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Abstract
We aimed to assess the determinants of diaphragmatic function in term and preterm infants. 149 infants (56 term; 93 preterm, of whom  
14 were diagnosed with bronchopulmonary dysplasia—BPD) were studied before discharge. Diaphragmatic function was 
assessed by measurement of the maximum transdiaphragmatic pressure (Pdimax)—a measure of diaphragmatic strength, and 
the pressure–time index of the diaphragm (PTIdi)—a measure of the load-to-capacity ratio of the diaphragm. The Pdimax 
was higher in term than preterm infants without BPD (90.1 ± 16.3 vs 81.1 ± 11.8  cmH2O; P = 0.001). Term-born infants 
also had lower PTIdi compared to preterms without BPD (0.052 ± 0.014 vs 0.060 ± 0.017; P = 0.006). In term and preterm 
infants without BPD, GA was the most significant predictor of Pdimax and PTIdi, independently of the duration of mechani-
cal ventilation and oxygen support. In infants with GA < 32 weeks (n = 30), the Pdimax was higher in infants without BPD 
compared to those with BPD (76.1 ± 11.1 vs 65.2 ± 11.9  cmH2O; P = 0.015). Preterms without BPD also had lower PTIdi 
compared to those with BPD (0.069 ± 0.016 vs 0.109 ± 0.017; P < 0.001). In this subgroup, GA was the only significant 
independent determinant of Pdimax, while BPD and the GA were significant determinants of the PTIdi.
  Conclusions: Preterm infants present lower diaphragmatic strength and impaired ability to sustain the generated force over time, 
which renders them prone to diaphragmatic fatigue. In very preterm infants, BPD may further aggravate diaphragmatic function.

What is Known:
• The diaphragm of preterm infants has limited capacity to undertake the work of breathing effectively.
• The maximum transdiaphragmatic pressure (a measure of diaphragmatic strength) and the pressure–time index of the diaphragm (a measure 

of the load-to-capacity ratio of the muscle) have not been extensively assessed in small infants.
What is New:
• Preterm infants have lower diaphragmatic strength and impaired ability to sustain the generated force over time, which renders them prone 

to diaphragmatic fatigue.
• In very preterm infants, bronchopulmonary dysplasia may further impair diaphragmatic function.
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Introduction

The respiratory muscles play a critical role in ensuring the 
function of the respiratory pump and efficient alveolar venti-
lation [1]. In early infancy, the diaphragm is the main muscle 
of respiration and undertakes most of the work of breathing 
[2]. However, in this age group, the diaphragm appears flat-
tened and with a decreased efficiency of contraction, thus 
presenting with a relative mechanical disadvantage [3]. In 
addition, the neonatal diaphragm has lower oxidative capac-
ity and therefore, it is less resistant to fatigue [4]. The hori-
zontal position of the ribs and the highly compliant chest 
wall of the newborn [5] further limit the capacity of the 
diaphragm to undertake the work of breathing effectively, 
thus predisposing to respiratory fatigue and ventilatory fail-
ure [1, 2, 6]. The structural and functional immaturity of the 
muscle is mainly determined by gestational age (GA) [2, 6, 
7]. Moreover, conditions commonly related to prematurity, 
such as prolonged mechanical ventilation, bronchopulmo-
nary dysplasia (BPD) and perinatal infections [8–11], may 
further affect the normal growth and maturation of the dia-
phragm [2, 6].

Diaphragmatic function can be assessed by methods such 
as electromyography, phrenic nerve stimulation, diaphrag-
matic ultrasound, and thoraco-abdominal asynchrony and by 
composite functional indices that are based on the measure-
ment of respiratory pressures [2, 6]. Among the latter, the 
maximum transdiaphragmatic pressure (Pdimax, a measure 
of diaphragmatic strength) [12] and the pressure–time index 
of the diaphragm (PTIdi, a measure of the load-to-capacity 
ratio of the muscle) [13], have the advantage of providing 
direct information on the functional status of the muscle 
[14]. However, these indices have not been extensively 
assessed to date in newborn infants.

The aim of this study was to assess the Pdimax and PTIdi in a 
large cohort of term and preterm infants and explore the factors 
that determine the diaphragmatic function in this population.

Methods

Study design and population

This was a prospective observational study of term and pre-
term infants admitted to the Neonatal Intensive Care Unit 
(NICU) of the University Hospital of Patras, Greece. Pre-
term infants (i.e., those born before 37 weeks of gestation) 
were further classified in those diagnosed or not with BPD, 
based on oxygen supplementation requirements of more than 
28 days. Newborns with chromosomal or congenital anoma-
lies, hemodynamically significant heart disease, neurologi-
cal deficits, and those with a history of surgery involving 

the thorax or the abdomen were excluded. Participants were 
studied within 24 h prior to discharge from the NICU; all 
were clinically stable on the day of measurement without 
requiring any respiratory support or oxygen supplementa-
tion. Infants were studied in the supine position one hour 
after feeding. The study was approved by the University 
Hospital of Patras Research Ethics Committee, and written 
informed parental consent was obtained before enrollment.

Diaphragmatic function

The diaphragmatic function was assessed by means of Pdi-
max and PTIdi. A pneumotachograph (Mercury F10L; GM 
Instruments, Kilwinning, Scotland, UK) connected to a neo-
natal facemask (dead space 4.5 mL) held tightly over the nose 
and mouth was used to measure airflow. Oesophageal and 
gastric pressures (Poes and Pgas, respectively) were meas-
ured using a flexible, silicone-coated catheter (dual-tipped 
pressure catheter [7 French gauge], Gaeltec Ltd., Dunvegan, 
Scotland, UK) fitted with two pressure micro transducers, one 
gastric (distal) and one oesophageal (proximal), placed five 
centimetres apart (Fig. S1). Pressure and flow signals were 
amplified and displayed in real-time on a personal computer 
running a Labview application (National Instruments, Aus-
tin, TX), with analogue to digital sampling at 100 Hz (Data 
Acquisition System NI PCI-6036E, 16-bit, National Instru-
ments). Both catheter tips were initially positioned in the 
stomach, and then the catheter was progressively withdrawn 
until a negative pressure deflection was noted during inspira-
tion at the proximal (oesophageal) transducer. To ensure that 
the transducers were correctly positioned on either side of 
the diaphragm, the Poes was compared with the airway pres-
sure during an inspiration against occlusion, as previously 
described [12]. The transdiaphragmatic pressure (Pdi) was 
obtained by digital subtraction of Poes from Pgas (Fig. S1), 
and the Pdimean was automatically calculated for each breath 
as the average of Pdi points sampled throughout the inspira-
tion. At least 120 s of quiet tidal breathing were recorded. The 
Pdimax was determined by applying airway occlusion at the 
end of a spontaneous crying effort using a three-way unidirec-
tional valve allowing expiration but not inspiration, attached 
to the pneumotachograph. The occlusion was maintained for 
at least four inspiratory efforts. The procedure was repeated 
three times, and the higher Pdimax value was recorded. The 
PTIdi was calculated as the average value of 10 artefact-free 
consecutive breaths using the formula PTIdi = (Pdimean/Pdi-
max) × (Ti/Ttot), where Ti was the inspiration time and Ttot 
the total duration of each respiratory cycle.

Therefore, PTIdi is a composite index that reflects the 
load-to-capacity ratio of the diaphragm over the inspiratory 
duty cycle [13]; the higher the fraction of Pdimax attained 
and the longer the duration of contraction per breath, the less 
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efficient and more prone to fatigue is the diaphragm [2, 13]. In 
adults, a PTIdi exceeding 0.15–0.18 has been reported as the 
threshold of diaphragmatic fatiguability: above this threshold, 
inefficient diaphragmatic contraction and ventilatory failure 
may occur after a time-period inversely related to the value 
of the PTIdi [13, 14]. During the measurements, the partici-
pants were closely monitored for signs of respiratory distress 
(tachypnoea, chest wall distortion) or oxygen desaturation.

Clinical data

Clinical data, including sex, GA, birth weight, post-menstrual 
age (PMA), post-natal age, duration of mechanical ventilation 
and duration of oxygen dependence, were collected from the 
participants’ medical files.

Statistical analysis

Data were tested for normality using the Shapiro–Wilk and 
D’Agostino skewness tests. Comparisons between term and 
preterm infants without BPD and between very preterm 
infants (GA < 32 weeks) with and without BPD were per-
formed with the Mann–Whitney U test. The effect of various 
parameters on the Pdimax and the PTIdi was assessed by 
linear regression analysis using the log-transformed values 
of those indices as dependent variables. Single univariable 
models were used to explore the effect of each predictor 
separately; all parameters with a p-value < 0.1 in the explora-
tory analysis were included in multivariable models. The 
statistical analysis was performed using SPSS software, ver-
sion 28.0 (IBM, Armonk, NY, USA).

Table 1  Characteristics of the 
study population

Data are mean ± SD (median; range) unless stated otherwise
BPD bronchopulmonary dysplasia

Term Preterm

No BPD BPD

N 56 79 14
Male sex, n (%) 34 (60.7) 46 (58.2) 7 (50)
Gestational age, weeks 38.4 ± 1.0

(38.2; 37–40)
33.9 ± 2.2
(34.3; 28–36.9)

27.7 ± 2.0
(27.7; 25–31.4)

Birth weight, g 3200 ± 490
(3170; 1870–4590)

2120 ± 630
(1990; 900–3550)

1060 ± 230
(1050; 780–1650)

Post-menstrual age, weeks 39.2 ± 1.3
(39.1; 37.1–42.7)

35.8 ± 1.4
(35.7; 32.4–40.1)

36.7 ± 2.8
(36.8; 31.3–42.3)

Post-natal age, days 7 ± 5
(6; 1–23)

16 ± 12
(12; 1–57)

66 ± 23
(58; 30–107)

Days of ventilation 1 ± 2
(0; 0–6)

2 ± 2
(1; 0–8)

15 ± 15
(11; 5–59)

Days of oxygen dependence 2 ± 3
(1; 0–10)

3 ± 4
(3; 0–25)

51 ± 18
(50; 30–80)

Fig. 1  Pdimax and PTIdi in term and preterm infants without BPD
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Results

One hundred and forty-nine infants (56 born at term and 93 
preterm – 14 of the latter with BPD) were included in the 
study. Their characteristics are presented in Table 1, while 
details on the diaphragmatic function are given in Table S1 
(Supplementary Material).

The Pdimax was higher in term infants (90.1 ± 16.3 
 cmH2O; median 88.6, range 62.9–137  cmH2O) as com-
pared to preterm infants without BPD (81.1 ± 11.8  cmH2O; 
median 80.7, range 50.8–112  cmH2O; P = 0.001) (Fig. 1). 
Term-born infants also had lower PTIdi (0.052 ± 0.014; 
median 0.052, range 0.029–0.098) than their preterm 
counterparts without BPD (0.060 ± 0.017; median 0.057, 
range 0.032–0.097; P = 0.006) (Fig. 1). In term and pre-
term infants without BPD, GA emerged as the most signif-
icant predictor of Pdimax and PTIdi, independently of sex, 
days of mechanical ventilation, and days of oxygen sup-
port (Table 2). Data on Pdimax and PTIdi in all preterm 

infants (including those with BPD) and on Pdimax and 
PTIdi predictors are presented in Fig. S2 and Table S2 
(Supplementary Material).

The characteristics of infants with a GA < 32  weeks 
(n = 30) are presented in Table S3 (Supplementary Material); 
14 (46.7%) of them were diagnosed with BPD. The Pdimax 
was higher in preterm infants without BPD (76.1 ± 11.1 
 cmH2O; median 78, range 50.8–93.2  cmH2O) as compared 
to those with BPD (65.2 ± 11.9  cmH2O; median 62.8, range 
46.1–84.1  cmH2O; P = 0.015) (Fig.  2). Preterm infants 
without BPD also had lower PTIdi (0.069 ± 0.016; median 
0.074, range 0.042–0.097) than their BPD counterparts 
(0.109 ± 0.017; median 0.108, range 0.085–0.143; P < 0.001) 
(Fig. 2). Gestational age was the only significant determi-
nant of Pdimax in infants with GA < 32 weeks, independent 
of sex, PMA, days of mechanical ventilation, and BPD diag-
nosis (Table 3). BPD and GA were significant determinants 
of PTIdi, independently of sex, PMA and days of mechanical 
ventilation (Table 3).

Table 2  Determinants of 
Pdimax and PTIdi in term and 
preterm infants without BPD

Data are linear regression coefficients with p-values in parentheses. Significant values (p<0.05) in bold
BPD bronchopulmonary dysplasia, GA gestational age, BW birthweight, PMA post-menstrual age, DOV 
days of mechanical ventilation, DOD days of oxygen dependence
* excluded due to significant collinearity with GA

Pdimax PTIdi

Crude effect Adjusted effect
R2 = 0.157

Crude effect Adjusted effect
R2 = 0.129

Male sex –0.055 (0.527) - 0.048 (0.579) -
GA 0.381 (< 0.001) 0.351 (< 0.001) –0.334 (< 0.001) –0.316 (< 0.001)
BW 0.316 (< 0.001) * –0.209 (0.015) *
PMA 0.366 (< 0.001) * –0.092 (0.289) -
DOV –0.126 (0.147) - 0.109 (0.210) -
DOD –0.205 (0.017) –0.112 (0.178) 0.152 (0.078) 0.069 (0.420)

Fig. 2  Pdimax and PTIdi in infants with GA < 32 weeks according to BPD diagnosis
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None of the infants diagnosed with BPD at 28 days of 
life were on supplemental oxygen or respiratory support at 
36 weeks postmenstrual age.

Discussion

In this study, we assessed the diaphragmatic function by 
means of Pdimax and PTIdi in a large cohort of term and 
preterm infants and explored the factors that determine the 
diaphragmatic function in this population. We reported 
that premature infants presented with lower diaphragmatic 
strength (i.e., lower Pdimax) and impaired diaphragmatic 
load-to-capacity ratio (i.e., higher PTIdi), compared to their 
full-term counterparts. More importantly, GA emerged as 
the sole determinant of Pdimax and PTIdi, independently 
of the PMA on the day of measurement and the duration 
of mechanical ventilation and oxygen dependence. In the 
subgroup of preterm infants born at less than 32 weeks of 
gestation, the Pdimax was lower and the PTIdi was higher 
in those previously diagnosed with BPD. Nevertheless, GA 
remained the only significant determinant of Pdimax in this 
subgroup, independently of BPD diagnosis. On the contrary, 
BPD emerged as a significant determinant of PTIdi along 
with GA, independently of other confounding factors. There-
fore, our study confirms that the diaphragm presents with 
relatively impaired function in preterm infants [2, 6], and 
this relates mainly to the degree of prematurity: the lower 
the GA, the more limited the capacity of the diaphragm to 
generate force and effectively sustain this force over time.

The morphological and physiological characteristics of 
the diaphragm in preterm infants may explain the above  
findings. The shape of the diaphragm is flattened in new-
borns, resulting in a smaller apposition zone that limits 
the effectiveness of contraction [3, 15]. In addition, the 
increased compliance of the chest wall, which is inversely 

related to GA [16], may further affect the performance of the 
diaphragm since a significant part of the generated mechani-
cal energy is dissipated in the distortion of the rib cage [17, 
18]. Finally, the neonatal diaphragm consists of a smaller 
amount of type I, fatigue-resistant fibres [4], the number of 
which depends on GA [18]. Prematurity is also associated 
with a lower total cross-sectional muscle area and a reduced 
oxidative capacity of the diaphragm [4, 18], all resulting in 
poor functional reserve and increased risk of fatigue, espe-
cially under conditions of increased respiratory load [2].

Pdimax is an established functional index of diaphrag-
matic strength [12, 14, 19]. However, data regarding Pdimax 
in neonates are sparse, most likely due to the complexity 
of the method used to determine the index. A similar but 
smaller previous study (28 newborns; 18 preterms; 9 with 
GA < 32 weeks) showed that Pdimax is lower in preterm 
compared to term infants and that it is significantly cor-
related with GA [12]. Our findings confirm the results of 
the above study in a much larger sample (149 neonates; 93 
preterms; 30 with GA < 32 weeks, also including infants 
previously diagnosed with BPD) and further describe that 
maturity at birth is the most significant determinant of dia-
phragmatic strength in early infancy. A non-invasive ana-
logue of Pdimax, maximal inspiratory pressure (PImax), can 
be measured via a face mask against an occluded airway 
during crying [6, 20]. PImax correlates well with Pdimax 
and, similarly to the latter, it depends on the maturity at birth 
[21]. However, PImax reflects the combined strength of all 
respiratory muscles; thus, it is not specific to the diaphragm 
as a single muscle [2, 21, 22].

A single measurement of force (i.e., the Pdimax) is not 
adequate to accurately describe the diaphragmatic perfor-
mance; to achieve this, the force-generating capability of the 
diaphragm over time should be demonstrated instead [14]. 
PTIdi is the product of the mean inspiratory transdiaphrag-
matic pressure (expressed as a fraction of Pdimax) and the 

Table 3  Determinants of 
Pdimax and PTIdi in infants 
with GA < 32 weeks

Data are linear regression coefficients with p-values in parentheses. Significant values (p<0.05) in bold
BPD bronchopulmonary dysplasia, GA gestational age, BW birthweight, PMA post-menstrual age, DOV 
days of mechanical ventilation, DOD days of oxygen dependence
* excluded due to significant collinearity with GA

Pdimax PTIdi

Crude effect Adjusted effect
R2 = 0.269

Crude effect Adjusted effect
R2 = 0.699

Male sex –0.151 (0.419) - 0.048 (0.579) -
GA 0.519 (0.003) 0.443 (0.042) –0.792 (< 0.001) –0.508 (0.003)
BW 0.436 (0.014) * –0.742 (< 0.001) *
PMA 0.083 (0.657) - –0.238 (0.249) -
DOV –0.177 (0.349) - 0.402 (0.028) 0.022 (0.862)
DOD –0.445 (0.012) * 0.692 (< 0.001) *
BPD –0.532 (0.001) –0.168 (0.451) 0.732 (< 0.001) 0.381 (0.036)
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duration of inspiration relative to the total duration of the res-
piratory cycle (i.e., PTIdi = Pdimean/Pdimax × Ti/Ttot) [13].

Studies assessing PTIdi in infants are sparse. The index 
has been used previously by our group [23] and other 
researchers [24] to predict the outcome of extubation in new-
borns; we have shown that a PTIdi of ≤ 0.12 may predict suc-
cessful extubation in preterm neonates [23], while another 
study confirmed that infants who eventually fail extubation 
have a higher PTIdi [24]. The index has also been applied 
to assess diaphragmatic function in infants with congenital 
diaphragmatic hernia after the surgical repair of the defect 
[25]. Recently, our group used the PTIdi to validate the pres-
sure–time index of the respiratory muscles (PTImus), a non-
invasive index obtained by pressure measurements at the air-
way opening through a face mask [26]; we found that PTIdi 
and PTImus were correlated, and we concluded that PTImus 
might be used as an alternative index to assess respiratory 
muscle function in infants [27]. It should be noted, however, 
that the PTImus reflects the performance of all respiratory 
muscles, not only the diaphragm [14, 26].

There is no evidence to support that the fatiguability 
threshold of PTIdi in adults (i.e., 0.15–0.18) also applies to 
infants [2]. In our study of clinically stable infants assessed 
before discharge, the highest PTIdi value was less than 
0.10 for those born at term and those born preterm without 
BPD, and less than 0.15 for the preterm infants previously 
diagnosed with BPD (Figs. 1 and 2). Therefore, the PTIdi 
thresholds may vary in different clinical settings or perina-
tal exposures (e.g., reduced tissue perfusion, hypoxemia, 
systemic inflammation, administration of corticosteroids) 
[2, 8–11, 28]. In any case, increased PTIdi values signify 
that the diaphragm is at a relative mechanical disadvantage 
and presents a lower force-generating capability over time, 
especially under conditions of increased inspiratory load 
[2, 14]. The critical PTIdi thresholds in infancy remain to 
be determined.

Our study is the first to systematically assess dia-
phragmatic function by means of Pdimax and PTIdi in 
infants. However, it has some limitations. First, we could 
not determine the threshold of diaphragmatic fatigue, for 
example, by measuring the time required for a given level 
of transdiaphragmatic pressure to become unsustainable 
(i.e., the time limit of the diaphragm) [1]. Thus, our main 
conclusion that an increased PTIdi poses preterm infants 
at a higher risk of diaphragmatic fatigue is based on the 
knowledge deriving from studies in adults [1, 13, 14]. 
Secondly, since only Pdimax and PTIdi were assessed, 
the effect of other respiratory muscles could not be evalu-
ated. The activity of the intercostal muscles stabilises the 
compliant neonatal rib cage and prevents inward distor-
tion during inspiration [6]. In preterm infants, chest-wall 
distortion may affect diaphragmatic performance [17, 

18], especially under conditions of increased inspiratory 
load or during rapid eye movement sleep [6]. Although 
our study included clinically stable neonates, who were 
breathing normally and were closely monitored for chest-
wall distortion or other signs of respiratory distress dur-
ing the measurements, the effect of the above mechanism 
could not be unequivocally assessed. Finally, the preterm 
infants of our study were tested at a more advanced postna-
tal age compared to their full-term counterparts (Table 1); 
therefore, their diaphragmatic function during the criti-
cal early days of life was not assessed. Finally, this was 
a pragmatic clinical study and the preterm infants were 
studied pre-discharge at an earlier median postmenstrual 
age (35.8–36.7  weeks) compared to the term infants 
(39.2 weeks) and a certain degree of immaturity might 
explain the differences in the observed respiratory muscle 
function indices. It is not uncommon however for preterm 
infants to be discharged home at a postmenstrual age of 
approximately 36–37 weeks, which would explain this dis-
crepancy in our population.

In conclusion, our study demonstrated that the dia-
phragmatic function in early infancy depended on matu-
rity at birth. We reported that preterm infants had lower 
diaphragmatic strength (i.e., lower Pdimax) and impaired 
ability to sustain the generated force over time (i.e., higher 
PTIdi) compared to their full-term counterparts, render-
ing them more susceptible to diaphragmatic fatigue, espe-
cially under conditions of increased respiratory workload. 
In very preterm infants, BPD was a significant determinant 
of PTIdi, thus suggesting that BPD may further negatively 
impact on diaphragmatic function.
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