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Abstract
Purpose Gliomas are the most frequent primary brain tumors of adults. Despite intensive research, there are still no targeted 
therapies available. Here, we performed an integrated analysis of glioma and programmed cell death ligand 1 (PD-L1) in 90 
samples including 58 glioma and 32 control brain tissues.
Methods To identify PD-L1 expression in glioma, we performed immunohistochemical analysis of PD-L1 tumor proportion 
score (TPS) using the clinically valid PD-L1 22C3 antibody on 90 samples including controls and WHO grade I–IV gliomas.
Results We found that PD-L1 is highly expressed in a subfraction of glioma cells. Analysis of PD-L1 levels in different 
glioma subtypes revealed a strong intertumoral variation of PD-L1 protein. Furthermore, we correlated PD-L1 expression 
with molecular glioma hallmarks such as MGMT-promoter methylation, IDH1/2 mutations, TERT promoter mutations and 
LOH1p/19q.
Conclusion In summary, we found that PD-L1 is highly expressed in a subfraction of glioma, indicating PD-L1 as a potential 
new marker in glioma assessment opening up novel therapeutic approaches.

Keywords Glioma · Glioblastoma · Programmed cell death ligand 1 · PD-L1 · Molecularly targeted therapy

Introduction

Gliomas represent the most frequent primary brain tumors 
of adults (Louis et al. 2016a). According to the guidelines 
of the World Health Organization (WHO) for classification 
of brain tumors, gliomas are assigned to WHO-Grade I–IV 
tumors representing the degree of aggressiveness (Louis 
et al. 2016a).

While WHO-Grade I pilocytic astrocytomas (PA) are 
slow growing gliomas with a good prognosis, WHO-Grade 
IV glioblastomas (GBM) are highly malignant and diffusely 
infiltrating brain tumors with a very unfavorable outcome 
(Louis et al. 2016a). With a reported annual incidence of 3–4 

cases per 100,000 population in the western world, GBMs 
are also the most frequently diagnosed brain tumors in adult 
patients (Louis et al. 2016a). The highly aggressive clini-
cal behavior of GBMs is also reflected by the histological 
appearance: They show a high mitotic count, microvascular 
proliferation and necrosis (Louis et al. 2016a).

For advanced glioma stratification, the 2016 WHO Clas-
sification for Central Nervous System (CNS) Tumors inte-
grated molecular genetic findings for advanced tumor clas-
sification: (Louis et al. 2016a). Key findings are mutations 
of the IDH1 and IDH2 (Isocitrate Dehydrogenase), H3F3A 
(Histone H3 Family 3A), HIST1H3B and HIST1H3C genes, 
TERT (Telomerase Reverse Transcriptase) promotor muta-
tions as well as combined chromosomal losses of chromo-
some 1p and 19q (loss of heterozygosity, LOH) (Louis et al. 
2016a). Integrating these molecular findings with histology, 
there is a severe advance in the prediction of patient outcome 
(Louis et al. 2007, 2016a, b).

With regard to therapeutic targets, the analysis of the 
O6-methylguanin–DNA–methyltransferase (MGMT) pro-
motor is of crucial importance (Hegi et al. 2008, 2009; Kaina 
et al. 2007). The MGMT protein is associated with DNA 
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repair mechanisms, and epigenetic silencing of MGMT 
transcription by promoter hypermethylation compromises 
DNA repair mechanisms. Thus, a hypermethylated tumor 
promoter status has been found to associate with signifi-
cantly improved survival in patients receiving combined and 
adjuvant radio-chemotherapy with temozolomide according 
to the EORTC/NCIC protocol (Hegi et al. 2005). Despite 
intensive research there is still no targeted therapy available 
and even by applying temozolomide, the patient outcome is 
still very unfavorable (Hegi et al. 2004, 2005, 2008, 2012; 
Hau et al. 2007).

Programmed Cell Death Ligand 1 (PD-L1) is a key player 
in triggering immune response in human cancers (Camp-
esato et al. 2015; Gatalica et al. 2014; Ohaegbulam et al. 
2015). Thereby, PD-L1 interacts with PD-1 (Programmed 
Cell Death 1) and inhibits immune response by induction 
of IL-10 (Interleukin) in monocytes (Said et al. 2010). In 
many tumors, there is an overexpression of PD-L1 that 
represents a druggable target (Sun et al. 2018; Honda et al. 
2017; Kataoka and Ogawa 2016; Kataoka et al. 2016; Isaacs-
son Velho and Antonarakis 2018; Fan et al. 2019). In lung, 
breast, gastrointestinal and many other cancers with PD-L1 
overexpression showed good response with PD-L1 inhibitors 
(Reck et al. 2016; Li et al. 2016; Fujita et al. 2015).

However, there is no reliable data available on PD-L1 in 
glioma with regard to morphological subtypes and genetic 
profiles. Here, we analyzed PD-L1 expression in 90 different 
tissue specimens. Thereby, we included 58 glioma samples 
of WHO Grades I–IV and 32 control brain tissue specimens 
(16 frontal cortex and 16 frontal white matter samples). 
Furthermore, we performed integrated analysis of PD-L1 
expression and molecular hallmarks of analyzed gliomas.

Materials and methods

Tissue collection

We analyzed 90 anonymized tissue samples including 58 
glioma and 32 control brains samples. Gliomas were allo-
cated to WHO Grades I to IV and an integrated molecular 
profiling was performed according to the 2016 WHO clas-
sification of CNS tumors (Louis et al. 2016a). All samples 
were formalin-fixed and paraffin-embedded (FFPE) and 
stored in the tissue collection of the University Institute of 
Pathology of the University Hospital Salzburg. Control sam-
ples included 16 frontal cortex and 16 frontal white matter 
samples of post-mortem brains that were formalin-fixed and 
paraffin-embedded and stored in the tissue collection of the 
University Institute of Pathology of the University Hospital 
Salzburg. Details on glioma and control samples including 
PD-L1 status can be found in Tables 1 and 2.

Molecular genetic characterization of gliomas

Molecular genetic analysis of glioma samples was per-
formed as previously described (Kraus et al. 2020). In 
brief, DNA extraction for molecular pathological analysis 
was performed of microscopically identified representative 
tumor tissues with at least 90% of viable tumor cells apply-
ing the Maxwell system (Promega) according to the manu-
facturer’s instructions. IDH1 and IDH2 and BRAF hot spot 
mutations were analyzed applying the AmpliSeq for Illu-
mina Cancer Hotspot Panel v2 (Illumina) on an Illumina 
MiniSeq next generation sequencing device (Illumina) 
according to the manufacturer’s protocols. Hot spot loci 
of TERT promoter, H3F3A, HIST1H3B and HIST1H3C 
genes were analyzed by Sanger sequencing as described 
previously (Kraus et al. 2020). MGMT promotor meth-
ylation was assessed by methylation specific PCR (MSP) 
and bisulfite sequencing (Kraus et al. 2015a, b). Assess-
ment of 1p/19q status was performed by Fluorescence 
in situ hybridization (FISH) applying ZytoLight 1p/1q 
and 19q/19p probe sets (ZytoVision) following the manu-
facturer’s protocols. According to the guidelines of the 
current WHO classification, 1p/19q status was assessed 
in all IDH mutated glioma, since loss of 1p and 19q is 
only occurring in gliomas harboring IDH mutations (Louis 
et al. 2016a).

Immunohistochemical analysis

Routine immunohistochemistry performed on glioma sam-
ples included antibodies against GFAP, Ki67 and PHH3. 
PD-L1 expression was assessed applying the PD-L1 22C3 
antibody (M3653 antibody kit, Dabo). Quantification of 
PD-L1 levels were performed by DH, TFJK and GH using 
the tumor proportion score (TPS) (Li et al. 2017; Neuman 
et al. 2016; Roge et al. 2017). All immunohistochemical 
stains were performed on a Ventana BenchMark Ultra 
device (Roche) according to the manufacturer’s protocols.

Computational data analysis

Statistical analysis was performed using Prism 9 (Graph-
Pad) software suite. As statistical tests, we applied t test 
and one-way ANOVA with uncorrected Fisher’s Test. Sta-
tistical significance was assumed for p values < 0.05.
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Results

PD‑L1 is expressed in human gliomas

To evaluate the significance of PD-L1 expression in glio-
mas, we used the PD-L1 22C3 antibody and performed 
immunohistochemical analysis in 90 tissue samples. These 
samples include 58 gliomas of WHO grades I, II, III and 
IV and 32 control brain samples including cortex and 
white matter regions. We found that there was no PD-L1 
expression in control tissue, i.e., cortex (n = 16, Fig. 1a, b) 
and white matter (n = 16, Fig. 1c, d). In gliomas, we found 
uneven PD-L1 expression. Low grade gliomas consisting 
of WHO grade I pilocytic astrocytomas (n = 2, Fig. 1e, 

f) and WHO grade II diffuse gliomas (n = 7, Fig. 1g, h) 
did not show noteworthy PD-L1 expression. High grade 
gliomas consisting of WHO grade III anaplastic glio-
mas (n = 3, Fig. 1i, j) and WHO grade IV glioma (n = 46, 
Fig. 1k, l), showed intermediate to high PD-L1 expression. 
PD-L1 tumor proportion scores (TPS) of all 90 analyzed 
samples can be found in Fig. 1m.

PD‑L1 is significantly overexpressed in high grade 
gliomas

A detailed analysis of PD-L1 expression in all 90 tissues 
specimen revealed significant overexpression of PD-L1 in 
glioma compared with healthy brain tissue: There was a 
statistically significant overexpression in glioma compared 
to cortex (p < 0.01, Fig. 2a) and white matter (p < 0.01, 
Fig. 2a). Analyzing PD-L1 expression and WHO grade 
confirmed high PD-L1 expression in high grade glio-
mas with a significant overexpression in WHO grade IV 
glioblastomas (p < 0.05, Fig. 2b). A detailed analysis of 
PD-L1 expression in glioma showed that 24% of all gli-
oma showed TPS of ≥ 50%, 14% showed TPS of 25–50%, 
10% showed TPS of 10–25%, 4% showed TPS of 5–10%, 
10% showed TPS of 1–5% and 38% showed TPS of < 1% 
(Fig. 2c).

Integrated analysis of PD‑L1 expression 
and molecular glioma hallmarks

Since gliomas show distinct molecular hallmarks, we 
next performed an integrated analysis of PD-L1 TPS and 
molecular genetic status: IDH mutation, TERT promoter 
mutation, MGMT promoter methylation and loss of het-
erozygosity of 1p and 19q (LOH 1p/19q). Interestingly, 
IDH wild-type glioma (n = 46) showed a significant higher 
expression of PD-L1 compared with IDH mutated gliomas 
(n = 8, p < 0.05, Fig. 3a). Due to the different biological 
backgrounds (Louis et al. 2016a) of pilocytic astrocyto-
mas and H3F3A mutated diffuse midline gliomas, these 
samples were excluded from IDH analysis. In case of 
TERT promoter mutation, TERT mutated gliomas (n = 42) 
showed higher PD-L1 expression compared with TERT 
wild-type gliomas (n = 5, p > 0.05) (Fig. 3b). An analysis 
of loss of heterozygosity of 1p and 19q (LOH 1p/19q) 
showed higher PD-L1 expression in gliomas without LOH 
1p/19q (n = 54) compared to LOH 1p/19q aberrant gliomas 
(n = 4, p > 0.05 (Fig. 3c). Analysis of PD-L1 expression 
and MGMT promoter methylation showed higher PD-L1 
expression in MGMT methylated glioma (n = 26) com-
pared to MGMT unmethylated glioma (n = 23, p > 0.05) 
(Fig. 3d).

Table 2  Details on control samples

Indicated are details on all 32 control samples

ID Age [years] Sex Region PD-L1 22C3 
positive [%]

C01 95 m Frontal Cortex 0
C02 56 m Frontal Cortex 0
C03 62 m Frontal Cortex 0
C04 65 f Frontal Cortex 0
C05 92 f Frontal Cortex 0
C06 75 f Frontal Cortex 0
C07 75 f Frontal Cortex 0
C08 87 f Frontal Cortex 0
C09 54 f Frontal Cortex 0
C10 67 f Frontal Cortex 0
C11 79 f Frontal Cortex 0
C12 69 f Frontal Cortex 0
C13 89 f Frontal Cortex 0
C14 52 m Frontal Cortex 0
C15 59 m Frontal Cortex 0
C16 54 m Frontal Cortex 0
W01 95 m Frontal White Matter 0
W02 56 m Frontal White Matter 1
W03 62 m Frontal White Matter 0
W04 65 f Frontal White Matter 0
W05 92 f Frontal White Matter 0
W06 75 f Frontal White Matter 0
W07 75 f Frontal White Matter 0
W08 87 f Frontal White Matter 0
W09 54 f Frontal White Matter 0
W10 67 f Frontal White Matter 0
W11 79 f Frontal White Matter 0
W12 69 f Frontal White Matter 0
W13 89 f Frontal White Matter 0
W14 52 m Frontal White Matter 0
W15 59 m Frontal White Matter 0
W16 54 m Frontal White Matter 1
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Discussion

Despite intensive research, there are still no curative thera-
pies available for GBM patients (Louis et al. 2016a). One 
milestone in glioblastoma therapy was the discovery of the 
connection between methylation of the MGMT promo-
tor (Hegi et al. 2008, 2009; Kaina et al. 2007) and tumor 

response to chemotherapy using temozolomide in 2005 
(Hegi et al. 2005). However, since then there have not been 
any significant advances in glioblastoma therapy.

In anti-tumor therapy, PD-L1 is already a key player in 
personalized medicine, since it represents a druggable target 
(Sun et al. 2018; Honda et al. 2017; Kataoka and Ogawa 
2016; Kataoka et al. 2016; Isaacsson Velho and Antonarakis 

Fig. 1  PD-L1 expression in healthy brain tissue and glioma. Analy-
sis of 90 tissue samples showed no PD-L1 expression in healthy cor-
tex (a, b) and white matter regions (c, d). There was no noteworthy 
PD-L1 expression in low grade glioma, i.e., WHO grade I pilocytic 
astrocytoma (e, f) and diffuse astrocytoma (g, h). In high grade gli-
oma there was an uneven PD-L1 expression with strong intertumoral 

heterogeneity in WHO grade III anaplastic astrocytoma (i, j) and 
glioblastoma (k, l). Distinct PD-L1 TPS scores of all 90 analyzed 
samples is presented in m. CX cortex, WM white matter, PA pilocytic 
astrocytoma, DA diffuse astrocytoma, AA anaplastic astrocytoma, 
GBM glioblastoma. a–l Scale bar: 100 µm
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2018; Fan et al. 2019). In many tumors, such as lung, breast, 
gastrointestinal PD-L1 inhibitors show great advances in 
patient treatment (Reck et al. 2016; Li et al. 2016; Fujita 

et al. 2015). Thereby, the expression profile of PD-L1 is 
assessed immunohistochemically.

Here, we assessed PD-L1 expression using the tumor pro-
portion score (TPS), i.e., the percentage of PD-L1 positive 
tumor cells compared with all vital tumor cells (Li et al. 
2017; Neuman et al. 2016; Roge et al. 2017) to assess PD-L1 
expression in gliomas, and thus to evaluate the feasibility of 
PD-L1 inhibitors in highly aggressive brain tumors.

Our analysis of PD-L1 expression revealed that there are 
high PD-L1 expression levels in high grade glioma with a 
high interindividual variation (Fig. 1). While control cor-
tex and white matter tissues showed mean PD-L1 TPS of 
0%, gliomas showed significantly increased PD-L1 TPS 
with a mean of 28% in all 58 gliomas (Fig. 2a). A further 
subgroup analysis of different WHO grades showed that 
PD-L1 expression can be found predominantly in high 
grade gliomas with mean amounts of 18% positive tumor 
cells in WHO grade III gliomas and 34% positive tumor 
cell in WHO grade IV glioblastomas, respective (Fig. 2b). 
Furthermore, we performed integrated analysis of molecular 
key hallmarks in glioma (IDH, TERT, MGMT methylation) 
and PD-L1 expression. Interestingly, we found significantly 
higher PD-L1 expression in IDH wild-type glioma (mean 
amounts of 32%) compared with IDH mutated gliomas 
(mean amounts of 6%, p < 0.05, Fig. 3a). In terms of TERT, 
we found higher PD-L1 expression in TERT mutated glioma 
(mean amounts of 32%) compared with TERT wild-type gli-
oma (mean amounts of 20%, p > 0.05, Fig. 3b). An analy-
sis of loss of heterozygosity of 1p and 19q (LOH 1p/19q) 
showed higher PD-L1 expression in gliomas without LOH 
1p/19q (mean amounts of 30%) compared with LOH 1p/19q 
aberrant gliomas (mean amounts of 11%, p > 0.05, Fig. 3c). 
Analysis of MGMT promoter methylation revealed higher 
PD-L1 expression in MGMT methylated glioma (mean 

Fig. 2  Statistical analysis of PD-L1 expression. Statistical analysis of 
PD-L1 expression showed significant overexpression of PD-L1 in gli-
oma compared with healthy cortex (a) and white matter (b). Analysis 
of WHO grade I, II, III and IV glioma showed significant overexpres-
sion in high grade glioblastoma compared with low grade diffuse gli-
oma. Analysis of individual TPS showed PD-L1 expression in glioma 
showed TPS of ≥ 50% in 27% of gliomas, TPS of 25–50% in 12% of 
gliomas, TPS of 10–25% in 10% of gliomas, TPS of 5–10% in 2% of 
gliomas, TPS of 1–5% in 9% of gliomas, and TPS of < 1% in 40% of 
gliomas (c). a, b Indicated are mean and SEM. *p < 0.05, **p < 0.01

Fig. 3  Integrated analysis of PD-L1 expression and molecular genetic 
hallmarks of glioma. Analysis of PD-L1 expression and IDH status 
showed higher expression of PD-L1 in IDH wild type compared to 
IDH R132H mutated glioma (a). In case of TERT promoter muta-
tion there was higher PD-L1 expression in TERT C228T and C250T 

mutated glioma (b). Analysis of LOH 1p/19q showed higher expres-
sion of PD-L1 in gliomas without LOH 1p/19q (d). Analysis of 
MGMT promoter methylation showed higher expression of PD-L1 in 
methylated glioma (c). Indicated are mean and SEM. m methylated, u 
unmethylated; n.s. not significant (p > 0.05), *p < 0.05
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amounts of 30%) compared with MGMT unmethylated 
glioma (mean amounts of 26%, Fig. 3d).

Considering the gliomagenesis and aggressiveness of 
glioma, Louis et al. (2016a) these findings are of high thera-
peutic impact: while IDH mutation is a key pathway in glio-
magenesis of WHO grade II and III gliomas and secondarily 
progressed WHO grade IV glioblastomas, IDH wild-type is 
a typical hallmark of primary WHO grade IV glioblastomas. 
Thus, the finding of high PD-L1 expression in IDH wild-
type primary glioblastomas is of severe clinical importance 
opening new therapeutic approaches in therapy of highly 
aggressive glioblastoma. Vice versa to IDH mutations, 
TERT mutations are predominantly present in glioblastoma. 
Thus, the result of high PD-L1 expression in TERT mutated 
gliomas may also be of high clinical importance for therapy 
of highly aggressive glioblastomas.

Since the importance of PD-L1 has already been estab-
lished as personalized medicine target in other tumor entities 
(Sun et al. 2018; Honda et al. 2017; Kataoka and Ogawa 
2016; Kataoka et al. 2016; Isaacsson Velho and Antonara-
kis 2018; Fan et al. 2019; Reck et al. 2016; Li et al. 2016; 
Fujita et al. 2015) our findings in glioma may also open 
new therapeutic approaches in future brain tumor therapy. 
Thereby, our results are well in line with published data: 
Nduom et al. found that PD-L1 expression can be found in 
a subfraction of glioblastoma (Nduom et al. 2016). Thereby 
high PD-L1 expression is correlated with worse outcome 
(Nduom et  al. 2016). Heiland et  al. also report of high 
PD-L1 expression in glioblastoma with predominance of 
IDH wild-type glioblastomas (Heiland et al. 2017). Berghoff 
et al. analyzed PD-L1 expression and tumor infiltrating lym-
phocytes (TIL) in diffuse glioma and found that high PD-L1 
expression and prominent TILs are predominantly present in 
IDH wild-type glioma compared with IDH mutant glioma 
(Berghoff et al. 2017). Hao et al. performed a meta-analysis 
of PD-L1 expression in glioblastoma and also confirmed that 
high PD-L1 expression can be found predominantly in glio-
blastoma with unfavorable outcome (Hao et al. 2020). This 
finding is well in accordance with our results demonstrating 
that highly aggressive IDH wild-type gliomas show higher 
PD-L1 expression. In contrast to previous studies, Nduom 
et al. (2016), Heiland et al. (2017), Hao et al. (2020) we 
performed PD-L1 expression using the widely accepted and 
clinically applicable PD-L1 22C3 clone (M3653 antibody 
kit, Dako) and the tumor proportion score (TPS). Thus, our 
approach using the PD-L1 22C3 antibody and TPS to evalu-
ate PD-L1 expression opens the way for monoclonal anti-
body therapies such as prembolizumab in a clinical setting 
(Ilie et al. 2017). However, the significance of this study is 
limited due to the low number of cases in distinct subgroups 
of glioma, such as oligodendroglioma and diffuse midline 
glioma. Thus, further studies with an increased number 
of cases will be needed to validate these results. A further 

limitation of this study is that only a limited set of molecu-
lar parameters was assessed, e.g., there was no molecular 
assessment of the BRAF status in pilocytic astrocytomas. 
Furthermore, there is one case of diffuse astrocytoma with 
IDH wild-type status and TERT mutation included in this 
study. This is a very untypical genotype–phenotype com-
bination and there should be further molecular assessment 
according to the cIMPACT guidelines (Louis et al. 2020; 
Gonzalez Castro and Wesseling 2021) including copy num-
ber profiling (CNP) to further characterize such cases and 
to assess, if the underlying biology is that of glioblastoma 
IDH wild type.

In summary, our findings demonstrate the significance of 
PD-L1 testing in glioma enabling new individualized strate-
gies for molecularly targeted therapy in highly aggressive 
brain tumors.
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