
Vol.:(0123456789)1 3

https://doi.org/10.1007/s00431-023-04809-4

RESEARCH

Automated oxygen control for very preterm infants 
and neurodevelopmental outcome at 2 years−a retrospective cohort 
study

Hylke H. Salverda1   · N.Nathalie J. Oldenburger1 · Monique Rijken1 · R.Ratna N. G. B. Tan1 · Arjan B. te Pas1 · 
Jeanine M. M. van Klink2

Received: 29 April 2022 / Revised: 2 January 2023 / Accepted: 4 January 2023 
© The Author(s) 2023

Abstract
Faster resolution of hypoxaemic or hyperoxaemic events in preterm infants may reduce long-term neurodevelopmental impair-
ment. Automatic titration of inspiratory oxygen increases time within the oxygen saturation target range and may provide a 
more prompt response to hypoxic and hyperoxic events. We assessed routinely performed follow-up at 2 years of age after the 
implementation of automated oxygen control (AOC) as standard care and compared this with a historical cohort. Neurodevel-
opmental outcomes at 2 years of age were compared for infants born at 24–29 weeks gestational age before (2012–2015) and 
after (2015–2018) the implementation of AOC as standard of care. The primary outcome was a composite outcome of either 
mortality or severe neurodevelopmental impairment (NDI), and other outcomes assessed were mild-moderate NDI, Bayley-
III composite scores, cerebral palsy GMFCS, and CBCL problem behaviour scores. A total of 289 infants were included 
in the pre-AOC epoch and 292 in the post-AOC epoch. Baseline characteristics were not significantly different. Fifty-one 
infants were lost to follow-up (pre-AOC 6.9% (20/289), post-implementation 10.6% (31/292). The composite outcome of 
mortality or severe NDI was observed in 17.9% pre-AOC (41/229) vs. 24.0% (47/196) post-AOC (p = 0.12). No significant 
differences were found for the secondary outcomes such as mild-moderate NDI, Bayley-III composite scores, cerebral palsy 
GMFCS, and problem behaviour scores, with the exception of parent-reported readmissions until the moment of follow-up 
which was less frequent post-AOC than pre-AOC.

Conclusion: In this cohort study, the implementation of automated oxygen control in our NICU as standard of care for 
preterm infants led to no statistically significant difference in neurodevelopmental outcome at 2 years of age. 

What is Known:
• Neurodevelopmental outcome is linked to hypoxemia, hyperoxaemia and choice of SpO2 target range.
• Automated titration of inspired oxygen may provide a faster resolution of hypoxaemic and hyperoxaemic events.
What is New:
 • This cohort study did not find a significant difference in neurodevelopmental outcome at two years of age after implementing automated 

oxygen control as standard of care.

Keywords  Hypoxemia · Hyperoxia · Closed-loop · Algorithm · Neonate · Respiratory · Follow-up

Abbreviations
AOC	� Automated oxygen controller
BPD	� Bronchopulmonary dysplasia
BSID-III-NL	� Bayley Scales of Infant and Toddler 

Development-Third Edition – NL
CBCL	� Child Behaviour Checklist
FiO2	� Fraction of inspiratory oxygen
GMFCS	� Gross Motor Function Classification 

System

Communicated by Daniele De Luca.

 *	 Hylke H. Salverda 
	 H.H.Salverda@lumc.nl

1	 Department of Paediatrics, Division of Neonatology, 
Willem-Alexander Children’s Hospital, Leiden University 
Medical Center, PO Box 9600, Leiden, the Netherlands

2	 Department of Paediatrics, Division of Psychology, 
Willem-Alexander Children’s Hospital, Leiden University 
Medical Center, Leiden, the Netherlands

/ Published online: 25 January 2023

European Journal of Pediatrics (2023) 182:1593–1599

http://orcid.org/0000-0001-9355-5993
http://crossmark.crossref.org/dialog/?doi=10.1007/s00431-023-04809-4&domain=pdf


1 3

IVH	� Intraventricular haemorrhage
NDI	� Neurodevelopmental impairment
NEC	� Necrotising enterocolitis
NICU	� Neonatal intensive care unit
PVL	� Periventricular leukomalacia
ROP	� Retinopathy of prematurity
SpO2	� Oxygen saturation measured by 

pulse-oximetry

Introduction

Maintaining appropriate oxygenation in preterm infants admitted 
to the neonatal intensive care unit (NICU) has proved challenging 
but of importance to outcome. Neonatal morbidity and mortal-
ity are linked to hypoxemia, hyperoxaemia, and choice of SpO2 
target range [1–3]. Post hoc analysis of the Canadian Oxygen 
Trial data associated adverse neurodevelopmental outcome with 
hypoxia, in particular hypoxic episodes lasting more than 1 min 
[4]. Hunt et al. reported similar evidence in their report of home-
monitored preterm and term infants: Having five or more apneic/
bradycardic events was associated with a 5.6-point lower mental 
development index [5]. Neither study showed a significant dif-
ference for episodes under 1 min. These results could indicate 
that faster resolution of hypoxaemic or hyperoxaemic events may 
reduce long-term neurodevelopmental impairment (NDI).

Automatic titration of inspired oxygen (FiO2) can provide a 
more prompt response to these events than when titration is done 
manually by bedside staff. With the aim of keeping SpO2 in a 
specified target range, an automated oxygen controller (AOC) 
built into the respirator continually evaluates on the measured 
SpO2 and makes changes in FiO2 where necessary. Beside 
potential benefits to workload, it has been demonstrated that sev-
eral commercially available controllers increase the time preterm 
infants spent within the target range while used for 2–24 h peri-
ods, and prolonged episodes of hypoxemia and hyperoxaemia 
are reduced [6–13]. This was also reflected in a study [14] done 
in our centre while using an AOC as standard of care. How-
ever, to date, evidence on clinically relevant neonatal outcome 
is scarce [15] and lacking altogether beyond the neonatal period.

In August 2015, AOC was implemented as standard of care 
in the NICU of the Leiden University Medical Center (LUMC). 
Recently, we reported the effect of this implementation on the 
clinical outcome of preterm infants during admission [15]. 
Implementation did not lead to a change in mortality or rate 
of retinopathy of prematurity (ROP), necrotising enterocolitis 
(NEC), intraventricular haemorrhage (IVH), periventricular leu-
komalacia (PVL), or bronchopulmonary dysplasia (BPD), but 
there was less invasive ventilation in the post-implementation 
cohort. Thus far, none of the studies comparing manual oxygen 
control with AOC have reported the effect on long-term neu-
rodevelopmental outcome. We therefore aimed to compare the 
neurodevelopmental outcome of preterm infants born before and 

after the implementation of AOC as standard care with routinely 
performed 2-year follow-up assessment.

Materials and methods

Study design

A retrospective study was conducted in the NICU of the LUMC, 
a tertiary-level perinatal centre with annually around 100 inten-
sive care admissions of infants born before 30 weeks of gesta-
tion. A statement of no objection (G19.075) for obtaining and 
publishing the anonymised data was provided by the ethical 
board of the LUMC.

Infants admitted to the NICU between May 1, 2012, and 
December 31, 2018, and born between 24 and 29 weeks and 
6 days of gestation were included in the analysis. Infants were 
excluded from the study if they were admitted > 24 h after birth, 
required no invasive or non-invasive respiratory support during 
their admission, or had major congenital abnormalities.

The pre-implementation cohort included patients admitted 
between May 1, 2012, and June 17, 2015, that received FiO2 
manually titrated by bedside staff according to local guidelines. 
The post-implementation cohort consisted of infants admitted 
from October 18, 2015, to December 2018, taking into consid-
eration a washout period of 4 months.

Data collection

All data were obtained from our patient data management sys-
tems (Metavision; IMDsoft, Tel Aviv, Israel and HiX; ChipSoft, 
Amsterdam, The Netherlands). Infants were invited for follow-
up at 24 months corrected age for assessment by a neonatologist, 
paediatric physiotherapist, and paediatric psychologist. Respec-
tively, they were responsible for the general and neurological 
examination, the assessment of motor function, and the assess-
ment of cognitive functioning. The primary outcome was a 
composite outcome of mortality or severe NDI. Secondary out-
comes were as follows: mild to moderate NDI, early mortality 
(mortality until 1 month after corrected term age), late mortality 
(mortality between 1 month after corrected term age and 2-year 
follow-up), motor and cognitive development scores, visual 
impairment, hearing loss, cerebral palsy, behavioural function-
ing, and number of readmissions. Severe NDI was defined as at 
least one of the following: cerebral palsy (Gross Motor Func-
tion Classification System (GMFCS) [16] ≥ level 3), Bayley-III-
NL cognitive or motor scores less than two standard deviations 
under the mean, severe bilateral visual impairment or blindness, 
and/or bilateral sensorineural hearing loss or deafness needing 
hearing aids or cochlear implants. Mild to moderate NDI was 
defined as cerebral palsy GMFCS level 1 or 2, Bayley-III-NL 
cognitive or motor scores below one standard deviation under 
the mean, and mild visual and/or hearing impairment. Motor and 
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cognitive development were assessed using the Bayley Scales of 
Infant and Toddler Development Third Edition, Dutch version 
(Bayley-III-NL) [17, 18]. As the minimum cognitive composite 
score using the Bayley III is 55, children failing to achieve this 
were nominally assigned a score of 54. Bayley III floor motor 
composite score is 46; hence, children failing to achieve this 
were nominally assigned a score of 45 [19]. Visual impairment 
was classified as mild (needing treatment by an ophthalmolo-
gist or orthoptist), impaired vision with the ability to see, or 
blind. Hearing loss was defined as mild, neurosensory hearing 
loss, or deaf. Behavioural outcome was assessed using the Child 
Behavioural Checklist (CBCL 1.5–5 years) completed by par-
ents [20]. A classification of level 3 or higher on the GFMCS 
was considered severe [16]. When data could not be collected 
from the patient data management systems, the Dutch Perinatal 
and Neonatal register (Landelijke Neonatale Registratie) or other 
follow-up centres (university hospitals, revalidation centres) 
were consulted to complement the data.

Oxygen titration

During almost the entire study period, the AVEA ventila-
tor (Vyaire, Yorba Linda CA, USA) was used for respira-
tory support; after August 2015, this involved AOC by the 
CLiO2 (Closed Loop of inspired Oxygen) controller [8]. As 
of November 2018, newly born preterm infants were sup-
ported by the SLE6000 ventilator (SLE, London, UK) with 
the OxyGenie option for AOC [21]. Following recent Euro-
pean guidelines [22], in November 2014, we changed the 
SpO2 target range in our NICU from 85–95% to 90–95%.

Data analysis

Data are reported as mean (SD), median (range), or num-
ber (percentage) as appropriate, with standard tests for nor-
mality. Statistical comparison was executed using an inde-
pendent t-test, a Mann–Whitney U test, and a chi-square or 
Fisher’s exact test as appropriate. Statistical analyses were 
performed using IBM SPSS Statistics for Windows, version 
25 (IBM, Armonk, New York, USA). Two-sided P values 
of < 0.05 were considered statistically significant.

Results

Patient characteristics and neonatal period

In the period of 2012–2018, 588 infants were born in the 
LUMC or transferred to the NICU within 24 h after birth, 
293 infants in the pre-implementation period (pre-AOC) 
versus 295 infants in the post-implementation cohort (post-
AOC). There were no differences in baseline characteristics 
(Table 1). In the neonatal period, there were similar rates 
of IVH, PVL, and laser coagulation for ROP. More details 
on the neonatal period can be found in our previous study 
[15]. Three children were excluded from analysis due to 
major congenital abnormalities affecting neurodevelopment 
(2 pre-AOC, 1 post-AOC), and 4 were excluded because 
they moved to a different country (2 pre-AOC, 2 post-
AOC), leaving 289 infants in the pre-AOC group and 292 
infants in the post-AOC group. We were unable to obtain 
any follow-up data for 51 infants (pre-AOC 6.9% (20/289), 

Table 1   Patient characteristics 
and neonatal outcome

AOC automated oxygen control, ROP retinopathy of prematurity
a Statistical analysis with independent T-test, χ2, or nonparametric Mann–Whitney U test as appropriate

Patient characteristics (N = 581) Pre-AOC (N = 289) Post-AOC (N = 292) P valuea

Gestational age in weeksdays, median [IQR] 282 [266–290] 280 [263–286] 0.09
Birth weight in grams, mean (SD) 1037 (291) 1037 (261) 1.00
Males, n (%) 162 (56.1) 155 (53.1) 0.47
Antenatal corticosteroids, n (%) 246 (86.0) 253 (87.5) 0.59
Caesarean delivery, n (%) 143 (49.5) 154 (52.7) 0.43
Multiple pregnancy, n (%) 115 (39.8) 97 (33.1) 0.10
  of which monochorionic twins, n (%) 71 (61.7) 62 (63.9) 0.36

Perinatal asphyxia, n (%) 4 (1.4) 8 (2.7) 0.25
Apgar score at 5 min, median (range) 8 (2–10) 8 (1–10) 0.90
Intraventricular haemorrhage (≥ stage 2), n (%) 55 (19.0) 49 (16.8) 0.48
Periventricular leukomalacia (≥ stage 2), n (%) 4 (1.4) 6 (2.1) 0.53
Received laser coagulation for ROP, n (%) 13 (5.3) 14 (5.6) 0.85
Bronchopulmonary dysplasia
  Severe, n (%) 36 (14.2) 48 (18.8)
  Moderate, n (%) 12 (4.7) 4 (1.6) 0.10
  Mild, n (%) 44 (17.3) 37 (14.5)
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post-implementation 10.6% (31/292), baseline characteris-
tics Supplemental (Table 1–2).

Outcomes at 2‑year follow‑up

The composite primary outcome of mortality or severe NDI 
occurred in 17.9% (41/229; Table 2) before the implemen-
tation of AOC versus 24.0% (47/196) after implementa-
tion (p = 0.12). The majority was related to neonatal death 
(10.2% (30/289) vs. 10.8% (32/292) p = 0.82). After the 
neonatal period 0.4% (1/259) vs. 0.8% (2/259; p = 0.56), 

children died. Severe NDI was observed in 5.1% (10/198) 
before vs. 8.0% (13/162) after the implementation of AOC 
(p = 0.25). Mild to moderate NDI was detected in 38.5% 
(82/213) infants pre-AOC vs. 43.8% (78/178) after imple-
mentation (p = 0.29).

The median Bayley-III composite motor score was 97 
(89–107) pre-AOC and 98 (89–109) post-AOC (p = 0.18). 
The composite cognitive score was 96 (87–101) vs. 96 
(91–105) (p = 0.23). No significant differences were found 
in rates of scores between 1 and 2 SD under the mean (score 
70–85) and below − 2 SD under the mean (score < 70), for 

Table 2   Outcomes at 2 years 
follow-up

AOC automated oxygen control, NDI neurodevelopmental impairment, BSID Bayley Scales of Infant and 
Toddler Development,  CBCL  Child Behaviour Checklist,  GMFCS  Gross Motor Function Classification 
System
a Statistical analysis with independent T-test, χ2, Fishers’ exact, or nonparametric Mann–Whitney U test as 
appropriate

Pre-AOC Post-AOC P valuea

Adverse outcome (severe NDI or death) 41 (17.9) 47 (24.0) 0.12
  Severe NDI, n (%) 10 (5.1) 13 (8.0) 0.25
  Early death, n (%) 30 (10.2) 32 (10.8) 0.82
  Late death, n (%) 1 (0.4) 2 (0.8) 1.00

Mild-moderate NDI, n (%) 82 (38.5) 78 (43.8) 0.29
BSID III composite motor score, median [IQR] 97 [89 – 107] 98 [89–109] 0.18
  Score 70–85, n (%) 25 (12.6) 25 (12.8) 0.94
  Score < 70, n (%) 5 (2.5) 11 (5.6) 0.12

BSID III composite cognitive score, median [IQR] 96 [87–101] 96 [91–105] 0.23
  Score 70–85, n (%) 31 (13.4) 26 (12.7) 0.85
  Score < 70, n (%) 7 (3.0) 7 (3.4) 0.81

CBCL externalising T score, mean (SD) 51 (10) 50 (10) 0.69
CBCL internalising T score, median [IQR] 47 [41–55] 47 [41–55] 0.59
Visual impairment, n (%)
  None 213 (90.6) 166 (86.0) 0.25
  Mild impairment 19 (8.1) 25 (13.0)
  Limited vision 3 (1.3) 2 (1.0)
  Blind 0 (0) 0 (0)

Hearing loss, n (%)
  None 229 (98.3) 185 (96.4)
  Mild hearing loss 2 (0.9) 3 (1.6) 0.23 
  Abnormal, neurosensory hearing loss 0 (0) 3 (1.6)

Deaf 2 (0.9) 1 (0.5)
Cerebral palsy GMFCS, n (%)
  None 200 (84.7) 190 (88.0) 0.73
  Level 1 30 (12.7) 21 (9.7)
  Level 2 4 (1.7) 4 (1.9)
  Level 3 2 (0.8) 1 (0.5)
  Level 4 0 (0) 0 (0)
  Level 5 0 (0) 0 (0)

Readmissions until follow-up, n (%)
  None 130 (57.0) 149 (69.3)
  1–3 83 (36.4) 50 (23.3)  0.01

   > 3 15 (6.6) 17 (7.4)
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motor nor cognitive. Motor scores, respectively, for pre- vs. 
post-implementation cohorts: 12.6% (25/199) of the children 
had scores between 1 and 2 SD under the mean and 2.5% 
(5/199) below − 2 SD vs. 12.8% (25/195, p = 0.94) and 5.6% 
(11/195, p = 0.12) after implementation. Cognitive scores in 
the pre-implementation group were found in 13.9% (31/232) 
between 1 and 2 SD under the mean and under 2 SD under 
the mean in 3.0% (7/232) vs. 12.7% (26/204, p = 0.85) and 
3.4% (7/204, p = 0.81), respectively. We found no signifi-
cant differences between groups in externalising (51 ± 10 
vs. 50 ± 10, p = 0.69) or internalising (47 [41–55] vs. 47 
[41–55], p = 0.59) problem behaviour scores.

Neurological examination, cerebral palsy GMFCS scores, 
visual impairment, and hearing loss yielded no significant 
differences. However, parents did report significantly fewer 
readmissions until the moment of follow-up in the post-AOC 
group (p = 0.002).

Discussion

This is the first study to report data on long-term neurodevel-
opmental follow-up at 2 years corrected age in very preterm 
infants treated with automated oxygen titration as standard 
of care compared with manual oxygen titration as standard 
of care. Implementation of automated oxygen titration did 
not lead to a change in mortality or neurodevelopmental out-
come at 2 years. Although earlier studies [6–14] demonstrate 
an increase in time within the target range when using auto-
mated oxygen titration, we were not able to demonstrate an 
effect on neurodevelopmental outcome in this large cohort.

To date, there is little data on clinically relevant outcome 
of infants receiving automated oxygen titration. There is no 
data available on neurodevelopmental outcome after usage 
of AOC, and data on follow-up of preterm infants from non-
AOC studies are difficult to compare with, because they 
involved non-standard interventions [23, 24], infants born 
almost 15 years ago [25, 26], or had a study population that 
had markedly different characteristics [27, 28]. The out-
comes of both groups in our study are similar to the outcome 
of a previous cohort study from our centre [26].

The reason for fewer readmissions after the implementa-
tion of automated oxygen titration is not apparent from our 
data. Rates of BPD, ROP, and other morbidity potentially 
requiring re-hospitalisation are similar, although we did find 
fewer ventilation days in our previous study for the post-
AOC cohort [29].

A failure to demonstrate an impact on neurodevelop-
mental outcome after implementing automated titration 
can have several causes. In the previous study on achieved 
target range time in our NICU, we demonstrated that 
although infants spent more time within the target range 
overall, this was mainly attributed to a reduction in time 

above the target range. In fact, using the CLiO2 controller 
led to a 6% increase of time spent under the SpO2 target 
range (90–95%). This increase was mainly just below the 
(85–90%) target range while still having a similar proportion 
of hypoxaemia (< 80%). If indeed more time spent under 
the target range is where neurodevelopmental improvement 
can be gained, the lack of improvement in this area could 
explain the lack of impact on neurodevelopmental outcome. 
Furthermore, as reported before, it could be that outcome is 
more largely influenced by the frequency and duration of 
hypoxia and hypoxic events [30], which were not investi-
gated in our previous study nor in most other automated oxy-
gen controller studies. Also, preterm infants can experience 
many potentially harmful stimuli and events before being 
tested at 2 years of corrected age, in particular during the 
neonatal phase. Oxygenation deviations during respiratory 
support may play only a minor role in the eventual neurode-
velopmental outcome, meaning only very large randomised 
studies are able to demonstrate a statistically significant dif-
ference. Thirdly, neonatal care is a rapidly developing field 
with frequent changes to standard of care. Some of these 
unmeasured factors may influence the results in either direc-
tion. Finally, some of the adverse outcomes are relatively 
rare. If the effect of automated oxygen control is modest, 
a large clinical trial would be needed to observe an effect. 
Our study has a relatively modest convenience sample of 
581 infants. Currently, the FiO2-C trial randomises between 
automated oxygen control or manual titration during the 
entire NICU stay and will investigate the effect on clinical 
and neurodevelopmental outcomes at 24 months of corrected 
age [29]. As their reported sample size is 2340 participants 
and because it is a prospective interventional study, it is bet-
ter equipped to observe an effect. However, all commer-
cially available devices are allowed, which may diminish the 
effect. The study is projected to run until December 2022.

A change in target range from 85–95% to 90–95% may 
influence the time spent in (mild) hypoxia. In our case, one 
would expect that the 76% (223/293) infants in the pre-
implementation group born before November 2014 spent 
more time in the 85–90% range, as the lower limit was 
changed from 85 to 90%. The achieved proportion of time 
in the 85–90% range based on 1 min-values of the pre- and 
post-implementation data show no difference while infants 
received oxygen (pre-AOC 10.9 [8.6–13.5]%, post-AOC 
10.4 [7.7–12.7]%, p = 0.09) and a 1.8% difference when 
considering the entire period of respiratory support (pre-
AOC 5.5 [1.7–9.8]%, post-AOC 3.7 [1.6–7.6]%, p = 0.002; 
unpublished data). Van Zanten et al. reported before that 
the change of lower limit led to a reduction in achieved 
time within the 80–90% range in our unit, but time spent in 
hypoxia (SpO2 < 80%) was not different [31].

One of the inherent limitations of a retrospective design 
is the rate of missing data (loss to follow-up in this study: 
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pre-AOC 6.9%, post-AOC 10.6%), which is unfortunately 
frequently high in follow-up research. The majority of miss-
ing children were transferred to another university NICU 
in the neonatal phase and had subsequent follow-up there; 
therefore, we expect them to be missing at random and not 
related to neurodevelopmental outcome. However, children 
lost to follow-up may be under treatment in a special care 
facility and therefore not missing at random. Parents may be 
less inclined to present their child for follow-up when they 
already receive regular tests in such a facility. To limit biased 
results due to missing such children, we requested data for 
all children tested elsewhere. Another strength of the study 
is that we have a relatively large cohort in which we had 
few exclusion criteria, meaning the results are generalisable 
to other NICUs in a similar setting. Furthermore, children 
are tested by trained professionals as part of a standardized 
national follow-up programme, improving the repeatabil-
ity and reliability of the assessment of neurodevelopmental 
outcome. There may be several confounders in the study 
which we have not been able to adjust for, such as the type 
of automated oxygen controller, gestational age, and bron-
chopulmonary dysplasia. Despite most data being collected 
prospectively during standard follow-up, minimising recall 
bias, missing values for one of the outcomes was still rela-
tively common. This precludes us from adjusting for these 
confounders and is a limitation of this study.

Besides fewer parent-reported readmissions, no change 
in outcome occurred after the implementation of automated 
oxygen control. It is reassuring that outcomes did not dete-
riorate and that outcome of our follow-up is similar to ear-
lier reported data. Our results show no signs children are 
affected negatively by using an automated oxygen controller, 
whereas there are benefits for staff workload.

Conclusion

In this cohort study, the implementation of automated oxy-
gen control in our NICU as standard of care for preterm 
infants led to no significant difference in neurodevelopmen-
tal outcome at 2 years of age.
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