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a number of NSCLC biomarker candidates which belong 
to such compound classes as acylcarnitines, organic acids, 
and amino acids. Multivariate ROC curve built using 12 
identified metabolites was characterized by AUC = 0.836 
(0.722–0.946). There were no significant differences in the 
serum metabolite profiles between two most common his-
tological types of lung cancer—adenocarcinoma and squa-
mous cell carcinoma.
Conclusions Through identification of novel potential 
tumor markers, Orbitrap-based global metabolic profiling 
is a useful strategy in cancer research. Our study can accel-
erate development of new diagnostic and therapeutic strate-
gies in NSCLC. The metabolites involved in discrimination 
between NSCLC patients and the control subjects should 
be further explored using a targeted approach.

Keywords Lung cancer · Global metabolomics · 
Metabolite profiling · Mass spectrometry · Orbitrap

Introduction

Recently, the growing trend of metabolomic studies of can-
cer has been observed. It is well known that cancer cells 
exhibit an altered metabolism and increased energy require-
ments compared to normal cells. However, the tumor 
metabolome has not yet been fully explained (Aboud and 
Weiss 2013). In contrast to normal cells, which utilize oxi-
dative phosphorylation for energy production, cancer cells 
gain energy from glycolysis occurring even in the presence 
of oxygen. This phenomenon is called the Warburg effect 
(Vander Heiden et  al. 2009). Another distinctive trait of 
cancer cell metabolism is the use of glutamine as a main 
source of energy (Reitzer et  al. 1979; DeBerardinis et  al. 
2008). The characteristic metabolic alterations occurring 

Abstract 
Purpose The aim of the project was to apply ultra-high-
performance liquid chromatography–quadrupole-Orbitrap-
high-resolution mass spectrometry for serum metabolite 
profiling of non-small-cell lung cancer (NSCLC). This 
Orbitrap-based methodology has been applied for a study 
of NSCLC potential markers for the first time.
Methods After extraction using protein precipita-
tion, sera were separated on the ACE Excel 2 C18-PFP 
(100 × 2.1 mm, 2.0 µm) column using gradient elution and 
analyzed within the range of 70–1000 m/z. Only patients 
with early stage disease (stages IA–IIB) were included in 
the study, providing opportunity to find biomarkers for 
early lung cancer detection. The resulting metabolite pro-
files were subjected to univariate and multivariate statisti-
cal tests.
Results 36 features were found significantly changed 
between NSCLC group and controls after FDR adjustment 
and 19 were identified using various metabolite databases 
(in-house library, HMDB, mzCloud). The study revealed 
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in tumors might result in changed levels of some metabo-
lites in tissues and body fluids. Human biological fluids are 
commonly recognized as vehicles for the transmission of 
markers of many human disorders and thus the metabolite 
profiling of different body fluids is a promising strategy in 
cancer research. There is a multitude of potential applica-
tions of metabolomics in oncology, including early and 
accurate diagnosis, estimation of treatment efficacy, and 
development of novel anti-cancer therapies (Spratlin et al. 
2009).

Application of high-throughput and sensitive analyti-
cal techniques that are used in metabolomics makes them 
powerful tools in the field of oncology and aids understand-
ing what is happening in cancer cells. Given the complex 
nature of cancer, global metabolomic profiling offers the 
unique opportunity of broadening the knowledge on the 
tumor metabolome. In particular, there is an increasing 
interest in the study of metabolic changes related to lung 
cancer over the last few years (Hori et al. 2011; Chen et al. 
2014; Deja et  al. 2014; Puchades-Carrasco et  al. 2016). 
Lung cancer constitutes one of the greatest challenges 
in contemporary oncology because of difficulties in early 
detection resulting in lung cancer as a leading cause of 
cancer death for many years (Subramaniam et  al. 2013). 
Blood metabolite profiling of lung cancer includes the 
application of such analytical techniques as gas chroma-
tography–mass spectrometry (Hori et  al. 2011; Musharraf 
et al. 2015; Fahrmann et al. 2015), ultra-high-performance 
liquid chromatography–linear ion trap-mass spectrometry 
(Mazzone et al. 2016), high-performance liquid chromatog-
raphy–quadrupole-time-of-flight-mass spectrometry (Chen 
et al. 2014; Li et al. 2014), and nuclear magnetic resonance 
(Deja et  al. 2014; Puchades-Carrasco et  al. 2016). In the 
above-mentioned studies, changes in many distinct groups 
of metabolites were reported, such as amino acids, carbohy-
drates, organic acids, fatty acids, and nucleotides. It should 
be noted that the results obtained in the previously pub-
lished metabolomic research were not always in agreement 
with each other. One of the discrepancies exists regarding 
glutamate which was found elevated in blood of lung can-
cer patients by Fahrmann et  al. (2015) and Puchdes-Car-
rasco et  al. (2016), whereas Hori et  al. (2011) reported a 
decreased level. Another discrepancy is in the lactic acid 
level. According to Hori et al. (2011) and Musharraf et al. 
(2015), higher level of lactic acid occurred in the plasma 
of patients with lung cancer, whereas Chen et  al. (2014) 
observed its reduction in sera from lung cancer group as 
compared with controls. The possible reasons of the above-
mentioned discrepancies can be associated with differences 
in analytical methodologies, sample handling, or clinical 
characteristics of patients. Therefore, it can be concluded 
that despite efforts made by many research groups, there 

are still several gaps and inconsistencies in the knowledge 
about the serum metabolome of lung cancer patients.

Only detection of early metabolic alterations can lead 
to early lung cancer diagnosis. Therefore, it is of particu-
lar interest to study the utility of cancer-related metabolic 
changes occurring at the beginning of the disease. Many of 
the metabolomic studies included late-stage cancer cases 
(Hori et  al. 2011; Fahrmann et  al. 2015; Miyamoto et  al. 
2015). Therefore, the putative biomarker metabolites iden-
tified in those studies would likely fail a further valida-
tion step for early detection of cancer. It should be noted 
that by including advanced stage patients in the research, 
the obtained results could be overoptimistic. Moreover, 
there is a risk, especially in the case of amino acids, that 
the observed abnormalities are influenced by nutritional 
deficiencies and accompanying weight loss experienced 
by many patients with advanced lung cancer (del Ferraro 
et  al. 2012). The application of metabolomic research in 
the discovery phase for new cancer biomarkers is indisput-
able; however, the selection of representative samples has a 
major impact on any conclusions drawn from the research.

The aim of the study was to apply an Orbitrap-based 
global metabolomic approach to the analysis of serum of 
patients with non-small-cell lung cancer (NSCLC). To 
our knowledge, this is the first study which presents the 
application of ultra-high-performance liquid chromatogra-
phy–quadrupole-Orbitrap-high-resolution mass spectrom-
etry (UHPLC-Q-Orbitrap-HRMS) for searching NSCLC 
potential markers. Until now, Orbitrap-based profiling has 
only been used to compare two metabolomes (plasma and 
serum) of small-cell lung cancer (SCLC) patients undergo-
ing treatment with standard chemotherapy (Wedge et  al. 
2011) and to characterize KRAS mutants in NSCLC cells 
(Brunelli et al. 2014). The current study provided new data 
on metabolites, which could translate to the improvement 
of lung cancer diagnosis and treatment. The study involved 
serum analysis of patients with newly diagnosed NSCLC 
prior to initiation of a therapy and a matched control group. 
Only patients with early stage disease (stage IA–IIB) were 
included to the study, representing an opportunity to define 
biomarkers for early lung cancer detection.

Methodology

Reagents and materials

LC/MS grade acetonitrile, 0.1% formic acid in water, meth-
anol, and acetone were purchased from Fischer Scientific 
Co. (Pittsburgh, PA, USA). Isotopically labeled stand-
ards: creatine-D3, l-leucine-D10, l-tryptophan-2,3,3-D3, 
and caffeine-D3 were obtained from CDN Isotopes Inc. 
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(Pointe-Claire, Quebec, Canada). Mixture of amino acids 
was purchased from Sigma-Aldrich (St. Louis, MO, USA).

Study population

The project was approved by the ethics committee at the 
Poznan University of Medical Sciences (Decision No. 
200/13). All participants provided a written informed con-
sent for inclusion to the study. Fifty lung cancer patients 
were recruited in the Department of Thoracic Surgery, 
Poznan University of Medical Sciences. NSCLC diagno-
sis was conducted by the histopathological examination of 
tissue samples. Patients with other tumors were excluded 
from the study. The cancer staging was performed accord-
ing to the seventh edition of the TNM staging system 
[tumor size, node involvement, and metastasis presence 
(Goldstraw et al. 2007)]. No anti-cancer treatment had been 
applied to the enrolled subjects. Twenty-five individuals 
included in the control group were recruited from subjects 
without cancer and chronic metabolic diseases who under-
went a routine periodic medical examination. Data regard-
ing demographic and clinical characteristics of study par-
ticipants are presented in Table 1.

Sample collection and preparation

The sera were collected in the same manner from both 
groups of subjects (cancer patients and controls) in the 
morning following an overnight fast using S-Monovette 
tubes (Sarstedt, Nümbrecht, Germany) with a clotting 
activator according to the manufacturer’s instruction. The 
obtained sera were aliquoted and stored at −80 °C until 
use. For sample preparation, the following protein precipi-
tation procedure was used. 100 μL of thawed sample was 
mixed with 20 μL of isotopically labeled internal standard 
solution. Then, 800  μL of acetonitrile:methanol:acetone 
(8:1:1, v/v/v) solution was added to precipitate proteins, 
followed by incubation at 4 °C for 30 min to further precipi-
tate proteins. Next, the samples were centrifuged at 20,000 
RCF for 10 min at 8 °C and 750 μL of the supernatant was 
transferred to a new microcentrifuge tube. The supernatant 
was dried under a gentle nitrogen flow using MULTIVAP 
nitrogen evaporator (Organomation Associates, Inc., Ber-
lin, MA, USA) and then reconstituted by adding 100 μL of 
0.1% formic acid in water followed by incubation on an ice 
bath for 15  min. The sample was then centrifuged at the 
same conditions, and the supernatant was transferred to a 
vial. To avoid possible bias and batch effect, all samples 
were prepared in random order on the same day as one 
batch. Samples were randomized also for the following 
UHPLC-Q-Orbitrap analyses. Aliquots of sample extracts 
representing different groups were mixed to obtain pooled 

samples. They were used as quality control (QC) samples 
as well as to acquire MS/MS spectra.

UHPLC-Q-Orbitrap-HRMS analysis

Global metabolite profiling was performed using a high-
resolution, accurate-mass Q Exactive Hybrid Quadrupole-
Orbitrap mass spectrometer (Thermo Fisher Scientific, 
San Jose, CA, USA) equipped with a heated electrospray 
ion source coupled to a UHPLC UltiMate 3000 (Dionex 
Corporation, Sunnyvale, CA, USA). The chromatographic 
separation was conducted using the ACE Excel 2 C18-PFP 
(100 × 2.1  mm, 2.0  µm) column (Advanced Chromatog-
raphy Technologies, Aberdeen, Scotland) and a gradient 
elution. The method used 0.1% formic acid in water and 
acetonitrile as eluents A and B, respectively. The gradient 
program was 0–3 min 100% A, 3–13 min linear from 100 
to 20% A, 13–16 min 20% A, 16–16.5 min linear from 20 
to 100% A, and 16.5–20.5 min 100% A. The flow rate was 
initially maintained at 0.35 mL/min, at 16.8 min increased 
to 0.6 mL/min, and at 20 min decreased back to 0.35 mL/
min. The autosampler temperature was maintained at 4 °C 

Table 1  Characteristics of the study participants

a According to TNM classification (Goldstraw et al. 2007)

Parameter Non-small-cell lung 
cancer

Control group

N
 Total 50 25
 Male 28 (56.0%) 14 (56.0%)
 Female 22 (44.0%) 11 (44.0%)

Age, year
 Mean 65 64
 Range 53–86 50–78

BMI, kg/m2

 Mean 26.5 25.8
 Range 17.6–33.9 21.1–34.6

Histological type
 Adenocarcinoma 25 –
 Squamous cell 25 –

Stagea

 IA 17 –
 IB 25 –
 IIA 6 –
 IIB 2 –

Tumor grade
 G1 2 –
 G2 27 –
 G2/G3 2 –
 G3 15 –
 Unknown 4 –
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and the column at 25 °C. Injection volume was 2 μL. The 
mass spectrometer was operating in full MS mode at a mass 
range of 70–1000 m/z in positive ionization. In addition, 
several pooled samples were analyzed in data-dependent 
MS/MS mode to obtain MS/MS spectra of the most inten-
sive signals (top 5). Other mass spectrometry parameters 
were summarized in Table 2.

QC assessment

Two types of QC samples were used to assure the qual-
ity and reliability of acquired data. Two pooled QC sam-
ples (representing NSCLC and controls) were injected five 
times throughout the course of the sequence of analyses. 
Neat QC sample consisting of a mixture of several labeled 
internal standards, and unlabeled metabolites were injected 
ten times throughout the course of the sequence.

Data processing and analysis

The obtained raw LC-HRMS data files were converted to 
mzML files using MSConvert from ProteoWizard (Cham-
bers et al. 2012). The converted files were processed using 
the MZmine 2.19 software (Pluskal et al. 2010). Data pro-
cessing comprised of several steps, i.e., mass detection, 
chromatogram builder, smoothing, chromatogram deconvo-
lution, grouping of isotopic peaks, peak alignment with m/z 
tolerance of 10 ppm and retention time tolerance of 0.2 min, 
gap filling to fill in missing peaks, duplicate peak remov-
ing, and peak filtering (retention time range 0.7–17.0 min, 
peak duration range 0.0–2.0  min). The resulting peak list 
contained multiple missing values as well as gap-filled val-
ues in addition to detected peaks. Thus, the peak list was 
filtered to keep only those features that were detected in at 
least 90% of samples, which yielded a peak list containing 
233 features.

The resulting metabolite profiles were subject to uni-
variate and multivariate statistical tests in MetaboAnalyst 
3.0 web server (http://www.metaboanalyst.ca) (Xia et  al. 

2015). Before multivariate (principal component analysis, 
PCA) and univariate (t test) analyses, data were filtered 
based on interquantile range that resulted in removing 5% 
of the variables that were unlikely to be of use when further 
modeling the data (variables of very small or near-constant 
values throughout the sequence). Data sets were then nor-
malized by sum, log-transformed, and auto scaled. Fold 
change was calculated before columnwise normalization 
was performed. In the case of t tests, multiple hypotheses 
testing correction was performed by controlling the false 
discovery rate (FDR). The significance threshold for FDR 
was set to 0.05. Before univariate ROC curve analyses that 
utilized only data of the selected metabolites, columnwise 
data normalization was not performed. Multivariate ROC 
curves were generated by Monte Carlo cross validation.

To identify selected metabolites, several databases were 
used, i.e., the in-house library of standards analyzed pre-
viously using the same instrument and the same method, 
Human Metabolome Database (HMDB, http://www.hmdb.
ca/), and advanced mass spectral database—mzCloud 
(https://www.mzcloud.org/). Using the in-house library, 
compounds were identified based on m/z and retention time 
(with m/z tolerance of 10 ppm and retention time tolerance 
of 0.2 min). In the case of HMDB, m/z was used to perform 
putative identification. Acquired MS/MS spectra and pre-
cursor m/z were used for identification in mzCloud.

Results

Characteristics of the study participants

The study group consisted of patients with NSCLC in the 
age range from 48 to 86. Based on histopathological find-
ings, the research involved 25 lung adenocarcinomas and 
25 lung squamous cell carcinomas. Patients with stage I 
lung cancer consisted of 84.0% of the study group. None 
of the patients had stage III or IV cancer. All subjects 
were Caucasians of Polish origin. The control group cor-
responded to the NSCLC patients in terms of sex, age, 
BMI, and ethnic origin. There were no significant differ-
ences in the samples analyzed in age (p = 0.5514) and BMI 
(p = 0.5959). Both groups had identical percentage of men 
and women. The characteristics of the cancer patients and 
control individuals are summarized in Table 1.

QC samples

QC assessment is an important part of any experiment. In 
case of LC-HRMS data, variations between samples may 
come from the sample preparation step and variations 
between injections and/or the order of acquisition (sensitiv-
ity changes and carry over). To ensure the quality of data 

Table 2  Selected parameters of the Q-Orbitrap system used for the 
analysis of serum samples

Parameter Setting

Probe temperature 350 °C
Spray voltage 3500 V
Capillary temperature 320 °C
Sheath gas flow 40 arb
Auxiliary gas flow 10 arb
Sweep gas flow 1 arb
Mass resolution 35,000 at m/z 200
Source collision-induced dissociation 2 eV

http://www.metaboanalyst.ca
http://www.hmdb.ca/
http://www.hmdb.ca/
https://www.mzcloud.org/
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acquisition and to monitor the performance of the instru-
ment, sample preparation and acquisition were randomized, 
internal standards were added to the samples, and pooled 
QCs, and neat QC were used. Analysis of internal stand-
ards and QC samples confirmed that the instrument drift 
was minimal. Pooled QCs were clustered on the PCA score 
plot (Online Resource 1). Thus, the acquired data could be 
used for further data analysis.

Identification of differences in serum metabolite profiles 
between NSCLC patients and control subjects

Initial PCA analysis revealed that two samples represent-
ing two NSCLC patients were outliers (Online Resource 
1). Those samples were subsequently removed from data 
matrix to prevent them from hampering the results of sta-
tistical analyses.

78 features had p values from the t test below 0.05. The 
correction for multiple hypotheses testing revealed that 
among those features, 36 had FDR values below the thresh-
old when the NSCLC group was compared with the control 
group (Table 3). An attempt was made to identify those fea-
tures using various metabolite databases (in-house library, 
HMDB, mzCloud). As a result, 19 out of 36 features were 
identified either as a molecular ion of a metabolite or as 
an adduct of a metabolite (Table 3). In several cases, more 
than one entity of a particular metabolite has been identi-
fied. Thus, overall, 12 unique metabolites were identi-
fied: four amino acids (histidine, leucine, methionine, and 
tyrosine), two organic acids (pyroglutamic acid and malic 
acid), carnitine and two acylcarnitines (valerylcarnitine 
and propionylcarnitine), alpha-N-phenylacetyl-l-glutamine, 
thiomorpholine 3-carboxylate, and 1-amino-propan-2-ol/
trimethylamine N-oxide/2-amino-1-propanol. In case of 
the last feature, it was not possible to indicate which of 
the three isomers had the highest probability of correct 
identification. Figure  1 presents boxplots of the identified 
metabolites, levels of which differed significantly between 
the NSCLC patients and the control group. Mean serum 
level of carnitine in the NSCLC patients was higher than in 
healthy controls, while the rest of the identified metabolites 
had mean levels lower in the NSCLC group as compared to 
the control group (Table 3; Fig. 1).

Univariate ROC curve analyses were performed using 
data of the identified metabolites only. Table 4 shows the 
obtained areas under the curve (AUCs). The highest AUC 
was obtained for 1-amino-propan-2-ol/trimethylamine 
N-oxide/2-amino-1-propanol (0.799). The compound with 
the highest sensitivity was thiomorpholine 3-carboxylate 
(0.75), whereas the highest specificity was obtained for 
1-amino-propan-2-ol/trimethylamine N-oxide/2-amino-
1-propanol and carnitine (0.76) (Table 4). In addition, fold 
change and FDR values for that metabolite suggested that 

these differences were the biggest and the most statistically 
significant amongst all the identified compounds. Multivar-
iate ROC curve analysis was also performed using the same 
data set of the 12 compounds. AUC for the obtained multi-
variate model was 0.836 (Fig. 2). Thus, the classification of 
the samples using the set of 12 metabolites was more effec-
tive than using a single metabolite.

In addition, the data set was reanalyzed consisting of 
NSCLC patients only. The aim was to compare the two 
types of NSCLC: adenocarcinoma and squamous cell car-
cinoma. None of the features had an FDR value below the 
threshold showing no significant difference between adeno-
carcinoma and squamous cell carcinoma.

Discussion

In the current study, an Orbitrap-based metabolomic analy-
sis of serum was performed to investigate whether useful 
data could be obtained to detect NSCLC and to understand 
underlying mechanisms. The research focused on the early 
changes in the serum metabolome caused by the develop-
ment of lung tumor. Our findings indicated that patients 
with early stage NSCLC (stage IA–IIB) exhibited different 
serum levels of such metabolite classes as amino acids and 
their derivatives, acylcarnitines, and organic acids as com-
pared with a healthy control group (Table 3).

As can be seen in Fig. 2, a set of 12 identified metabo-
lites showed a promising ability to classify patients with 
NSCLC. Their combined AUC was equal to 0.836, which 
proves the usefulness of the proposed panel in detecting 
NSCLC. It can be supposed that the identification of the 
rest of significant features in the obtained metabolic pro-
file will increase the discriminating potential of the multi-
metabolite panel that we currently proposed. We did not 
include any of the unidentified compounds in the multi-
variate classification model, since without identification, it 
is not known whether they are endogenous metabolites or 
some artifacts of a different origin. Moreover, it is possible 
that the unidentified features do not correspond to unique 
compounds and more entities of particular compounds are 
present (i.e., molecular ions, adducts, and in-source frag-
ments). Including such features to the model could lead to 
duplication of information and redundancy in data set.

One of compound classes, which was found to corre-
late with an NSCLC presence, is carnitine and its acylest-
ers. The main function of acylcarnitines is fatty acid trans-
port into the mitochondria for cellular energy production 
via β-oxidation (Kimhofer et  al. 2015). As acylcarnitines 
can pass through mitochondrial and cell membranes, they 
are easily detectable in human blood (Millington and Ste-
vens 2011). In our study, elevated level of carnitine and 
reduced levels of valerylcarnitine and propionylcarnitine 
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were indicated as blood metabolic signatures of NSCLC. 
Recently, urine metabolic profiling of NSCLC patients 
revealed significant alterations of carnitine and 11 acylcar-
nitines (Wu et al. 2014). In that study of urine metabolome, 

carnitine was upregulated, while some medium-chain acyl-
carnitines were downregulated in cancer patients when 
compared to the control group. The abnormalities in the 
group of acylcarnitines were also observed in urine of 

Table 3  List of metabolites had FDR values below the threshold (0.05)

The analyzed groups were patients diagnosed with early NSCLC and healthy controls
RT retention time; FDR false discovery rate
a Comparison type: NSCLC/controls
b According to t test

Metabolite RT p  valuea FDR Fold  changeb Identification

Identified metabolites
 Histidine 0.71 0.00127 0.01002 0.90 In-house library
 1-Amino-propan-2-ol/2-Amino-1-propanol/Tri-

methylamine N-oxide
0.85 0.00004 0.00087 0.57 HMDB (1-Amino-propan-2-ol/Tri-

methylamine N-oxide), mzCloud 
(2-Amino-1-propanol)

 Carnitine 0.88 0.00249 0.01772 1.12 In-house library
 Thiomorpholine 3-carboxylate 1.25 0.00045 0.00553 0.72 HMDB
 Malic acid: [M + NH4] adduct 1.33 0.00049 0.00565 0.81 HMDB
 Methionine: [M–NH3] adduct 1.33 0.00079 0.00794 0.82 In-house library
 Methionine 1.33 0.00121 0.01002 0.83 In-house library
 Methionine: [M–HCOOH] adduct 1.33 0.00427 0.02859 0.84 In-house library
 5-Oxo-l-proline (pyroglutamic acid) 1.79 0.00035 0.00454 0.79 In-house library
 5-Oxo-l-proline (pyroglutamic acid): [M + Na] 

adduct
1.80 0.00126 0.01002 0.78 In-house library, HMDB

 Leucine: [M–HCOOH] adduct 2.30 0.00612 0.03867 0.90 In-house library
 Tyrosine 3.16 0.00007 0.00130 0.87 In-house library
 Tyrosine: [M–NH3] adduct 3.16 0.00022 0.00318 0.88 In-house library
 Tyrosine: [M–NH3–HCOOH] adduct 3.16 0.00063 0.00668 0.85 In-house library
 Tyrosine: [M + Na] adduct 3.16 0.00126 0.01002 0.78 In-house library, HMDB
 Tyrosine: [M–NH3–H2O] adduct 3.16 0.00266 0.01838 0.89 In-house library
 Propionylcarnitine 6.50 0.00221 0.01652 0.77 In-house library
 Valerylcarnitine 7.91 0.00005 0.00103 0.66 In-house library
 Alpha-N-phenylacetyl-l-glutamine 8.00 0.00110 0.01002 0.58 HMDB, mzCloud

Unidentified metabolites
 m/z 193.0021 1.18 0.00457 0.02970 1.11
 m/z 140.9874 1.20 0.00026 0.00358 0.66
 m/z 162.0584 2.72 0.00103 0.00993 0.65
 m/z 123.0441 3.16 0.00010 0.00164 0.88
 m/z 157.0841 5.95 <0.00001 <0.00001 0.28
 m/z 195.1215 6.60 <0.00001 <0.00001 1.79
 m/z 217.1051 6.60 <0.00001 <0.00001 1.99
 m/z 157.0837 6.76 0.00063 0.00668 1.33
 m/z 239.1493 7.04 <0.00001 <0.00001 2.00
 m/z 261.1310 7.04 <0.00001 <0.00001 1.96
 m/z 256.1755 7.04 <0.00001 <0.00001 2.07
 m/z 300.2013 7.31 <0.00001 <0.00001 2.26
 m/z 344.2281 7.52 <0.00001 <0.00001 2.09
 m/z 180.1597 8.76 0.00015 0.00241 0.84
 m/z 163.1330 8.76 0.00224 0.01652 0.88
 m/z 239.0900 8.86 0.00701 0.04303 0.61
 m/z 282.2787 16.13 <0.00001 <0.00001 14.99
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patients with kidney and hepatocellular cancer (Kimhofer 
et al. 2015; Ganti et al. 2012). Experiments performed on 
a mouse xenograft model of human kidney cancer showed 
that acylcarnitnes are characterized by cytotoxicity and 
immune modulatory properties which are favorable for 
tumor growth and survival (Ganti et al. 2012). The role of 
acylcarnitines in NSCLC requires in-depth investigation; 

however, our study demonstrated the value of this group of 
metabolites in lung cancer biomarker studies.

Among the potential biomarker metabolites, which 
occurred at significantly different levels in serum of 
NSCLC patients compared to the control subjects, there 
are two low-molecular-weight organic acids: malic acid 
and pyroglutamic acid (also known as 5-oxoproline). 

Fig. 1  Boxplots of the identified metabolites. NSCLC non-small-cell lung cancer

Table 4  Area under the curve 
(AUC) values obtained in 
univariate ROC curve analyses 
of the identified metabolites 
(confidence intervals are shown 
in brackets) along with their 
sensitivity and specificity values

The analyzed groups were patients diagnosed with early NSCLC and healthy controls

Metabolite AUC Sensitivity Specificity

1-Amino-propan-2-ol/Trimethylamine 
N-oxide/2-Amino-1-propanol

0.799 (0.686–0.892) 0.71 0.76

5-Oxo-l-proline (pyroglutamic acid) 0.705 (0.560–0.813) 0.63 0.72
Alpha-N-Phenylacetyl-l-glutamine 0.731 (0.608–0.835) 0.56 0.80
Carnitine 0.656 (0.511–0.776) 0.52 0.76
Histidine 0.687 (0.549–0.813) 0.56 0.68
Valerylcarnitine 0.754 (0.616–0.865) 0.71 0.68
Leucine: [M–HCOOH] adduct 0.628 (0.494–0.765) 0.65 0.60
Malic acid: [M + NH4] adduct 0.717 (0.599–0.843) 0.71 0.64
Methionine 0.685 (0.541–0.795) 0.60 0.68
Propionylcarnitine 0.727 (0.598–0.837) 0.67 0.72
Thiomorpholine 3-carboxylate 0.734 (0.588–0.853) 0.75 0.68
Tyrosine 0.681 (0.545–0.799) 0.58 0.72
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Alterations in organic acid profiles in blood of lung can-
cer subjects were also found in some previous metabo-
lomic studies; however, they were usually related to 
elevated lactic acid (Hori et al. 2011; Puchades-Carrasco 
et al. 2016; Musharraf et al. 2015). The current research 
demonstrated a high potential of pyroglutamic acid as 
an early marker of NSCLC. This acid is an intermediate 
metabolite of the gamma-glutamyl cycle of glutathione 
(l-γ-glutamyl-l-cysteinyl-glycine; GSH) production 
(Balendiran et al. 2004; Geenen et al. 2011). GSH is sup-
posed to play many roles in regulating cancer develop-
ment and growth, such as cell proliferation, apoptosis, 
and resistance to antineoplastic drugs. Therefore, GSH-
related enzymes have attracted the attention of scientists 
as promising targets for medical intervention (Balendiran 
et  al. 2004; Traverso et  al. 2013; Ortega et  al. 2011; 
Estrela et al. 2006). Malic acid is an intermediate of the 
Krebs cycle, which is a critical step in energy production 
by cells. Increased serum level of malic acid was reported 
in lung cancer patients by Hori et  al. (2011). They also 
showed that the disease progression is characterized by a 
further increase in the concentration of malic acid. Due to 
the fact that our study only included subjects with early 
stage cancer, the findings of Hori et al. (2011) cannot be 
fully verified. Therefore, further targeted metabolomic 
investigation involving determination of low-molecular-
weight organic acids is needed. To date, only one arti-
cle presenting quantitative analysis of serum concentra-
tions of six selected organic acids in NSCLC has been 

published; however, the analysis did not contain malic 
acid (Klupczynska et al. 2016b).

The amino acid that deserves special attention as a 
cancer biomarker candidate is histidine, which was found 
downregulated in serum of the NSCLC group. The signif-
icantly decreased level of histidine observed in the blood 
of lung cancer patients was also observed by Puchades-
Carrasco et  al. (2016) and Miyamoto et  al. (2015), and 
may result from its excessive degradation or decreased 
synthesis. Histidine is converted to histamine in a reac-
tion catalyzed by histidine decarboxylase (HDC). Thus, 
HDC constitutes a key regulator of histamine concentra-
tion. The biogenic amine histamine is involved in many 
physiological and pathological responses, including gastric 
acid secretion, inflammation, allergic reaction, and angio-
genesis (Medina et  al. 2003; Ghosh et  al. 2002). Moreo-
ver, histamine is thought to be involved in inhibition of the 
local immune response against cancer (Masini et al. 2005). 
Although the hypothesis concerning the role of histamine 
in carcinogenesis was proposed in the 1960s, the mecha-
nisms by which histamine and HDC are involved in cancer 
progression remain poorly understood. Both HDC and his-
tamine content were found significantly higher in the colo-
rectal cancer specimens when compared to normal mucosa 
(Masini et al. 2005). The elevated expression of HDC was 
also identified in human melanoma (Haak-Frendscho et al. 
2000) and small-cell lung carcinoma (Matsuki et al. 2003; 
Graff et  al. 2002). Our study provides evidence that the 
cancer metabolome is reflected in body fluids and meas-
uring blood histidine concentration, a precursor for hista-
mine, can provide a valuable information due to its asso-
ciation with the presence of cancer. It is also noteworthy 
that the significantly decreased blood concentration of his-
tidine was observed in other cancer types, such as gastric 
cancer, colorectal cancer, and breast cancer (Miyagi et al. 
2011). Therefore, it can be supposed that a decline in histi-
dine blood level is a characteristic feature common to many 
types of cancer, not only NSCLC.

Our results confirmed the occurrence of metabolite 
alterations is serum of lung cancer subjects. Moreover, we 
indicated that some abnormalities in the metabolic profile 
of NSCLC patients are apparent at the beginning of the 
disease. The class of metabolites, which is currently the 
most explored in blood of NSCLC patients, is free amino 
acids. Some targeted metabolomic profiling focusing on 
determination of free amino acid levels in NSCLC has 
appeared in recent years (Klupczynska et  al. 2016a; Kim 
et al. 2015; Shingyoji et al. 2013; Maeda et al. 2010). The 
analyses of amino acid profiles did not reveal one specific 
molecule that can play a role of NSCLC marker, but they 
emphasized the potential of using a multi-marker panel in 
lung cancer detection. Based on our study, it can be con-
cluded that further study of the alterations in organic acid 

Fig. 2  Multivariate ROC curve built using 12 identified metabolites. 
The analyzed groups were patients diagnosed with early non-small-
cell lung cancer and healthy controls
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and acylcarnitine blood profiles in NSCLC is needed, since 
the metabolites from these two groups can represent valu-
able components of a multi-metabolite classifier useful in 
NSCLC diagnosis.

Finally, our research demonstrated that there are no sig-
nificant differences in the serum metabolite profile between 
patients with lung adenocarcinoma and patients with squa-
mous cell lung carcinoma. It is still unclear whether each 
histological type of lung cancer has its own distinct meta-
bolic profile, because data available in the literature are 
inconsistent. Hori et al. (2011) reported differences in the 
serum metabolic profile of patients with various types of 
lung cancer; however, they did not apply multiple hypoth-
esis testing correction. In contrast, Mazzone et  al. (2016) 
used adjustment for multiple comparisons and observed no 
significant variations in serum metabolite levels between 
these two main histological types of lung cancer. To avoid 
false positives, we also applied multiple comparison 
approach in the study. Our work supports the hypothesis 
that serum metabolic profile is independent to NSCLC his-
tological type.

It can be concluded that through identification and char-
acterization of novel potential tumor markers, Orbitrap-
based global metabolic profiling is a useful strategy in can-
cer research. Our research revealed a number of significant 
changes in serum of NSCLC patients with early stage of 
the disease, which can accelerate development of new diag-
nostic and therapeutic strategies. However, each study has 
its own strengths and limitations. One of the strengths of 
our research is the application of Orbitrap mass analyzer 
for the first time in NSCLC serum profiling. Moreover, we 
used FDR adjustment for data analysis that controls for the 
overall probability of a type I error. Adjustment for mul-
tiple comparisons is a particularly relevant issue in untar-
geted metabolomics, where hundreds of univariate tests are 
performed; therefore, the selection of biomarker candidates 
based on their FDRs, not on raw p values, is recommended. 
The study was restricted to patients with stage I and II can-
cer to reduce the influence of late-stage cancer cases on the 
obtained metabolite profiles. In addition, we examined two 
most common histological types of lung cancer and the 
presented findings apply to both types, as it was proven by 
statistical analyses. The results of our study are promising; 
however, only 19 out of 36 significantly altered low-molec-
ular-weight molecules were identified. Another weakness 
of this research is a lack of validation of our results using a 
separate set of samples. As a part of the biomarker discov-
ery phase, this study requires verification in larger patient 
cohorts from various institutions to estimate the robust-
ness of the observed metabolite abnormalities. It should 
also be noted that the presented data are acquired through 
the semi-quantitative global metabolomic analysis, thus to 
better estimate the magnitude of variances in the selected 

metabolite levels, the application of a targeted metabo-
lomic research, providing their absolute concentrations, is 
needed. Addressing the above-mentioned limitations is an 
aim for future research.

Conclusions

When compared with previous studies, our research was 
focused on investigation of metabolic changes accompany-
ing NSCLC at early stage of the disease (stage I and stage 
II). The presented analytical methodology has been used 
for the analysis of NSCLC for the first time and revealed 
a number of biomarker metabolites which belong to such 
classes as acylcarnitines, organic acids, and amino acids. 
The metabolites involved in discrimination between 
NSCLC patients and the control subjects should be further 
explored using targeted approach with the application of 
triple quadrupole mass spectrometry to prove their clini-
cal usefulness. Another future direction of research should 
be related to a deeper elucidation of the identified metabo-
lites in NSCLC biology. The advances in the molecular 
understanding of the roles of the particular metabolites in 
the neoplastic process could lead to development of novel 
therapeutic tools against NSCLC.
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