene expression (Fig. 3 
and Table 2). In addition to expected overexpressed genes 
in cHCL compared to vHCL (ANXA1 and IL2RA), we also 
noted an overexpression of genes involved in chemotaxis/
adhesion (CXCR3, SELL/CD62L, FLT3) and in apopto-
sis regulation (FAS, CDK2AP1). Among underexpressed 
genes in cHCL, we found immune checkpoint regulators, 
such as CD274 (PD-L1) and PDCD1LG2 (PD-L2) and the 
TNF receptor TNFRSF13B.

Fig. 3   Comparison between 
cHCL and vHCL samples. 
a Unsupervised hierarchical 
clustering of gene expression 
profiles generated from cHCL 
(n = 11) and vHCL (n = 2) blood 
samples. b Volcano plot of 
genes expressed differentially 
in 11 cHCL samples compared 
to 2 vHCL blood samples. To 
be considered preferentially 
expressed, genes had to fulfill 
the following criteria: expres-
sion levels ≥ 20 counts, a ≥ two-
fold difference in expression, 
and a corrected p value ≤ 0.05
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A NF‑κB non‑canonical pathway dysregulation 
in HCL

The analysis of the list of genes underexpressed in HCL 
compared to normal B cells showed several genes belong-
ing to the NF-κB pathway, such as PRKCB, IL1B, REL, 
BCL10, and NLRP of the canonical and BIRC2 and BIRC3 
of the non-canonical pathway. To assess whether the non-
canonical pathway was intrinsically activated, we studied 
the ratio of the p100 protein, the p52 precursor, and the 
mature p52 protein. When the pathway is activated, p100 
is processed and the ratio falls below one, as in the cell 
line JVM-2, a mantle cell lymphoma cell line. Because of 
lack of material, only seven cHCL samples could be tested. 
4/6 cHCL and 1/1 vHCL expressed a p100/p52 ratio < 1, 

in line with p100 processing and activation of the non-
canonical NF-κB pathway (Online Resource Fig. S3).

Discussion

Gene expression studies have extensively been performed 
in hematologic neoplasms and B cell lymphomas but few 
studies were published in HCL (Basso et al. 2004; Arons 
et al. 2020). As we had only unsorted white blood samples 
at our disposal, we used a special deconvolution algorithm 
which allowed us to select for B cell-specific genes despite 
the presence of contaminating other white blood cells in the 
samples. We could thus define a set of 17 genes specifically 
overexpressed in HCL. Some of the genes such as CD19, 
CCND1 (cyclin D1), GAS7, FGFR1, FGF2, RECK, and 
ITGAE (CD103) have been published previously, based on 
other mRNA (RNA seq or qPCR) or protein detection meth-
ods (flow cytometry or immunohistochemistry) (Matutes 
et al. 1994; Bosch et al. 1995; Basso et al. 2004).

Bone marrow fibrosis, a characteristic feature of HCL, 
plays a crucial role in the pathogenesis of the disease and in 
the typical cytopenic presentation. Three genes implicated in 
myelofibrosis were found to be overexpressed in HLC: FGF2 
(fibroblast growth factor-2; 500-fold), its receptor FGFR1 
(50-fold), and TGFB1 (tumor growth factor ß1; 16-fold).

Among the newly identified genes overexpressed in HCL, 
we noted specifically RGS13 and EBI3. RGS13 encodes a 
member of the regulator of G protein (RGS) family and is 
strongly expressed in germinal center (GC) B cells (Hwang 
et al. 2013). It was hypothesized that it might regulate the 
response of GC B cells to chemokines in the complex micro-
environment of GCs (Shi et al. 2002). The RGS13 chromo-
somal region (1q31) has been found overexpressed in HCL 
(Vanhentenrijk et al. 2004). EBI3 encodes for Epstein–Barr 
virus (EBV)-induced gene 3, one of the two subunits, 
together with p35, of IL-35, an immunosuppressive cytokine 
of the IL-12 family (Collison et al. 2012). Larousserie et al. 
have recently shown by immunohistochemical studies in 
reactive lymph nodes that a subset of GC B cells located 
in the light zone of B cell follicles and corresponding to 
proliferating activated centrocytes, expressed high amounts 
of EBI3 (Larousserie et al. 2019).

AICDA coding for the activation-induced cytidine deami-
nase (AID) is involved in the process of somatic hypermu-
tation which occurs during maturation of B cell receptors 
in the germinal center reaction. Its overexpression is also 
related to carcinogenesis because of off-target-induced muta-
tions by AID, in non-immunoglobulin genes and accumula-
tion of genetic aberration. High mRNA AICDA level has 
been previously described in cHCL, and in a lesser extent 
in vHCL (Hockley et al. 2010; Navarro et al. 2017). Over-
expression of EBI3, RGS13 as well as activation-induced 

Table 2   List of genes expressed preferentially in cHCL compared to 
vHCL

List of genes expressed differentially in 11 cHCL blood samples 
compared to 2 vHCL blood samples. Genes either over- or underex-
pressed in cHCl compared to vHCL were listed if they fulfilled the 
following criteria: expression levels ≥ 20 counts, a ≥ twofold differ-
ence in expression, and a corrected p value ≤ 0.05

Genes Adj p value Log2(FC) cHCL Log2(FC) vHCL

Overexpressed in cHCL
 FLT3 0.00059 7.6 − 7.6
 DBN1 0.00055 6.5 − 6.5
 AGER 0.0042 4 − 4
 FCRL4 0.04 3.9 − 3.9
 ANXA1 0.034 3.6 − 3.6
 VPREB3 0.037 3.6 − 3.6
 CD38 0.013 3.2 − 3.2
 CXCR3 0.0094 2.8 − 2.8
 MYBL1 0.0062 2.7 − 2.7
 GCSAM 0.012 2.5 − 2.5
 SELL 0.005 2.4 − 2.4
 FAS 0.00012 1.9 − 1.9
 IL2RA 0.018 1.9 − 1.9
 FKBP11 0.0051 1.5 − 1.5
 TXNIP 0.0094 1.2 − 1.2
 ZNF3 0.0053 1.1 − 1.1
 CDK2AP1 0.0042 1 − 1

Overexpressed in vHCL
 CD83 0.0094 − 1.8 1.8
 CD274 0.016 − 2.2 2.2
 FOS 0.00055 − 2.6 2.6
 EGR1 0.011 − 3.6 3.6
 CRYM 0.0042 − 3.9 3.9
 PDCD1LG2 0.041 − 3.9 3.9
 EBI3 0.0086 − 5 5
 TNFRSF13B 0.0094 − 6.1 6.1
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cytidine deaminase (AID) encoded by AICDA is more sug-
gestive of incompletely turned off GC mechanisms in post-
germinal memory B cells than of a GC origin of hairy cells. 
Indeed, is has been shown that despite the lack of CD27 
expression, HCL gene signature is closer to memory than to 
GC B cells (Basso et al. 2004). In favor of this hypothesis, 
we found that other markers commonly associated with a 
germinal center origin such as BCL6, LMO2 and GCSAM 
(Shen et al. 2004; Natkunam et al. 2007) were also slightly 
downregulated in HCL compared to normal B cells.

Various hypotheses have been suggested to explain the 
projections of hairy cells, but the exact underlying mecha-
nisms are still unclear: members of Rho GTPase family, such 
as Cdc42 and Rac1, involved in cytoskeletal rearrangement 
(Chaigne-Delalande et al. 2006); GAS7 or CD9, both associ-
ated to microfilaments in neurons (Basso et al. 2004). More 
recently, the MAPK pathway inhibitor vemurafenib was 
shown to induce a reversion of the hairy phenotype, which 
was correlated with a downregulation of ß-actin and LST1, 
both proteins involved in cytoskeleton formation (Pettirossi 
et al. 2015). In our study, we confirmed overexpression of 
GAS7 and found overexpression of SEPTIN10 and TTN, both 
proteins interacting with cytoskeleton and actin filaments.

vHCL is considered as a provisional entity in the WHO 
classification (Swerdlow et al. 2017), being morphologically 
very similar to cHCL with the exception of the presence of 
a prominent nucleolus. BRAFV600E is negative and MAP2K1 
mutations are identified in 42% (10/24) of cases (Waterfall 
et al. 2013). Immunophenotyping reveals a HCL score < 3 
with a typical lack of CD25 expression. We confirmed the 
decreased expression of ANXA1 (Annexin-1), and IL2RA 
(CD25) in vHCL (Swerdlow et al. 2017), as well as the over-
expression of TNFSRF13B (Arons et al. 2020). In addition, 
we found that vHCL samples overexpressed the immune 
checkpoint regulators CD274 (PD-L1) and PDCD1LG2 
(PD-L2) and underexpressed CD95 (FAS) receptor. These 
two mechanisms bypassing immune surveillance and apop-
tosis might reflect the more aggressive course of vHCL com-
pared to cHCL. However, given the very small number of 
vHCl samples in our study (n = 2), these results should be 
interpreted with caution and be confirmed in a larger series.

The NF-κB pathway is an important regulator of B cell 
maturation and activation, leading to posttranslational pro-
teolytic processing of p105 for the canonical pathway and 
p100 for the non-canonical pathway with induction of the 
active subunits p50 and p52, respectively. The canonical 
pathway is activated by inflammatory cytokines (e.g., IL-1) 
or pathogen-associated molecular patterns (PAMPs) that 
activate toll-like receptors, while the non-canonical path-
way is mainly activated by TNF receptor family members. 
We found that HCL samples underexpressed the four TNF 
receptors CD40, TNFRSF13C, TNFRSF17 and TNFRSF13B 
compared to normal B cells, in line with a previous report, 

which additionally showed underexpression of TNFSF11, 
another non-canonical pathway inducer (Basso et al. 2004). 
In the few samples we could analyze by Western blot, we 
found indications for non-canonical pathway activation with 
increased p100 protein processing in 5/7 samples. One expla-
nation could be an intrinsic, receptor independent, activation 
of the pathway, perhaps secondary to decreased inhibitor 
activity. In favor of this hypothesis could be the decreased 
expression of the two pathway inhibitors BIRC2 and BIRC3 
(Online Resource Table S3). A similar mechanism was 
proposed in CLL and MCL (Rahal et al. 2014; Diop et al. 
2020). As of today, such mutations have not been described 
in whole exome sequencing HCL studies (Tiacci et al. 2011; 
Waterfall et al. 2013; Dietrich et al. 2015; Weston-Bell et al. 
2016). Targeting the non-canonical pathway could constitute 
an interesting new approach in HCL treatment. Indeed, it 
has been shown in MCL and CLL, that a subgroup of cell 
lines resistant to classical BCR signaling and canonical path-
way activation by drugs such as fludarabine and ibrutinib, 
respectively, exhibited non-canonical pathway activation and 
BIRC3 mutations (Rahal et al. 2014; Diop et al. 2020). Acti-
vation of this pathway conferred dependence on the protein 
kinase NIK, a central component of the pathway. NIK could 
constitute a new therapeutic target for MCL treatment in 
cases of resistance to ibrutinib. Use of ibrutinib is an option 
in relapsed/refractory HCL patients (Troussard et al. 2021). 
In a multicenter phase 2 study, ibrutinib was evaluated in 37 
patients either with cHCL (n = 28) or vHCL (n = 9 patients). 
The overall response rate was 24% at 32 months (Rogers 
et al. 2021). In patients not responding to this BTK inhibitor, 
the evaluation of the non-canonical NF-kB pathway could be 
performed and in case of activation, the use of NIK inhibi-
tors proposed.

In conclusion, a specific mRNA signature based on the 
Nanostring technology was identified in HCL, which sug-
gests a dysregulation of genes associated with germinal 
center and memory stages of B cell differentiation, and 
points towards the transformation of hairy cells occurring 
during the transition between the two maturation stages. We 
also found dysregulation of several genes associated with the 
non-canonical signaling and intrinsic activation of the path-
way in several samples. Further studies on the non-canonical 
pathway are needed to determine whether targeting compo-
nents of the pathway could constitute a therapeutic approach 
in HCL.
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