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Abstract
Early recognition of bloodstream infection (BSI) in infants can be difficult, as symptoms may be non-specific, and culture can take 
up to 48 h. As a result, many infants receive unneeded antibiotic treatment while awaiting the culture results. In this study, we aimed 
to develop a model that can reliably identify infants who do not have positive blood cultures (and, by extension, BSI) based on the 
full blood count (FBC) and C-reactive protein (CRP) values. Several models (i.e. multivariable logistic regression, linear discrimi-
nant analysis, K nearest neighbors, support vector machine, random forest model and decision tree) were trained using FBC and 
CRP values of 2693 infants aged 7 to 60 days with suspected BSI between 2005 and 2022 in a tertiary paediatric hospital in Dublin, 
Ireland. All models tested showed similar sensitivities (range 47% – 62%) and specificities (range 85%-95%). A trained decision tree 
and random forest model were applied to the full dataset and to a dataset containing infants with suspected BSI in 2023 and showed 
good segregation of a low-risk and high-risk group. Negative predictive values for these two models were high for the full dataset 
(> 99%) and for the 2023 dataset (> 97%), while positive predictive values were low in both dataset (4%–20%).
   Conclusion: We identified several models that can predict positive blood cultures in infants with suspected BSI aged 7 to 
60 days. Application of these models could prevent administration of antimicrobial treatment and burdensome diagnostics 
in infants who do not need them.

What is Known:
• Bloodstream infection (BSI) in infants cause non-specific symptoms and may be difficult to diagnose.
• Results of blood cultures can take up to 48 hours.
What is New:
• Machine learning models can contribute to clinical decision making on BSI in infants while blood culture results are not yet known.
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Introduction

Detection of bacteria from blood cultures in children may be 
due to bloodstream infection (BSI), transient (non-significant) 
bacteraemia, or contamination of the blood culture by skin 
flora. BSIs are a leading cause of morbidity and mortality 
in infants world-wide [1–3]. The main pathogens involved 
in BSIs in infants are Gram-negative bacteria (GNB) (e.g., 
E. coli, Pseudomonas spp. and Klebsiella spp.) and Group B 
streptococcus (GBS) [3–6].

Diagnosis of BSI by blood culture can take up to 48 h [7]. 
This can result in administration of unnecessary treatment 
or the execution of burdensome diagnostic procedures, such 
as lumbar puncture.
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A combination of clinical signs, biomarkers, and full 
blood count (FBC) parameters is used for early recognition 
of BSI. However, in neonates and infants, these signs and 
markers can be difficult to interpret, as symptoms can ben 
non-specific and normal ranges of biomarkers and FBC 
parameters change during the first months of life [8]. Efforts 
have been put into deriving clinical algorithms that reliably 
predict BSI upon presentation based on these parameters [9, 
10]. Though much progress has been made, the distinction 
between patients with and without BSI is still not perfect.

It has been suggested that machine learning could con-
tribute to the development of algorithms with a higher accu-
racy of predicting BSI compared to existing methods [11]. 
In several patient groups, machine learning algorithms have 
already shown promising results in predicting of positive 
blood cultures (and, by extension, BSI) from clinical symp-
toms, biomarkers and FBC parameters [12, 13]. Some efforts 
have already been made to apply machine learning methods 
to predict BSI in infants; Ramgopal et al. showed that a ran-
dom forest model can predict serious bacterial infections in 
infants with high specificity and sensitivity [14]. Applica-
tion of such a model in clinical practice could prevent many 
infants without BSI having to undergo burdensome diagnos-
tic procedures and unnecessary treatment.

The aim of our current study was to derive an easy-to-
apply algorithm that can reliably identify infants with a low 
risk of community acquired BSI. To do this we applied vari-
ous machine learning methods on FBC and CRP data from 
a cohort of infants aged 7 to 60 days presenting at the emer-
gency department in a tertiary hospital in Dublin.

Methods and materials

Study population

We performed a retrospective case-control study at Chil-
dren’s Health Ireland (CHI) Temple Street, Dublin, a tertiary 
paediatric hospital. The CHI Research Ethics Committee 
(REC) approved this study (reference number: REC-194-
22). Our study population was composed of all infants aged 
7 to 60 days who were admitted via the emergency depart-
ment of CHI, Temple Street between January 1st 2005 and 
December 17th 2022, and received a work-up for suspected 
BSI upon presentation. All infants with a positive or nega-
tive blood culture, and who had an FBC and C-reactive pro-
tein (CRP) taken as part of their initial investigations, were 
included. The age range 7 to 60 days was chosen as during 
this period of life, the reference values for FBC parameters 
and CRP are relatively stable, while several reference values 
change considerably in the first days of life and after the first 

months of life. All Infants with a positive blood culture were 
included as cases, while all infants with a negative blood cul-
ture were included as controls. Infants that did not have FBC, 
CRP and blood culture results from samples taken on the 
same day were excluded from analysis. All blood cultures 
were processed in the microbiological laboratory at CHI, 
Temple Street using an automated blood culture platform 
(BacT/ALERT, BioMérieux, Marcy-l'Étoile, France), and 
this methodology did not change during the study period.

Data collection

Data were extracted from the electronic laboratory informa-
tion system at CHI Temple Street on the following param-
eters: age in days on date of sampling, sex, year of sampling, 
FBC parameters (i.e. white cell count (WCC), neutrophils 
(N), lymphocytes (L), monocytes (M), eosinophils (E), baso-
phils (B), platelets (PLT), red cell count (RCC), red cell 
distribution width (RDW), haemoglobin (Hb), haematocrit 
(HCT), mean platelet volume (MPV), mean corpuscular 
haemoglobin (MCH), mean corpuscular haemoglobin con-
centration (MCHC) and mean corpuscular volume (MCV)), 
CRP and blood culture results. Ratios were calculated for 
neutrophiles to lymphocytes (NLR), MPV to platelets 
(MPVPR), monocytes to lymphocytes (MLR) and plate-
lets to lymphocytes (PLR). As data on clinical parameters 
– e.g. temperature, heart rate and treatment regime – are 
stored in different databases which are not straightforward 
to merge with the laboratory databases, we were currently 
unable to incorporate clinical parameters in our analysis. 
Cases with blood culture results positive for organisms clas-
sified as likely contaminants (Supplementary Material 1) or 
fungal pathogens were excluded from the dataset, to ensure 
that included cases with positive blood cultures were likely 
to represent bacterial BSI. The cases were subsequently 
grouped into three discrete groups: Gram negative bacte-
raemia, bacteraemia with Group B Streptococcus, and other 
clinically significant bacteraemia.

Data analysis

Cut-off values for FBC outliers were decided based on the 
distribution patterns of the FBC variables and clinical expe-
rience. Infants with outliers in any of the FBC variables 
that were likely to be derived from underlying conditions 
such as malignancies were excluded from further analysis. 
Infants that were missing CRP values, values for any FBC 
variable or data on sex or age were excluded from further 
analysis. Differences in baseline characteristics age and 
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sex between the cases and controls were assessed by Chi-
squared test and Student’s t-test respectively. Exploratory 
univariate and multivariate analyses were performed using 
the ggplot2 package [15] in R statistical software version 
4.2.2 [16] to construct violin plots and a heatmap. To calcu-
late the association between the independent variables age, 
sex, FBC parameters and CRP and the dependent variable 
blood culture result, univariable logistic regression was per-
formed using the gtsummary package [17] in R statistical 
software.

To be able to train our models using reasonably balanced 
data, the controls in our dataset were randomly subsampled 
to reach a case control ratio of 1:3. The subsampled data-
set was then randomly split into a training set containing 
70% of the data and a test set containing 30% of the data. 
A multivariable logistic regression model was build based 
on the training set in R. The model was build based on the 
results of the univariable model, including all variables with 
a p-value of 0.2 or less, and subsequently removing varia-
bles using the top-down strategy to obtain a model in which 
all independent variables were significant (p-value < 0.05).

The training set was normalized, and a linear discrimi-
nant analysis (LDA) model was build based on the training 
set using the MASS package [18] in R. A K-nearest neigh-
bour (KNN) model and a support vector machine (SVM) 
with linear kernel were fitted to the normalized training 
set using the class [18] and e1071 [19] packages respec-
tively in R. A decision tree and a random forest were build 
based on the non-normalized training set using the rpart 
package [20] and randomForest package [21] respectively 
in R. All analyses were performed including variables 
with a p-value of 0.2 or less in the univariable regression 
model, to minimize excluding variables that would make a 
valuable contribution to the models, as well as to minimize 
including variables that would not be of importance and 
would create noise in the model. Additionally, an LDA 
model and decision tree model were build based on the 
grouping of pathogens (GNB versus GBS versus controls) 
in the training set.

All models were subsequently used to make predictions 
in the test set, and parameters for the prediction (sensitivity, 
specificity, negative predictive value (NPV), positive pre-
dictive value (PPV) and accuracy) were calculated using 
the epiR package [22]. For each model, the area under the 
receiver operating characteristic curve (AUROC) was cal-
culated using the pROC package [23].

The decision tree model and the random forest model 
that were trained using the subsampled dataset were subse-
quently used to make predictions for the entire dataset (i.e. 
76 cases and 2616 controls). Sensitivity, specificity, NPV 
and PPV were calculated.

Applying the model to a 2023 dataset

After finalisation of the models, 206 infants between the age of 
7 and 60 days with a work-up for suspected BSI at CHI Temple 
Street between January 1st 2023 and September 27th 2023 
were included as a second cohort. A prediction was made on 
the presence of bacteraemia in these children using the trained 
decision tree model and random forest model. These predic-
tions were subsequently compared to the outcome of the blood 
culture, and accuracy, sensitivity, specificity, NPV and PPV 
were calculated.

Results

Dataset construction and descriptive analyses

In total, 2876 infants between 7 and 60 days of age present-
ing between 2005 and 2022 at the emergency department of 
CHI Temple Street, had received a work-up for suspected 
BSI. For 179 (6.2%) infants, the blood culture grew a likely 
contaminant, and these infants were subsequently excluded 
from analysis. A further 4 (0.1%) infants were excluded as 
their FBC results contained outliers. One infant (0.03%) was 
excluded as their sex was reported as unknown.

Of the remaining 2692 infants, 76 (2.9%) had a posi-
tive blood culture and were thus labelled cases, while 
2617 (97.1%) had a negative blood culture and were thus 
labelled controls.

Sex distribution was comparable between the case (34% 
female) and control group (44% female) (p = 0.11). The 
median age was 25 days for cases (inter quartile range (IQR) 
17–39 days) and 34 days for controls (IQR 21 – 46 days) 
(p = 0.003). Between 32 and 274 infants were included in each 
calendar year, with lower numbers of inclusions during the 
earlier years in our study period, and during the first two years 
of the SARS-CoV-2 pandemic (2020–2021), while the high-
est number of inclusions was in 2022 (Fig. 1). Distribution of 
CRP and the FBC variables in cases and controls are shown 
in Fig. 2. The heat plot (Fig. 3) shows that WCC, Neutrophils 
and Lymphocytes were mutually correlated, as were RCC, 
Hb, HCT, MCV and MCH.

Logistic regression models

In the univariable logistic regression analysis, age, CRP, E, 
L, N, PLT, NLR, MPVPR and PLR were significantly asso-
ciated with blood culture results (p-value < 0.05) (Table 1).

Working top-down from a logistic regression model includ-
ing all parameters with a p-value of 0.2 or lower in the univar-
iable analysis, we derived a multivariable logistic regression 
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model that included age, CRP, lymphocytes, NLR and MLR as 
significantly associated with the blood culture results.

Predictive algorithms

The multivariable logistic regression, LDA, KNN, SVM, 
decision tree and random forest models were all able to 

predict bacteraemia from FBC parameters and CRP in 
infants in the subsampled test set with accuracies between 
80 and 86%. All models showed moderate to high AUROCs 
(0.72 – 0.82), and high specificities (ranging between 85 
and 95%), but rather low sensitivities, ranging from 47 to 
61%. PPV was lowest for the decision tree model at 56.5%, 
while it was highest for the logistic regression model at 
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Fig. 1  Histogram showing the annual number of infants aged 7–60 days assessed for suspected blood stream infection at Children’s Health Ire-
land Temple Street, Dublin, between 2005 and 2022
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with 75%. NPVs for all models were similar, ranging from 
85 to 89% (Table 2). Across the multivariable logistic 
regression model, LDA, random forest and decision tree, 
the variables CRP, lymphocytes and NLR seemed particu-
larly of importance.

The decision tree model (Fig.  5) shows a root split 
based on NLR, and lower-level splits for monocytes, age 
and NLR. The largest bin in this group contains 73% of 
the study population, of whom 92% is culture negative. 
Another low-risk group consists of those with NLR ≥ 1.6 
and < 3.4, and age ≥ 34 days, comprising 6% of the dataset. 
Simultaneously, we can see three high risk groups, those 

with NLR < 1.6 and monocytes < 0.29 ×  109/L (4%), those 
with NLR ≥ 1.6 and age < 34 days (14%) and those with 
NLR ≥ 3.4 and age ≥ 34 days (3%) (Fig. 4).

Segregation of pathogen groups

LDA analysis on the distinct groups of pathogens showed 
good segregation of GBS and GNB versus controls (Fig. 5a). 
The variables contributing most to segregation of pathogen 
groups were CRP, MLR, PLR and neutrophils.

A single tree model on the distinct groups of pathogens 
showed good segregation of GBS and GNB versus controls 
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Fig. 2  Violin plots showing the distribution of full blood count (FBC) 
parameters and C-reactive protein (CRP) for infants aged 7 – 60 days 
assessed for suspected bloodstream infection at Children’s Health Ire-
land Temple Street, Dublin, between 2005 and 2022. Results for chil-
dren with positive (cases, N = 76) and negative (controls, N = 2616) 
blood culture results are shown. Basophils  (109/L), CRP; C-reactive 
protein (mg/L), Eosinophils  (109/L), Hb; haemoglobin (g/dL), HCT; 
haematocrit (L/L), Lymphocytes  (109/L), MCH; mean corpuscu-

lar haemoglobin (pg), MCHC; mean corpuscular haemoglobin con-
centration (g/dL), MCV; mean corpuscular volume (fL), Monocytes 
 (109/L), MPV; mean platelet volume (fL), Neutrophils  (109/L), PLT; 
platelets  (109/L), RCC; red cell count  (1012/L), RDW; red cell distri-
bution width (%), WCC; white cell count  (109/L), NLR; neutrophiles 
to lymphocytes ratio, MPVPR; MPV to platelets ratio, MLR; mono-
cytes to lymphocytes ratio, PLR; platelets to lymphocytes ratio



 European Journal of Pediatrics

in the training set (Fig. 5b). In the test set, it showed an 
overall accuracy of 89%. The variables that the segregation 
was based on were CRP, PLR, and monocytes.

Application of the decision tree to the full dataset

When applied to the full dataset, the single tree model clas-
sified a total of 2342 (87%) of the children as low-risk, with 
a high negative predictive value of 99.1% (95% CI 98.6% 
– 99.4%). It classified a total of 350 infants as high-risk, 
with a positive predictive value of 15.4% (95% CI 11.8% 
– 19.6%). The overall accuracy remained high at 88.2%, 
while the AUROC dropped to 0.57.

The false-negative group contained 22 infants, of which 
four with GBS (n = 25 in the entire dataset), 12 with GNB 
(n = 36 in the entire dataset), four with Staphylococcus 
aureus (n = 6 in the entire dataset), one with Haemophilus 
influenzae and one with Enterococcus faecalis. The false 
positive group contained 296 infants, for whom we have no 
further clinical details.

When applied to the full dataset, the accuracy of the ran-
dom forest model remained high at 89.5% while the AUROC 
dropped to 0.60. The model classified 12.7% of the infants as 

high risk, with a PPV of 19.6%. It classified 87.3% of the infants 
as low risk, with an NPV of 99.6%. Of the nine infants that were 
false negative, six had a blood culture positive for Escherichia 
coli, two for GBS and one for Staphylococcus aureus.

Application of the models to the 2023 dataset

For six infants in the 2023 cohort, the blood culture grew 
a likely contaminant, and they were excluded from the 
dataset. The remaining dataset contained 197 infants, of 
whom seven had a positive blood culture. The pathogens 
cultured in this cohort were Enterococcus faecalis (n = 1), 
Escherichia coli (n = 3), Staphylococcus aureus (n = 1) 
and Streptococcus agalactiae (n = 2). The decision tree 
model classified 95 (48%) infants as high-risk with a PPV 
of 4.2%. It classified 102 (52%) infants as low-risk, with 
a NPV of 97.1%. The random forest model classified 77 
(39%) infants as high-risk, with a PPV of 6.5%. It classi-
fied 120 (61%) children as low risk, with a NPV of 98.3% 
(Table 2). The overall accuracies (52.3% and 62.4%) and 
the AUROC (0.58 and 0.59) were low for both the decision 
tree and random forest model respectively.

Fig. 3  Heat plot showing the 
correlation between each of 
the full blood count (FBC) 
variables and C-reactive pro-
tein (CRP) in the full dataset 
(N = 2692) as calculated by the 
Spearman test. WCC, white cell 
count; RDW, red cell distri-
bution width; RCC, red cell 
count; PLT, platelets; MPV, 
mean platelet volume; MCHC, 
mean corpuscular haemoglobin 
concentration; MCH, mean 
corpuscular haemoglobin; HCT, 
haematocrit; Hb, haemoglobin
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Discussion

In this study, we aimed to derive an easy-to-apply algorithm 
that can reliably identify infants aged 7–60 days with a low 
risk of positive blood cultures (and, by extension, BSI) pre-
senting to an Emergency Department in a tertiary paediatric 
hospital setting in Ireland. This specific age group was cho-
sen as the normal ranges of biomarkers and FBC parameters 
– which fluctuate after birth and during the first months of 
life – are rather stable in this age group.

All models tested in our study predicted positive blood 
cultures with similar sensitivity, specificity, NPV and PPV 
in a subsampled dataset with a case control ratio of 1:3. 
However, in the absence of dedicated decision support 

tools, implementation of these models would not be easy to 
establish in clinical practice. The decision tree model is an 
exception to this, as it makes use of a set of concrete cut-off 
values and can thus be interpreted at the bedside. We there-
fore selected the decision tree model for testing on the full 
dataset and the 2023 dataset, as well as the random forest 
model for comparison.

Both the decision tree model and random forest model 
showed to be good predictors for positive blood cultures 
in the full dataset with a high NPV, but low PPV, though 
the AUROC was rather low. In the 2023 cohort, the pre-
dictive value of both models was slightly lower. However, 
the NPVs were still high at 97.1% and 98.3% respectively. 
This is important, as an ideal predictive model would have 
a high NPV, approaching 100% [11]. Both models show 
low PPVs, under 10%. The low PPV and high NPV are 
in line with findings of other reports of models predict-
ing positive blood cultures in both infant and adult popu-
lations. Despite a low PPV, these models are thought to 
be able to make a valuable contribution to the clinical 
decision-making process [12–14].

Though our models approach an NPV of 100%, they 
may not be able to identify all infants with BSI; some 
infants may be at an early stage of their infection, and FBC 
and biochemical parameters may not have shifted much 
at that point in time. The low PPV of our models may be 
due to infants in our cohort having similar clinical syn-
dromes, such as localised infections not resulting in BSI, 
or viraemia. Additionally, a portion of the infants may 
have been diagnosed with culture negative sepsis [24], or 
a blood culture taken later in the course of disease might 
have come up positive. As we did not check for culture 
results from other sample types or follow up cultures, we 
do not know how much these scenarios have influenced 
our models’ parameters.

Ideally, a model as the ones presented in this study 
would have clinical parameters – e.g. temperature and 
heart rate – incorporated in addition to the laboratory 
parameters. Unfortunately, we were at present unable to 
incorporate such clinical parameters. Furthermore, we 
were unable to compare the prediction of the models to 
the judgement of physicians, as we did not have informa-
tion on the initiated treatment. However, models like the 
ones presented in this study should never be used to solely 
base clinical decision making on. They should instead be 
used by physicians as a tool to further support clinical 
decision making, in addition to clinical expertise. The 
models presented in this study will therefore mainly be 
of benefit to clinical decision-making in infants without a 
clear indication for start of antimicrobial therapy, such as 

Table 1  Univariable logistic regression performed on the full dataset 
(N = 2692). Odds ratios (OR) with 95% confidence intervals (CIs)  and 
p-values are shown, and refer to the odds of having a positive blood cul-
ture result

CRP C-reactive protein, Hb haemoglobin, HCT haematocrit, MCH mean 
corpuscular haemoglobin, MCHC  mean corpuscular haemoglobin con-
centration, MCV  mean corpuscular volume, MPV  mean platelet vol-
ume, PLT  platelets, RCC   red cell count, RDW  red cell distribution 
width, WCC   white cell count, NLR  neutrophiles to lymphocytes ratio, 
MPVPR  MPV to platelets ratio, MLR  monocytes to lymphocytes ratio, 
PLR  platelets to lymphocytes ratio. Due to its small values, the MPVPR 
variable was scaled for this analysis
a OR Odds Ratio, CI Confidence Interval

Characteristic ORa 95% CIa p-value

Sex 1.51 0.94, 2.48 0.092
Age 0.98 0.96, 0.99 0.004
CRP 1.01 1.01, 1.02  < 0.001
Basophils 1.56 0.18, 6.04 0.6
Eosinophils 0.03 0.01, 0.13  < 0.001
Hb 1.03 0.94, 1.12 0.5
HCT 2.20 0.09, 46.4 0.6
Lymphocytes 0.64 0.57, 0.73  < 0.001
MCH 1.05 0.93, 1.19 0.4
MCHC 1.05 0.86, 1.29 0.6
MCV 1.01 0.97, 1.06 0.6
Monocytes 0.80 0.58, 1.07 0.2
MPV 0.93 0.81, 1.08 0.3
Neutrophils 1.16 1.10, 1.21  < 0.001
PLT 1.00 1.0, 1.00 0.002
RCC 1.08 0.78, 1.48 0.6
RDW 0.96 0.81, 1.14 0.6
WCC 1.02 0.97, 1.06 0.5
NLR 1.39 1.26, 1.53  < 0.001
MPVPR 1.13 0.99, 1.28 0.040
MLR 1.91 0.90, 3.62 0.067
PLR 1.00 1.00, 1.01  < 0.001
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infants who do not appear particularly unwell, or who do 
not show clear signs of an infection source. In these cases, 
the models presented here can further support a low risk 
of BSI, and an observational approach without immediate 
start of treatment or further invasive procedures can be 
considered until blood culture results are available.

Furthermore, we have shown that different pathogen 
groups may induce different patterns in FBC and CRP 
shifts. Therefore, changes in circulation of pathogens over 
time could influence the accuracy of a model. During and 
after the SARS-CoV-2 pandemic, we have seen changes in 
circulation of many pathogens [25, 26]. This could further 
explain why our models, trained on data collected before 
and during the pandemic, underperform in predicting 
bloodstream infections in a post-pandemic dataset.

In conclusion, we have shown that both a random for-
est model and decision tree model, trained on data from 
2005–2022 in a tertiary hospital in Dublin, Ireland, can 
predict positive blood cultures in infants aged 7 to 60 
days with a high NPV. While the random forest model 
performs slightly better, the decision tree model is easy 
to implement and could be of direct assistance in clinical 
practice. While the PPV of these models is low, these 
models can support practicing clinicians in recognizing 
low-risk patients, for whom a reserved attitude towards 
starting treatment and further diagnostic procedures may 
be appropriate.

A future validation study is necessary to specifically 
assess children who do not have clear clinical indication 
for starting therapy, such as infants who appear particularly 

Table 2  Area under the receiver operating characteristic curve 
(AUROC), accuracy (acc), sensitivity (sens), specificity (spec), posi-
tive predictive values (PPV) and negative predictive values (NPV) for 

the multivariable logistic regression model, linear discriminant analy-
sis model, K-nearest neighbors model, support vector machine model, 
random forest model and decision tree model

All models were trained on the subsampled training set with a case control ratio of 1:3. The models were then run to predict positive blood cul-
tures in the subsampled test dataset (case control ratio 1:3), the full dataset, and the 2023 dataset. 95% confidence intervals (CIs) are given for all 
parameters

Dataset Model AUROC CI AUROC Acc (%) CI Acc Sens (%) CI Sens

lower upper lower upper lower upper

Subsampled dataset Multivariable Logistic Regression 0.82 0.70 0.93 85.9 77.0 92.3 57.1 34.0 78.2
(n = 304) Linear Discriminant Analysis 0.74 0.61 0.87 81.5 72.1 88.9 47.6 25.7 70.2

K-Nearest Neighbors 0.76 0.63 0.88 82.6 73.3 89.7 52.4 29.8 74.3
Support Vector Machine 0.79 0.68 0.91 84.8 75.8 91.4 57.1 34.0 78.2
Random Forest 0.81 0.69 0.92 84.8 75.8 91.4 57.1 34.0 78.2
Decision Tree 0.72 0.61 0.84 80.4 70.9 88.0 61.9 38.4 81.9

Full dataset Decision Tree 0.57 0.55 0.59 88.2 86.9 89.3 71.1 59.5 80.9
(n = 2692) Random Forest 0.60 0.58 0.62 89.5 88.3 90.6 88.2 78.7 0.94
2023 Cohort Decision Tree 0.58 0.50 0.66 52.3 45.1 59.4 57.1 18.4 90.1
(n = 197) Random Forest 0.59 0.52 0.67 62.4 55.3 69.2 71.4 29.0 96.3

Dataset Model Spec (%) CI Spec PPV (%) CI PPV NPV (%) CI NPV

lower upper lower upper lower upper

Subsampled dataset Multivariable Logistic Regression 94.4 86.2 98.4 75.0 47.6 92.7 88.2 78.7 94.4
(n = 304) Linear Discriminant Analysis 91.5 82.5 96.8 62.5 35.4 84.8 85.5 75.6 92.5

K-Nearest Neighbors 91.5 82.5 96.8 64.7 38.3 85.8 86.7 76.8 93.4
Support Vector Machine 93.0 84.3 97.7 70.6 44.0 89.7 88.0 78.4 94.4
Random Forest 93.0 84.3 97.7 70.6 44.0 89.7 88.0 78.4 94.4
Decision Tree 85.9 75.6 93.0 56.5 34.5 76.8 88.4 78.4 94.9

Full dataset Decision Tree 88.7 87.4 89.9 15.4 11.8 19.6 99.1 98.6 99.4
(n = 2692) Random Forest 89.5 88.3 90.7 19.6 15.6 24.3 99.6 99.3 99.8
2023 Cohort Decision Tree 52.1 44.8 59.4 4.2 1.2 10.4 97.1 91.6 99.4
(n = 197) Random Forest 62.1 54.8 69.0 6.5 2.1 14.5 98.3 94.1 99.8
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Fig. 4  Decision tree showing prediction of blood culture results for 
infants aged 7–60 days assessed for suspected bloodstream infection 
at Children’s Health Ireland Temple Street, Dublin between 2005 and 
2022. The decision tree is trained on the subsampled training dataset, 
containing 55 cases and 157 controls. The variables shown in the tree 

include neutrophile to lymphocyte ratio (NLR), monocytes  (X109/L) 
and age (days). Each leaf shows the predicted blood culture result 
according to the model (i.e.negative (neg) or positive (pos)), as well 
as the number of observations that fall within each leaf and the per-
centage of actual positive blood cultures in each leaf
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unwell or those with a clear source of infection. In addi-
tion, further development of these models is desirable to 
increase the PPV, thereby reducing the number of false pos-
itives. Separate models that predict positive blood cultures 
for distinct pathogen groups may prove more accurate com-
pared to a single model predicting overall positive blood 
cultures as presented here. Furthermore, it will be impor-
tant to continuously train these models, to ensure that they 
remain applicable in changing microbiological landscapes. 
Lastly, as the models presented here were trained on infants 
aged 7 to 60 days presenting at the emergency department, 
the application of these models is limited to infants in this 
age range with suspected community acquired BSI, and 
may not be applicable to any other patient groups.
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Fig. 5  Segregation of Gram-negative bacilli (GNB), group B strep-
tococcus (GBS), and negative cultures (NEG) for infants aged 7–60 
days assessed for suspected blood stream infection at Children’s 
Health Ireland, location Temple Street, Dublin, between 2005 and 
2022. Segregation is analysed by linear discriminant analysis (LDA) 
(A) and decision tree (B) using the subsampled training dataset, con-
taining 55 cases and 157 controls. LD1 and LD2 in figure A refer to 

the axes constructed in the LDA analysis. In figure B, variables and 
cut-off values are shown in the decision tree, with C-reactive protein 
(CRP) in mg/L, monocytes in  109/L and platelets to  lymphocytes 
ratio (PLR). Each leaf shows the predicted outcome according to the 
model, as well as the number of observations that fall within each leaf 
and the percentage of correct predictions in each leaf
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