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Abstract
Neonatal early-onset sepsis (EOS) has unfortunately been the third leading cause of neonatal death worldwide. The current 
study is aimed at discovering reliable biomarkers for the diagnosis of neonatal EOS through transcriptomic analysis of publicly 
available datasets. Whole blood mRNA expression profiling of neonatal EOS patients in the GSE25504 dataset was downloaded 
and analyzed. The binomial LASSO model was constructed to select genes that most accurately predicted neonatal EOS. Then, 
ROC curves were generated to assess the performance of the predictive features in differentiating between neonatal EOS and 
normal infants. Finally, the miRNA-mRNA network was established to explore the potential biological mechanisms of genes 
within the model. Four genes (CST7, CD3G, CD247, and ANKRD22) were identified that most accurately predicted neonatal 
EOS and were subsequently used to construct a diagnostic model. ROC analysis revealed that this diagnostic model performed 
well in differentiating between neonatal EOS and normal infants in both the GSE25504 dataset and our clinical cohort. Finally, 
the miRNA-mRNA network consisting of the four genes and potential target miRNAs was constructed. Through bioinformatics 
analysis, a diagnostic four-gene model that can accurately distinguish neonatal EOS in newborns with bacterial infection was 
constructed, which can be used as an auxiliary test for diagnosing neonatal EOS with bacterial infection in the future.

Conclusion: In the current study, we analyzed gene expression profiles of neonatal EOS patients from public databases 
to develop a genetic model for predicting sepsis, which could provide insight into early molecular changes and biological 
mechanisms of neonatal EOS.

What is Known:
• Infants with suspected EOS usually receive empiric antibiotic therapy directly after birth.
• When blood cultures are negative after 48 to 72 hours, empirical antibiotic treatment is often halted. Needless to say, this is not a short time. 

Additionally, because of the concern for inadequate clinical sepsis production and the limited sensitivity of blood cultures, the duration of 
antibiotic therapy for the kid is typically extended.

What is New:
• We established a 4-gene diagnostic model of neonatal EOS with bacterial infection by bioinformatics analysis method. The model has better 

diagnostic performance compared with conventional inflammatory indicators such as CRP, Hb, NEU%, and PCT.
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Introduction

Early-onset sepsis (EOS) in newborns is a multiorgan sys-
tem dysfunction that can lead to severe neonatal morbidity 
and mortality when pathogenic microbial strains are iso-
lated from peripheral blood or cerebrospinal fluid within 
7 days of birth [1]. Acute kidney injury (AKI) is one of the 
most common conditions presenting with neonatal EOS [2]. 
In practice, many newborns with suspected EOS are given 
intravenous broad-spectrum antibiotics for several days, 
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which may interfere with early breastfeeding, lead to bacte-
rial dysbiosis, and increase the risk of morbidity for many 
diseases, such as type I diabetes, asthma, and necrotizing 
enterocolitis (NEC), although the incidence of neonatal EOS 
is less than 6 per 1,0000 [3–6]. Early antibiotic treatment of 
very low birth weight preterm infants with suspected sepsis 
without blood cultures is associated with an increased risk 
of subsequent morbidity and mortality [7, 8]. In addition, 
no studies to date have shown that infants with EOS could 
benefit from antibiotic therapy. Due to the limited predictive 
power of routine laboratory tests such as complete blood 
count, erythrocyte sedimentation rate (ESR), procalcitonin 
(PCT), and C-reactive protein (CRP) to effectively distin-
guish neonatal EOS from suspected EOS, this may prolong 
the use of antibiotics in uninfected infants [9–11]. Hence, 
attempts to discover specific biomarkers of neonatal EOS 
and to reduce unnecessary antibiotic exposure in neonates 
with suspected sepsis are exceptionally important for clinical 
neonatal care. In the current study, we analyzed gene expres-
sion profiles of neonatal EOS patients from public databases 
to develop a genetic model for predicting sepsis, which could 
provide insight into early molecular changes and biological 
mechanisms of neonatal EOS.

Materials and methods

Obtainment of the GSE25504 cohort 
and identification of differentially expressed genes 
(DEGs)

Whole blood mRNA expression profiling of neonatal EOS 
patients in the GSE25504 dataset was downloaded from 
gene expression omnibus (GEO) databases (http:// www. 
ncbi. nlm. nih. gov/ geo/), which included microarray data 
from four platforms (GPL570, GPL6947, GPL13667, and 
GPL15158). Then, the Limma R package with cut-off cri-
teria of p value less than 0.05 and |logFC|> 0.5 was used to 
identify DEGs between the sepsis and control groups on 
four platforms of the GSE25504 dataset. The overlapping 
DEGs among the four platforms were used to identify gene 
set enrichment with Gene set enrichment analysis (GSEA) 
in the Metascape database [12]. Results were considered 
statistically significant when the p value was less than 0.05.

Construction of the least absolute shrink 
and selection operator (LASSO) model

Based on these overlapping DEGs, the binomial LASSO 
model was constructed using the glmnet package on the 
GPL6947 platform. LASSO is a more refined model 
obtained by constructing a penalty function that makes 

it compress some coefficients while setting some coeffi-
cients to zero. Therefore, it retains the advantage of sub-
set shrinkage and is a kind of biased estimation dealing 
with data with complex covariance. The characteristic of 
LASSO regression is that when building a generalized lin-
ear model, variables can be selectively put into the model 
to obtain better performance parameters, thus avoiding 
overfitting. Here, the generalized linear model contains 
one-dimensional continuous dependent variables, multi-
dimensional continuous dependent variables, nonnegative 
count dependent variables, binary discrete dependent vari-
ables, and multivariate discrete dependent variables. The 
complexity of LASSO is controlled by λ, and the larger λ 
penalizes linear models with more variables more strongly, 
so as to finally obtain a good model with fewer variables. 
The score was at the last setup based on the premise of 
directly combining the equation underneath with the 
mRNA expression level duplicating the LASSO regression 
coefficient (β) when λmin was confirmed. Score = (βmRNA1 
× mRNA1) + (βmRNA2 × mRNA2) + … + (βmRNAn × mRN
An). The accuracy of the predictive features was assessed 
by ROC examination. Receiver operating characteristic 
curve (ROC) analysis was used to examine the model’s 
ability to discriminate between EOS and normal infants.

Clinical specimens and quantitative real‑time PCR 
(qRT‑PCR) analysis

In the period from 1 Jan 2022 to 30 Jun 2022, 99 normal 
and 60 EOS infants from Children’s Hospital Affiliated to 
Zhengzhou University were included in this single-center 
retrospective case–control study. EOS infants presented with 
significant clinical signs and symptoms of sepsis (respiratory 
distress, anemia, fever, decreased absolute neutrophil count, 
or increased C-reactive protein) were confirmed with the 
results of positive blood culture. Peripheral blood mono-
nuclear cells (PBMCs) were isolated from 1 mL of whole 
blood collected from each infant by density separation on a 
Ficoll-Paque. After total RNA was extracted from PBMCs, 
qRT-PCR was used to detect the mRNA levels of genes in 
the model [13]. Finally, the relative mRNA expression levels 
were normalized to β-ACTIN. Primer sequences are shown 
in Table 1.

Identification of miRNAs targeting genes in our 
diagnostic models

Perform miRNA target prediction analysis to identify miR-
NAs that target genes in our diagnostic model by binding to 
their 3′ UTRs with four online public websites, including 
TargetScan [14], mirDIP [15], miRWalk [16], and miRmap 
[17] databases. Subsequently, target miRNAs predicted 

http://www.ncbi.nlm.nih.gov/geo/
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concordantly by the four databases were chosen to construct 
a miRNA-mRNA network by Cytoscape software [18].

Statistical analysis

Categorical data were compared with the Pearson chi-square 
test or Fisher exact test whenever appropriate, and quantita-
tive variables were analyzed using the independent-sample 
t-test. The clinical characteristics of 159 infants are shown 
in Table 2. Results were considered statistically significant 
when the p value was < 0.05.

Results

Identification of overlapped DEGs

As shown in Fig. 1A, DEGs on the four platforms were 
screened with a cut-off criterion of p value < 0.05 and 
|logFC|> 0.5; 20 upregulated genes and 8 down-regulated 
genes were identified as common DEGs (Fig. 1B), which 
are shown in Fig. 1C. We also constructed a protein–protein 
interaction (PPI) network based on these DEGs (Fig. 1D). 
Twenty-eight nodes and 11 edges were acquired from the 
PPI network. The local clustering coefficient was 0.332, 
and the PPI enrichment p value was equal to 4.78e − 05. 
We found that CD247, CD3G, CD8B, and LCK might be 
the core genes. Finally, the results of the GSEA analysis 
showed that these overlapping DEGs are mainly associated 

with pathways related to infection, neutrophil degranulation, 
and cellular immune response (Fig. 1E).

Identification of critical genes involved in neonatal 
EOS

According to the binomial LASSO analysis, when λmin was 
equal to 0.02353066, eight genes (CST7, CD3G, CD8B, 
CD247, SIRPG, GPR84, MAL, and ANKRD22) were iden-
tified that most accurately predicted EOS (Fig. 2A). Score = 
(1.54278655 × CST7) − (0.02890854 × cd247) − (0.7832471
0 × CD3G) − (0.95299570 × CD8B) − (0.88133909 × SIRPG
) + (0.33541335 × GPR84) + 0.11719602 × ANKRD22) − (0
.55729858 × MAL). As shown in Fig. 2B, infants with EOS 
had significantly higher scores than these normal infants on 
the four platforms. What is more, the characterization of 
this eight-genes signature showed good diagnostic power 
with AUCs of 1, 1, 0.905, and 0.923 on the four platforms, 
respectively (Fig. 2C).

Verification of the diagnostic model in a clinical 
cohort

To verify the capability of the model in the diagnosing 
of neonatal EOS in actual clinical practice, qRT-PCR 
analysis was performed in a clinical cohort. There were 
no differences in gender, age, and NEU% levels between 
the EOS and normal infant groups (Table 2). The types 
of bacteria that the EOS infants were infected with are 

Table 1  The sequences of the 
qRT-PCR primers used in this 
study

Gene Forward primer Reverse primer

CST7 GTG TGA AGC CAG GAT TTC CTAA TGT CGT TCG TGC AGT TGT TGA 
CD3G TGG CCC AGT CAA TCA AAG GAA CAA GTC AGA AGT ACC GAA CCATC 
CD247 GGC ACA GTT GCC GAT TAC AGA CTG CTG AAC TTC ACT CTC AGG 
CD8B AGA CCC CTG CAT ACA TAA AGGT CGC TGT CTC AGC CAG TAG AT
SIRPG CCC GGC ATC ATC CCT TAC TG TTC CAG GGG ACG TAG ATG GG
ANKRD22 AGG GCA TGT GAG AAT CGT TTC GTA GCA TTC GTA CAA GAG CCTC 
MAL ACC GCT GCC CTC TTT TAC C GAA GCC GTC TTG CAT CGT GAT 
GPR84 GTG CTG GGC TAT CGT TAT GTT GAA TCG GGT ACG GAG CTT GG
β-ACTIN CGT GGG CCG CCC TAG GCA CCA TTG GCT TAG GGT TCA GGG GGG 

Table 2  Clinical characteristics 
of HCC patients involved in the 
study

Characteristics Normal infants (N = 99) EOS infants (N = 60) p value

Gender, n (%)
Male 56 (56.5) 32 (53.3) 0.743
Female 43 (43.4) 28 (46.6)
Age, day, mean ± SD 4 ± 2.0 4 ± 1.9 0.288
PCT, ng/mL, mean ± SD 9.39 ± 27.63 22.67 ± 36.71 0.002
Hb, g/L, mean ± SD 117.69 ± 31.56 100.20 ± 22.18 0.002
NEU%, mean ± SD 56.51 ± 18.60 51.23 ± 18.60 0.282
CRP, mg/L, mean ± SD 23.36 ± 41.27 43.16 ± 61.18 0.001
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shown in Fig. 3. EOS infants had higher levels of PCT 
and CRP and lower levels of Hb when compared with 
those in the normal group. All genes in the model except 
CD8B, SIRPG, GPR84, and MAL were differentially 
expressed in the peripheral blood of EOS infants and nor-
mal infants (Fig. 4A). Four genes that were not signifi-
cantly different were not included when calculating infant 
scores using the same formula. ROC analysis revealed 
that this diagnostic model performed well in our clini-
cal cohort (Fig. 4B). In addition, when compared with 
conventional inflammatory indicators such as C-reactive 
protein (CRP), hemoglobin (Hb), neutrophil percentage 

(NEU%), and procalcitonin (PCT), the model has better 
diagnostic performance.

Construction of the miRNA‑mRNA network

Due to the results of miRNA target prediction analysis within the 
four online public websites, as shown in Fig. 5A, a total of 5 miR-
NAs targeting the 3′ UTR of ANKRD22, 7 miRNAs targeting the 
3′ UTR of CD3G, 2 miRNAs targeting the 3′ UTR of CST7, and 
9 miRNAs targeting the 3′ UTR of CD247 were identified. Then, 
the miRNA-mRNA network consisted of genes in our diagnostic 
model, and potential target miRNAs were constructed (Fig. 5B).

Fig. 1  Identification of the common DEGs on the four platforms in 
the GSE25504 dataset. A Volcano plots of DEGs on four platforms. 
B The 28 duplicated DEGs were changed in EOS samples. C Names 

of the 28 overlapping DEGs. D PPI network construction. E Func-
tional enrichment analysis
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Discussion

Despite breakthroughs in prenatal care and antibiotic 
prophylaxis, neonatal EOS, unfortunately, remains the third 
leading cause of neonatal death worldwide, due to a lack 
of reliability in identifying those infants who are infected 
[19]. Blood cultures remain the current gold standard for the 
diagnosis of EOS, however, its sensitivity is low in neonates, 
and diagnosis is delayed [20]. As a result, many newborns 
with suspected EOS, especially premature infants, are rou-
tinely treated with broad-spectrum intravenous antibiotics 
for several days, although empirical antibiotic administra-
tion may have a potential negative impact on the growth and 
development of newborns [9]. Hence, to minimize unneces-
sary antibiotic exposure in newborns with suspected EOS, 
there is an urgent need in clinical neonatal management for a 

more reliable method to diagnose EOS that utilizes neonatal 
blood or tissue.

In our current bioinformatics analysis study, poten-
tial diagnostic biomarkers between the sepsis and con-
trol groups were identified on the four platforms of the 
GSE25504 dataset. Then, we selected 28 common DEGs 
to construct a binomial LASSO model. Finally, a prognos-
tic model consisting of eight genes was built and showed 
good diagnostic power on the four platforms. To verify 
the capability of the model in the diagnosing of neonatal 
EOS in actual clinical practice, qRT-PCR analysis was 
performed in a clinical cohort that consisted of periph-
eral blood samples from 99 normal and 60 EOS infants. 
All genes in the model except CD8B, SIRPG, GPR84, 
and MAL were differentially expressed in the peripheral 
blood of EOS infants and normal infants. After the score 

Fig. 2  Construction and ROC analysis of this eight-gene diagnostic 
model in the GSE25504 dataset. A Adjustment of parameter selec-
tion in binomial LASSO models by 10 times cross-validation. B Dif-

ference analysis of scores between normal and EOS infants. C ROC 
analysis of the eight-gene diagnostic model
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Fig. 3  Types of bacteria that infected EOS infants

Fig. 4  Verification of this eight-gene diagnostic model in a clinical 
dataset. A Difference analysis of eight genes expression between nor-
mal and EOS infants. B ROC analysis of the diagnostic model and 

other conventional inflammatory indicators in the clinical cohort. ns, 
not significant; **p < 0.01; ***p < 0.001
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of infants was calculated with the same formula based on 
the four DEGs (CST7, CD3G, CD247, and ANKRD22), 
ROC analysis revealed that this diagnostic model per-
formed well in our clinical cohort. In addition, when com-
pared with conventional inflammatory indicators such as 
CRP, Hb, NEU%, and PCT, the model has better diagnos-
tic performance. All the above results indicated that the 
diagnostic model constructed in our study could separate 
EOS infants from normal infants.

Most of the four genes in our diagnostic model are more 
or less associated with sepsis. Neutrophil-specific CST7 was 
significantly upregulated in the whole blood of patients with 
sepsis, and its encoded Cysteine F was involved in regu-
lating the cytotoxicity of natural killer (NK) cells within 
the tumor microenvironment [21, 22]. CD3G is an upregu-
lated gene involved in T cells and has been reported to be 
inversely correlated with sequential organ failure (SOFA) 
and mortality in sepsis [23]. CD247 has been reported to 
be involved in human and murine sepsis by many studies, 
and it can be involved in the occurrence and development of 
sepsis as a key gene of sepsis [24–29]. As for homo sapiens 
ankyrin repeat domain 22 (ANKRD22), which encoded a 
specific mitochondrial protein, it has been demonstrated to 
be involved in the progression of multiple tumors, including 
colorectal cancer [30], breast cancer [31], pancreatic cancer 
[32], prostate cancer [33], and nonsmall-cell lung cancer 
[34]; however, there are few relevant studies on sepsis and 
further investigation is required.

When compared with the previous study, in which miR-
NAs obtained from umbilical cord plasma or umbilical 

cord tissue could well distinguish neonatal EOS from 
normal infants [35], this four-gene diagnostic model has 
a better discriminatory ability. In addition, the umbilical 
cord plasma or tissue may no longer be readily available 
when the newborn presents with signs of sepsis, mak-
ing our model more practical. There is no doubt that our 
study has some limitations. The individual and geographic 
variability of EOS infants may affect the performance of 
this model. In addition, the small sample size in our clini-
cal cohort limits the validation of the model, and future 
multicenter randomized controlled studies are needed to 
evaluate this model. Finally, our study did not include 
blood-culture-negative infants with EOS. Considering that 
blood-culture-positive and negative infants may have dif-
ferent peripheral blood transcriptome genetic changes, we 
need to collect blood-culture-negative infants with EOS 
and detect the expression changes of the four genes in 
their peripheral blood to determine whether the four-gene 
signature we constructed could identify septic infants with 
negative blood cultures in the future.

Conclusions

In summary, we constructed a four-gene diagnostic model 
that can accurately differentiate neonatal EOS with bac-
terial infection by bioinformatics analysis, which can be 
used as an ancillary test for the diagnosis of neonatal EOS 
with bacterial infection in the future.

Fig. 5  Construction of miRNA-mRNA network. A miRNA target prediction analysis within the four online public websites. B The miRNA-
mRNA network consists of genes in our diagnostic model and potential target miRNAs
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