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Abstract
Purpose  Most cancer-related deaths worldwide are associated with lung cancer. Subtyping of non-small cell lung cancer 
(NSCLC) into adenocarcinoma (AC) and squamous cell carcinoma (SqCC) is of importance, as therapy regimes differ. How-
ever, conventional staining and immunohistochemistry have their limitations. Therefore, a spatial metabolomics approach 
was aimed to detect differences between subtypes and to discriminate tumor and stroma regions in tissues.
Methods  Fresh-frozen NSCLC tissues (n = 35) were analyzed by matrix-assisted laser desorption/ionization-mass spec-
trometry imaging (MALDI-MSI) of small molecules (< m/z 1000). Measured samples were subsequently stained and his-
topathologically examined. A differentiation of subtypes and a discrimination of tumor and stroma regions was performed 
by receiver operating characteristic analysis and machine learning algorithms.
Results  Histology-guided spatial metabolomics revealed differences between AC and SqCC and between NSCLC tumor and 
tumor microenvironment. A diagnostic ability of 0.95 was achieved for the discrimination of AC and SqCC. Metabolomic 
contrast to the tumor microenvironment was revealed with an area under the curve of 0.96 due to differences in phospholipid 
profile. Furthermore, the detection of NSCLC with rarely arising mutations of the isocitrate dehydrogenase (IDH) gene was 
demonstrated through 45 times enhanced oncometabolite levels.
Conclusion  MALDI-MSI of small molecules can contribute to NSCLC subtyping. Measurements can be performed intra-
operatively on a single tissue section to support currently available approaches. Moreover, the technique can be beneficial in 
screening of IDH-mutants for the characterization of these seldom cases promoting the development of treatment strategies.

Keywords  Non-small cell lung cancer · Adenocarcinoma · Squamous cell carcinoma · Isocitrate dehydrogenase · Mass 
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Introduction

Lung cancer is the second most common cancer disease 
with an incidence of 11.4% and the leading cause of cancer 
mortality, responsible for 18% of cancer deaths (Sung et al. 
2021). The vast majority of lung cancers (85%) belongs 
to the histologic category of non-small cell lung cancer 
(NSCLC) (Schabath and Cote 2019). The prevalence of 
various genetic mutations in NSCLC is described, such 
as driver mutations in KRAS and epidermal growth factor 
receptor (EGFR) which occur frequently and can influence 
therapeutic strategies (Zhu et al. 2017). Within the group 
of NSCLC, the two most common histological subtypes 
are the adenocarcinoma (AC) with an occurrence of 40% 
and the squamous cell carcinoma (SqCC) with an occur-
rence of 25% (Schabath and Cote 2019). Distinguishing 
these subtypes is of importance as AC and SqCC have 
different characteristics and outcomes and therapy regi-
mens differ (Mukhopadhyay and Katzenstein 2011; Wang 
et al. 2020). However, accurate diagnostic is not always 
possible via pathological examination of hematoxylin and 
eosin (HE)-stained slides (Mukhopadhyay and Katzenstein 
2011; Osmani et al. 2018). While immunohistochemis-
try markers work well in 60–100% of the cases, long test 
duration, difficulties in interpreting the results, and a high 
tissue consume when testing individual markers are the 
downsides of this technique (Osmani et al. 2018).

As new diagnostic tools are needed, the aim of this 
study was to develop an approach to distinguish NSCLC 
subtypes and to unravel metabolic differences in the tumor 
microenvironment using matrix-assisted laser desorption/
ionization-mass spectrometry imaging (MALDI-MSI)-
based metabolomics. This emerging technique allows the 
label-free analysis of hundreds of endogenous compounds 
in situ, thus enabling a correlation with histological fea-
tures (Aichler and Walch 2015; Schwamborn and Caprioli 
2010). Due to homogenization of tissues in sample prepa-
ration for commonly used mass spectrometry techniques 
in metabolomics, such as gas chromatography–mass spec-
trometry and liquid chromatography–mass spectrometry, 
spatial information is lost (Aichler and Walch 2015). The 
combination of MALDI-MSI with histopathological analy-
sis can avoid artefacts in data analysis due to varying ratios 
of healthy and cancer cells within the sections or due to 
tumor heterogeneity (Schwamborn 2017) and allows for a 
detailed analysis even of small histologic areas. MALDI-
MSI-based metabolomics was successfully applied to 
reveal differences between NSCLC tumors and normal 
lung regions based on lipid analysis (Guo et al. 2014; 
Jones et al. 2014; Lee et al. 2012; Muranishi et al. 2019). 
Furthermore, lipid MALDI-MSI was used to verify differ-
ences between NSCLC subtypes (Lee et al. 2012). These 

results demonstrate the suitability of MALDI-MSI for 
small molecule analysis in lung cancer research to explore 
the metabolism, which is known to be altered in cancers 
(Pavlova and Thompson 2016). However, the classification 
of SqCC and AC using MALDI-MSI-based metabolomics 
and the differences in non-lipid metabolites seem not to be 
reported yet using this technique.

We, therefore, targeted a classification of AC and SqCC 
via histology-guided MALDI-MSI based on small mol-
ecules by utilizing machine learning algorithms. Addition-
ally, alterations between NSCLC tumor and stroma regions 
were examined to reveal differences in the tumor microen-
vironment. Furthermore, it was screened for rare isocitrate 
dehydrogenase (IDH)-mutated NSCLC by evaluating onco-
metabolite signal intensities.

Materials and methods

Human material

Lung cancer samples were collected between 2020 and 
2021 at the Johannes Wesling Klinikum Minden in Min-
den, Germany. The study was approved by the Klinisches 
Ethikkomitee des HDZ NRW (AZ-2019-565). Patients gave 
informed consent about the usage of resected material.

The study cohort comprises 35 NSCLC samples, consist-
ing of 24 AC (69%) and 11 SqCC (31%). Diagnoses were 
made by two experienced pathologists on formalin-fixed 
paraffin-embedded (FFPE) material using HE staining and 
immunohistochemistry, where necessary. The gain-of-func-
tion mutation of the IDH1 gene was characterized based 
on DNA extraction from subsequent sections on Illumina 
MiSeq platform. Detailed information on diagnoses is given 
in Table 1. Fresh-frozen material was snap-frozen and stored 
in liquid nitrogen until further use.

Sample preparation

Fresh-frozen tissue samples were sectioned at a thickness 
of 10 µm in a cryostat, after equilibrating to a temperature 
of − 20 °C. Sections of AC and SCC specimen were ran-
domly placed onto conductive indium tin oxide (ITO) coated 
IntelliSlides (Bruker Daltonik GmbH, Germany) and dried 
under vacuum.

Matrix N-(1-naphthyl) ethylenediamine dihydrochloride 
(NEDC) (≥ 99% p. a., Carl Roth GmbH + Co. KG, Germany) 
was applied onto ITO slides at a concentration of 7 mg/ml 
NEDC in methanol/water (70/30, v/v) using a TM-Sprayer 
(HTX Technologies, LLC, USA). Spraying parameters 
were kept as following for 28 passes: 0.12 ml/min flow rate, 
1200 mm/min velocity, 3 mm track spacing, and a nozzle 
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temperature of 70 °C. Samples were stored in a dry cabinet 
until measurements.

MALDI‑MSI measurements

Tissue specimen (n = 35) were analyzed on a rapifleX 
MALDI Tissuetyper (Bruker Daltonik GmbH, Bremen, Ger-
many). Samples coated with NEDC were measured in nega-
tive reflector mode acquiring spectra between m/z 80–1000. 
The smartbeam™ 3D laser mode was set to M5 small for the 

imaging 50 µm application. Spectra were collected with 300 
shots per pixel with a frequency of 10,000 Hz. The pulsed 
ion extraction time was set to 100 ns. The detector gain was 
regularly adjusted according to the detector check recom-
mendations. Calibration was performed with red phosphorus 
clusters.

Additionally, AC (n = 2) and SqCC (n = 2) were analyzed 
on a Spectroglyph MALDI/ESI Injector (Spectroglyph, 
LLC, USA) coupled with a Q Exactive Plus mass spectrom-
eter (Thermo Fisher Scientific Inc., USA) for the annota-
tion of detected analytes. Furthermore, the IDH-mutated AC 
was analyzed to confirm metabolite 2-hydroxyglutarate by 
accurate mass and MS/MS fragments. Measurements were 
performed in negative mode within a mass range of m/z 
85–1000. The laser step size was set to 50 µm with a velocity 
of 1 mm/s. Mass resolution was set to 70,000 and the inject 
time was fixed at 250 ms per scan. MS/MS was performed 
on an isolation window of ± 0.2 m/z with a normalized col-
lision energy of 50 and a maximum inject time of 2000 ms. 
Pierce Negative Ion Calibration Solution (Thermo Fisher 
Scientific Inc., USA) was used as external calibrant and 
matrix peak as internal mass calibrant.

Histology

After MALDI-MSI measurements, matrix was removed 
from tissues by washing in 100% methanol for 2 min. Tissues 
were stained with hematoxylin and eosin (HE) for pathologi-
cal evaluation. Whole slide scanning was performed on HE 
sections for digital evaluation of the tissues using a Ventana 
DP 200 slide scanner (Roche Diagnostics International AG, 
Rotkreuz, Switzerland). Representative tumor and stroma 
regions were annotated on whole slide images using the 
software QuPath (Bankhead et al. 2017) and regions were 
exported for further analysis using the SCiLS Lab export 
function (Bruker Daltonik GmbH, Bremen, Germany).

Data analysis

MSI data were analyzed using the Software SCiLS Lab 
MVS Pro 2021b (Bruker Daltonik GmbH, Bremen, Ger-
many). Spectra were normalized to the total ion count (TIC) 
and images were created within a mass range of 0.04 Da. 
Peaks were manually picked to avoid artefacts and to exclude 
matrix signals. TIC-normalized intensities for picked peaks 
(n = 137) within annotated regions were imported into 
Python 3.7 using the SCiLS Python API. Feature importance 
was applied using a random forest classifier and a thresh-
old of 0.01, leading to 33 ion channels for the analysis of 
NSCLC subtypes and 23 ion channels for the discriminant 
analysis of tumor and stroma while excluding the IDH-
mutated case. Peak lists can be found in the supplementary 
material. A receiver operating characteristic analysis was 

Table 1   Information on lung cancer specimen used in this study

The tumor node metastasis (TNM) system was used for tumor grad-
ing
NSCLC non-small cell lung cancer, SqCC squamous cell carcinoma, 
AC adenocarcinoma

AC SqCC Total

Cases 24 11 35
Age (median) 68.5 70 69
pT (%)
 1a 2 (8.3) 1 (9.1) 3 (8.6)
 1b 3 (12.5) 0 (0) 3 (8.6)
 1c 7 (29.2) 1 (9.1) 8 (22.9)
 2a 4 (16.7) 2 (18.2) 6 (17.1)
 2b 1 (4.2) 2 (18.2) 3 (8.6)
 3 4 (16.7) 3 (27.3) 7 (20)
 4 2 (8.3) 2 (18.2) 4 (11.4)
 n/a 1 (4.2) 0 (0) 1 (2.9)

pN (%)
 0 10 (41.7) 7 (63.6) 17 (48.6)
 1 9 (37.5) 4 (36.4) 13 (37.1)
 2 2 (8.3) 0 (0) 2 (5.7)
 n/a 3 (12.5) 0 (0) 3 (8.6)

V (%)
 0 21 (87.5) 9 (81.8) 30 (85.7)
 1 2 (8.3) 2 (18.2) 4 (11.4)
 n/a 1 (4.2) 0 (0) 1 (2.9)

L (%)
 0 18 (75) 8 (72.7) 26 (74.3)
 1 5 (20.8) 3 (27.3) 8 (22.9)
 n/a 1 (4.2) 0 (0) 1 (2.9)

Stage (%)
 IA 8 (33.3) 2 (18.2) 10 (28.6)
 IB 2 (8.3) 1 (9.1) 3 (8.6)
 IIA 1 (4.2) 0 (0) 1 (2.9)
 IIB 8 (33.3) 6 (54.5) 14 (40)
 IIIA 4 (16.7) 2 (18.2) 6 (17.1)
 IIIB 1 (4.2) 0 (0) 1 (2.9)

Annotation (%)
 Tumor 24 (100) 11 (100) 35 (100)
 Stroma 17 (70.8) 10 (90.9) 27 (77.1)
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implemented to analyze the diagnostic ability of a random 
forest algorithm and a support-vector machine algorithm 
using scikit-learn with tenfold cross-validation. Orthogo-
nal partial least squares discriminant analysis (OPLS-
DA) was performed using the pypls package and fivefold 
cross-validation.

High-resolution MALDI-Orbitrap-MSI data were 
exported to imzML format using ImageInsight (Spectro-
glyph, LLC, USA) and loaded into SCiLS Lab MVS Pro 
2021b (Bruker Daltonik GmbH, Bremen, Germany). Ana-
lytes were annotated based on the accurate mass and identi-
fied on MS/MS spectra if available using the database MET-
LIN (Smith et al. 2005) with a threshold of 10 PPM.

Results

Classification of tissue specimen

Thirty-five human NSCLC cases were used for analyses. 
The cohort comprises 24 AC (69%) and 11 SqCC (31%). 
Median patient age at the time of resection was 69. The 
majority of cases was graded as stage II including 9 AC 
(37.5%) and 6 SqCC (54.5%), followed by stage I (41.7% 
AC, 27.3% SqCC) and stage III (20.8% AC, 18.2% SqCC). 
One specimen harbored a c.395G>T; p.R132L mutation in 
the isocitrate dehydrogenase gene IDH1. The patient pre-
sented with stage IIB AC showed high PD-L1 expression 
of > 90% and mutations of KRAS (c.35G>T; p.G12V) and 
TP53 (c.797G>T; p.G266V). While tumor areas were pre-
sent in all cases, stroma regions were annotated in 77.1% of 

the samples (70.8% AC, 90.9% SqCC). Further information 
on human material is given in Table 1.

Classification of NSCLC using MALDI‑MSI‑based 
metabolomics and machine learning

Machine learning approaches were used to classify (i) 
NSCLC tumor (n = 34) and NSCLC stroma (n = 27) regions 
as well as (ii) AC tumor (n = 23) and SqCC tumor (n = 11) 
regions. The IDH-mutated AC was excluded from all analy-
ses, as metabolic alterations were estimated.

The ability of a random forest (RF) algorithm and of a 
support-vector machine (SVM) algorithm to distinguish 
these tissue regions is demonstrated in a receiver operat-
ing characteristic analysis (Fig. 1). An area under the curve 
(AUC) of 0.92 was achieved for the discrimination of tumor 
and stroma regions using the RF algorithm. The AUC with 
a SVM classifier was 0.96. Best classification result in the 
diagnosis of AC tumor and SqCC tumor was also achieved 
by the SVM algorithm, yielding an AUC of 0.95. AUC with 
RF algorithm was 0.9. Furthermore, using these algorithms 
to distinguish AC stroma from SqCC stroma resulted in 
lower diagnostic ability, indicating higher similarities of 
stroma metabolome than of tumor metabolome between 
subtypes (Supplementary Information).

Uncovering metabolic differences in NSCLC

Multivariate analysis was performed to visualize the dis-
crimination of NSCLC tumor and stroma and of the NSCLC 
subtypes on metabolite data from MALDI-MSI experiments. 

Fig. 1   Receiver operating characteristic analyses reveal information 
on diagnostic ability. Random forest (RF) (grey) and support-vector 
machine (SVM) (black) algorithms were utilized. A Discrimination 
of NSCLC tumor (n = 34) and stroma (n = 27). B Classification of AC 

(n = 23) and SqCC (n = 11). AUC and standard deviation is given. 
NSCLC non-small cell lung cancer, SqCC squamous cell carcinoma, 
AC adenocarcinoma, RF random forest, SVM support-vector-machine
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The orthogonal partial least squares discriminant analysis 
(OPLS-DA) shows a discrimination of the groups with 
minor overlaps (Fig. 2A, B). S-plots were generated to iden-
tify analytes strongly contributing to the separation of the 
groups. The ion channel that is most prominent in tumor 
regions compared to stroma regions is phospholipid m/z 
742 (Fig. 2C). On the other hand, m/z 125 is more promi-
nent in stroma regions (Fig. 2C). Due to overlapping signals 
with a taurine isotope, an identification via MS/MS was not 
feasible. Hence, m/z 125 was putatively annotated as the 
[M + Cl]− ion of oxalic acid based on accurate mass and 
isotopic pattern. Interestingly, small molecules (m/z < 270) 
are more prominent in stroma regions, while putative phos-
pholipids contribute to the discrimination of histological 
regions with high intensities in tumor areas.

In the discriminant analysis of NSCLC subtypes, m/z 
124 and m/z 181 show highest differences in AC and SqCC 
(Fig. 2D). The ion channel m/z 124 is more abundant in 

AC and was identified as antioxidant taurine. The m/z 181 
was annotated as the chloride adduct of analyte glutamine. 
Supporting this result, the identified [M − H]− ion of glu-
tamine (m/z 145) shows a similar localization in the S-plot 
and a similar distribution in tissues. Furthermore, m/z 502 
contributes to the discrimination with higher intensities in 
SqCC and was annotated as phosphatidylserine.

Spatial distribution of analytes with highest contribu-
tion in OPLS-DA are shown in Fig. 3. Representative tumor 
and stroma regions were annotated in each case, if avail-
able (Fig. 3A–C). The differentiation of NSCLC tumor and 
NSCLC stroma regions is visualized through analytes m/z 
125 (green) and m/z 742 (red) (Fig. 3D–F). Metabolic dif-
ferences between AC and SqCC are depicted in Fig. 3G. 
While taurine (purple) is abundant in AC tumor regions, the 
analyte shows lower intensities in SqCC tumor and equal 
amounts in SqCC stroma. Glutamine (orange) shows higher 
abundances in SqCC.

Fig. 2   Orthogonal partial least squares discriminant analysis (OPLS-
DA) and corresponding S-plots. Analytes with highest contribution to 
the separation are marked with arrows and corresponding m/z value. 
A OPLS-DA of NSCLC tumor (n = 34) and stroma (n = 27). B OPLS-
DA of AC (n = 23) and SqCC (n = 11). C S-plot of the discrimination 

of NSCLC tumor (n = 34) and stroma (n = 27) with each of the 23 
used peaks visualized as a dot. Small molecules are more prominent 
in stroma regions and  putative phospholipid intensities are higher 
in tumor regions. D S-plot of the discrimination of AC (n = 23) and 
SqCC (n = 11) with each of the 33 used peaks visualized as a dot
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Fig. 3   Ion images of selected analytes and corresponding HE images. 
Four NSCLC cases (SqCC n = 2, AC n = 2) are shown. A HE images 
with representative annotated regions of tumor (red) and stroma 
(green). B Magnification of stroma region indicated by lower arrow in 
A. C Magnification of tumor region indicated by upper arrow in A. D 
Overlay of ion channels m/z 125 (putatively representing oxalic acid, 
green) and m/z 742 (phospholipid, red) separates tumor and stroma 
regions. E Magnification of stroma region indicated by lower arrow 

in D and depicted in B. F Magnification of tumor region indicated by 
upper arrow in D and depicted in C. G Overlay of ion channels m/z 
124 (representing taurine in purple) and m/z 181 (representing glu-
tamine in orange). Scales are included for overview images (7 mm) 
and magnifications (100  µm). HE hematoxylin and eosin, NSCLC 
non-small cell lung cancer, SqCC squamous cell carcinoma, AC ade-
nocarcinoma
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Detection of IDH mutations in NSCLC via MALDI‑MSI

One case showed increased intensities at m/z 147 in tumor 
areas (Fig. 4). This analyte was presumed to be 2-hydroxy-
glutarate (2HG) which is highly produced as consequence 
of gain-of-function IDH mutations (Dang et al. 2009). The 
result was reproduced in a measurement with high mass 
resolving power of an Orbitrap analyzer, whereby 2HG was 
identified by accurate mass and MS/MS. Subsequently, the 
case was sequenced, and IDH1 mutation of c.395G>T or 
p.R132L was verified. Hence, IDH-mutated NSCLC can be 
clearly distinguished from IDH wildtype cases by MALDI-
MSI, as detected intensities of oncometabolite 2HG were 
found to be 45 times higher than the average level in tumor 
regions. A detailed analysis of the oncometabolite distri-
bution emphasizes tumor heterogeneity. The visualization 
in situ and an overlay with histopathological results can be 
found in the supplementary information.

Discussion

The analysis of NSCLC via histology-guided MALDI-MSI 
of small molecules revealed differences between tumor and 
stroma regions as well as between the major NSCLC sub-
types AC and SqCC. While immunohistochemical testing 
is time-consuming, an optimized MALDI-MSI workflow 
can reveal metabolomic information of tissues in less than 
5 min (Basu et al. 2019). Not only speed in diagnosis, 
but also the ability to be performed on non-fixated tissues 
makes it most applicable as an additional tool to evalu-
ate samples intraoperatively. Both these feats would allow 
the technique to be used as an additional diagnostic tool 

for the evaluation of samples collected through oncologi-
cal surgery that require intraoperative consultation, since 
these samples are cut via frozen section procedure anyway. 
Another advantage is that only a single tissue section is 
needed for label-free MSI and HE staining, as performed 
in this study, enabling the analysis of small tissue biop-
sies. Adding this approach as a possible plausibility check 
might increase safety in diagnosis and subsequently in 
treatment.

NSCLC tumor regions were demonstrated to show dif-
ferent metabolomic profiles than corresponding stroma 
regions in the tumor microenvironment. Classification was 
achieved with diagnostic ability of 0.96. Phospholipids 
were found to be severely altered in NSCLC (Marien et al. 
2015; Zhang et al. 2019) and consistently contributed to 
the separation of tumor cells and tumor microenvironment 
in this study. The lipid interaction of tumor cells and the 
tumor microenvironment plays a crucial role in cancer pro-
gression, as stromal cells can secrete lipids that fuel cancer 
cells, induce migration, and enhance proliferation of the 
tumor (Corn et al. 2020).

Diagnostic ability of 0.95 was achieved for subtype 
classification. Highest discrimination of AC and SqCC 
tumors was yielded through antioxidant taurine. Support-
ing this finding, the upregulation of taurine in AC was 
previously reported through nuclear magnetic resonance 
spectroscopy (Rocha et al. 2015). Glutamine contributes 
to the discrimination of subtypes, as well. NSCLC seem-
ingly rather rely on glucose than on glutamine to feed the 
tricarboxylic acid cycle (Majem et al. 2020). For SqCC, 
stronger glutaminolytic activity and enhanced reductive 
carboxylation of glutamine were suggested compared to 
AC (Rocha et al. 2015; Sellers et al. 2019). Interestingly, 

Fig. 4   Spatial distribution of 2-hydroxyglutarate (m/z 147) indicates 
an IDH mutation. Enhanced intensities of the oncometabolite are 
depicted in tumor regions of one sample (far right). Scale (7 mm) is 

included. IDH isocitrate dehydrogenase, NSCLC non-small cell lung 
cancer, SqCC squamous cell carcinoma, AC adenocarcinoma
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both metabolites, taurine and glutamine, were found to be 
reduced in serum of NSCLC patients (Hu and Sun 2018).

This study has some limitations. Slide-related batch 
effects were tried to be circumvented by randomly placed 
samples but have to be kept in mind. Next, markers for 
NSCLC tumor regions and the subclassification into AC and 
SqCC have to be confirmed in larger cohorts.

The detection of IDH-mutated NSCLC was demonstrated 
via MALDI-MSI. IDH mutations are present in the vast 
majority of gliomas (Yan et al. 2009) and in approximately 
17% of acute myeloid leukemia (Rakheja et al. 2012), though 
NSCLC with mutated IDH are seldom with an occurrence 
of 0.5–1.1% and only few cases are described yet (Rodri-
guez et al. 2020; Sequist et al. 2011; Toth et al. 2018). It 
was recently hypothesized that IDH mutations in NSCLC 
are branching drivers (Rodriguez et al. 2020) and enhance 
cell proliferation through Fibulin-5 methylation (Yan et al. 
2018). In this study, an IDH-mutated AC was detected via 
MALDI-MSI for the first time to our knowledge. Subsequent 
DNA-sequencing revealed an IDH1 mutation. Moreover, 
heterogenous 2HG metabolism was observed with highest 
oncometabolite concentrations in the tumor center. Patient 
characteristics coincide with previously published cases as 
the specimen was subtyped as AC as well as all previously 
reported cases and harbors a mutation of the cytoplasmic 
enzyme IDH1 (14 of 19 cases) (Rodriguez et al. 2020; Seq-
uist et al. 2011; Toth et al. 2018). Furthermore, the specimen 
shows high PD-L1 expression of > 90% as seen in 40% of 
previously analyzed specimen (> 50% PD-L1) and a KRAS 
driver mutation as the majority of IDH-mutated lung AC 
(Rodriguez et al. 2020; Toth et al. 2018). However, while 
most patients with IDH mutations have an age greater than 
70 (Rodriguez et al. 2020; Sequist et al. 2011; Toth et al. 
2018), this patient was 57 at resection, being 11.5 years 
younger than the AC patient median age of the cohort.

Even though occurrence of IDH mutations is low in 
NSCLC, considering the high incidence of this disease and 
the manifold of developed treatment strategies for IDH-
mutated cancers emphasizes the importance of further 
research in this field (Golub et al. 2019; Rodriguez et al. 
2020; Toth et al. 2018). Since we were able to reliably detect 
an IDH-mutated specimen within our samples, this approach 
might enable a cheaper and faster diagnosis and a screening 
of mutants (e.g. on tissue microarrays) to investigate patient 
characteristics.

Conclusions

MALDI-MSI is a powerful tool that could support diag-
nosis of NSCLC in the future. Given the possibility that 
new entities can be identified using MALDI-MSI, this 
might lead to further studies in treatment. The investigation 

of metabolomic differences between larger cohorts of IDH-
mutated AC and IDH-wildtype AC can support our under-
standing of this disease. A reliable classification of tumors 
during a surgical procedure has the potential to improve 
results and survival of patients after oncological surgery as 
well as it might enable quicker post-operative care such as 
chemotherapy or radiotherapy.
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