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Abstract
Heart rate variability (HRV) is currently considered the most valuable non-invasive test to investigate the autonomic nervous
system function, based on the fact that fast fluctuations might specifically reflect changes of sympathetic and vagal activity. An
association between abnormal values of HRV and brain impairment has been reported in the perinatal period, although data are
still fragmentary. Considering such association, HRV has been suggested as a possible marker of brain damage also in case of
hypoxic-ischemic encephalopathy following perinatal asphyxia. The aim of the present manuscript was to review systematically
the current knowledge about the use of HRV as marker of cerebral injury in neonates suffering from hypoxic-ischemic enceph-
alopathy. Findings reported in this paper were based on qualitative analysis of the reviewed data.

Conclusion: A growing body of research supports the use of HRV as non-invasive, bedside tool for the monitoring of hypoxic-
ischemic encephalopathy. The currently available data about the role of HRV as prognostic tool in case of hypoxic ischemic
encephalopathy are promising but require further validation by future studies.

What is Known:

* Heart rate variability (HRV) is a non-invasive monitoring technique to assess the autonomic nervous system activity.

* A correlation between abnormal HRV and cerebral injury has been reported in the perinatal period, and HRV has been suggested as possible marker
of brain damage in case of hypoxic-ischemic encephalopathy.

What is New:

* HRV might provide precocious information about the entity of brain injury in asphyxiated neonates and be of help to design early, specific, and
personalized treatments according to severity.

* Further investigations are required to confirm these preliminary data.

Communicated by Daniele De Luca

>4

Iliana Bersani
ilianabersani@gmail.com

Fiammetta Piersigilli
fiammetta.piersigilli@opbg.net

Diego Gazzolo
dgazzolo @hotmail.com

Francesca Campi
Francesca.campi@opbg.net

Immacolata Savarese
immacolata.savarese @opbg.net

Andrea Dotta
andrea.dotta@opbg.net

Pietro Paolo Tamborrino
pietropaolotamb @ gmail.com

Cinzia Auriti
cinzia.auriti@opbg.net

Corrado Di Mambro
corrado.dimambro @opbg.net

Department of Medical and Surgical Neonatology, Bambino Gesu
Children’s Hospital, Rome, Italy

Cliniques Universitaires Saint Luc, Université Catholique de
Louvain, Bruxelles, Belgium

Neonatal Intensive Care Unit, G. d’Annunzio University,
Chieti, Italy

Pediatric Cardiology and Cardiac Arrhythmia/Syncope Complex

Unit, Department of Pediatric Cardiology and Cardiac Surgery,
Bambino Gesu Children’s Hospital, Rome, Italy

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00431-020-03882-3&domain=pdf
http://orcid.org/0000-0002-3020-2274
mailto:ilianabersani@gmail.com

1336

Eur J Pediatr (2021) 180:1335-1345

Keywords Heart rate - Heart rate variability - Neonate - Brain damage - Hypoxic ischemic encephalopathy - Asphyxia -

Therapeutic hypothermia

Abbreviations

ANS Autonomic nervous system

ECG Electrocardiogram

HF High-frequency band

HR Heart rate

HRV Heart rate variability

Hz Hertz

LF Low-frequency band

NN Normal-to-normal R-R interval

pNN50  Percentage of normal R-R intervals that differ by
50 milliseconds

rMSSD  Root mean square of successive R-R interval
differences

SDANN  Standard deviation of the average normal R-R in-
terval differences

SDNN Standard deviation of normal R-R intervals

Introduction

Perinatal asphyxia and hypoxic ischemic
encephalopathy

Perinatal asphyxia (PA) is a major cause of morbidity and
mortality in infants. A severe complication of PA is the
hypoxic-ischemic encephalopathy (HIE), often associated
with impaired neurodevelopment [1-3]. Hypothermia, begun
within the first 6 h of life, provides neuroprotection and im-
proves neurological outcome in mild/moderate forms of HIE,
but has poor effect in case of severe HIE [4—7]. Recent pro-
gresses in the search for neuroprotective compounds sug-
gested that the optimal therapeutic strategy for HIE might be
the use of combined treatments, i.e., the use of hypothermia in
association with neuroprotective drugs. Therefore, the early
identification of neonates at the highest risk for abnormal
neurodevelopment who would benefit from additional neuro-
protective drugs would be crucial, especially considering that
neonates might show only mild symptoms of cerebral injury
in the first period after the hypoxic insult, due to the intrinsic
pathophysiologic mechanisms leading to brain damage or to
the therapies which may inhibit symptoms development
[8-11].

Currently, standard monitoring techniques of brain dam-
age in asphyxic neonates may sometimes be insufficient for a
precocious overview about the entity of brain injury and a
proper prognostication. The role of magnetic resonance im-
aging (MRI), the gold standard technique for the prediction
of neonatal neurologic outcome in neonates with HIE, is
unfortunately limited in the first hours after birth [12].
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Continuous electroencephalogram recordings, amplitude-
integrated electroencephalography (aEEG) has an important
and well-established role for HIE diagnosis and monitoring
[13] but is not always available for logistic issues, and its
evaluation requires specific training being influenced by mul-
tiple factors (muscular activity, medications, electrocardio-
graphic (ECG) signal) [14, 15]. Furthermore, false normal
aEEG background patterns are possible in neonates with
HIE treated with hypothermia [16]. Multiple biomarkers of
brain activity have also been investigated in different biolog-
ic fluids, but none of them has still been included in the
international guidelines for the assessment of HIE despite
an increasing body of evidence concerning their reliability
[17]. As a whole, this means that clinicians still lack a reli-
able and precocious marker of brain injury in daily clinical
practice and that the measurement of quantitative parameters
able to diagnose sub-clinical lesions at an early stage and to
evaluate the effectiveness of the therapeutic strategies could
be especially useful.

Heart rate variability

Neonatal cardiovascular system is characterized by physiolog-
ical modifications, allowing a proper adaptation to the extra-
uterine life. Hearth rate (HR) regulation is achieved through
the sympathetic and parasympathetic components of the auto-
nomic nervous system (ANS). Neonates typically show high
HR compared with older infants, corresponding to a cardiac-
linked predominance of the sympathetic activity and to a de-
creased vagal activity [18]. Heart rate variability (HRV) is a
physiologic phenomenon describing the oscillations in the
interval between consecutive heartbeats as well as the oscilla-
tions between consecutive instantaneous heart rates (HRs)
[19, 20]. HRV is currently considered the most valuable
non-invasive test to investigate ANS function, based on the
evidence that fast fluctuations might specifically reflect
changes of sympathetic and vagal activity [21]. Overall, low
HRYV values usually reflect a relative sympathetic dominance
achieved by high sympathetic tone and/or low parasympathet-
ic tone, while high HRV values mirror an increased vagal
activity.

HRYV measures are mainly classified into two categories:
standard linear time-domain and standard linear frequency-
domain [19].

* Time-domain measures in long-term ECG recordings
(24-h Holter monitoring) allow the assessment of both
the instant HR and the intervals between consecutive nor-
mal QRS complexes (normal-to-normal R-R interval,
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NN). They also permit the registration of further variables
derived from NN intervals, of which the most relevant are
(1) SDNN (standard deviation of normal R-R intervals)
and SDANN (standard deviation of the average normal
R-R interval differences), which reflect either the sympa-
thetic or the parasympathetic regulatory effect on the HR
and (2) tMSSD (root mean square of successive R-R in-
terval differences) and pNN50 (percentage of normal R-R
intervals that differ by 50 milliseconds), which exclusively
assess the parasympathetic modulatory effect [21, 22].

» The frequency-domain methods, with spectral analysis
using Fast Fourier Transform, analyze HR variations by
subdividing HR signal into its constituents and quantify-
ing their relative intensity (power) [21]. However, the
analysis of frequency-domain measures requires a more
sophisticated technical assessment and is subject to greater
risk of error compared with the time-domain measures.
Such short-term recordings of HRV (usually 5—10 min)
identify four main spectral components: (1) high frequen-
cy (HF, ranging between 0.15 and 1.5 Hz), a measure
assessing the parasympathetic activity [23]; (2) low fre-
quency (LF, ranging between 0.04 and 0.15 Hz), consid-
ered, although not univocally, as marker of sympathetic
tone by some authors and of autonomic balance by others
[18, 24]; (3) very low frequency (VLF, ranging between
0.0033 and 0.04 Hz), a less defined component with an
unclear specific physiological process attributable to these
heart period changes; (4) ultra-low frequency (ULF, band
< 0.003 Hz), which requires a recording period of at least
24 h and is highly correlated with the SDANN time-
domain index. There is no consensus regarding the mech-
anisms that generate ULF power; very slow-acting biolog-
ical processes in newborn are implicated, such as circadian
rhythms. Measurement of HF, LF, VLF, and ULF is usu-
ally made in absolute values of power (ms?), but LF and
HF may also be measured in normalized units (n.u.),
which represent the relative value of each power compo-
nent in proportion to the total power minus the VLF com-
ponent. The representation of LF and HF in n.u. empha-
sizes the controlled and balanced behavior of the two
branches of the autonomic nervous system. Moreover,
normalization tends to minimize the effect on the values
of LF and HF components of the changes in total power.
Nevertheless, n.u. should always be quoted with absolute
values of LF and HF power in order to describe in total the
distribution of power in spectral components. Lastly, LF/
HF ratio is a better index of sympathetic-parasympathetic
balance and an expression of sympathetic modulations on
the HR. Decreased LF/HF ratio reflects sympathetic with-
drawal and consequent vagal predominance [21, 22].
Basically, HF power correlates with rMSDD and pNN50
index whereas LF power correlates with SDNN index
[25].

For HRV analysis in newborns, also nonlinear dynamics-
based methods, including Poincar¢ plot geometry, sequence
plot, Approximate Entropy, SampEn Entropy, symbolic dy-
namics methods, and time irreversibility analysis were applied
[26]. In addition to the traditional linear methods, such non-
linear methods can provide some additional information, i.e.,
the Poincaré plot geometry provides a graphical representation
of the correlation of successive R-R intervals, the balance
between short and long-term variability, and is related to
rMSSD, while Approximate Entromy and SampEn entropy
depend on autonomic nervous system activity with different
mechanisms.

HRYV is controlled by complex regulatory mechanisms in-
volving the cardiovascular system and the central nervous
system, and peculiarities in its regulatory mechanisms are de-
tectable during fetal/neonatal life phases [20, 27]. HRV is
influenced by genetic factors [20, 28, 29], gestational age
[20, 22, 30], postnatal age [18, 30, 31], postconceptional age
[32], birth weight [20, 31, 33—37], delivery mode [18, 38], and
gender (the latter with discordant results) [20, 27, 37, 39-44].
Moreover, a combination of multiple factors such as respira-
tory sinus arrhythmia, postnatal maturation, withdrawal of
perinatal stress, and exercise/sleep stage may affect HRV in
the early postnatal period as well [20, 45-48]. If the state of
the patient varies during recording, the dominant results of
spectral methods correspond to the changes in patient behav-
ior rather than to the changes in sympathovagal tone. For this
reason, a precise validation of spectral results requires that
recordings are made during a “steady state.” Also, pathologic
conditions such as respiratory distress syndrome [41, 49], clin-
ically significant patent ductus arteriosus [50], congenital
heart defects [S1, 52], neonatal sepsis [53, 54], necrotizing
enterocolitis [55], and brain damage (traumatic injury/sei-
zures/edema/periventricular hemorrhage/hydrocephalus/PA)
[45, 56-63] may influence HRV values in the neonatal period
[20]. Furthermore, decreased HRV was reported in very low-
birth-weight neonates with abnormal neurodevelopment [64,
65] As a whole, since reduced HRV values are detected in
case of perinatal brain injury and tend to improve consensu-
ally with disease improvement, HRV might (1) be useful for
an early diagnosis of disease, (2) represent a possible prog-
nostic physiomarker in the neonatal period, and (3) reflect the
efficacy of therapeutic interventions throughout time.

Heart rate variability and hypoxic ischemic
encephalopathy

Considering the reported association between HRV and neu-
rologic impairment, HRV has been suggested as possible
marker of brain damage also in case of PA. Data from animal
models support this hypothesis [66].

The mechanisms leading to depressed HRV in neonates as
a consequence of a hypoxic-ischemic injury are multiple:
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(1) Effects of asphyxia on the cardiovascular system, since
PA is often associated with hemodynamic instability
characterized by myocardial dysfunction, right and left
ventricular failure, hypotension, and eventual arrest
[67—70]. Multiple factors such as low HR, acidosis, and
cardiac hypoperfusion with ischemic injury are respon-
sible for this condition [70, 71]. Furthermore, hypother-
mia induces peripheral vasoconstriction which may
mask hypotension by increasing diastolic pressure [72].
To date, inconclusive data assessing HRV modifications
during neonatal heart failure exist. However, extrapolat-
ing information from studies performed in adults with
heart failure (although affected by chronic heart disease,
mostly related to coronary disorders), it seems possible
to speculate that acute myocardial dysfunction may be
associated with a significant reduction of HRV values
also in neonates, especially of the SDNN/SDANN pa-
rameters among the time-domain components and of the
LF among the frequency-domain components.

(2) Direct subcortical or brainstem injury leading to auto-
nomic dysfunction is one possible physiopathologic
mechanism [73]. This condition is supported by studies
in animal models, showing that acute asphyxia stimu-
lates the ANS leading to fetal distress [66]. As already
mentioned above, depressed HRV in the perinatal period
is associated with different forms of brain damage in-
cluding traumatic injury, seizures, edema, periventricular
hemorrhage, hydrocephalus, and PA [20, 45, 56-63].
Overall, HRV values following brain damage suggest
modifications of the ANS with a shift in the balance
between cardiac autonomic activity toward increased
vagus nerve signaling [74, 75].

(3) Pro-inflammatory status with increased release of in-
flammatory cytokines able to influence HRV values.
Interestingly, such physiopathologic mechanisms seem
to be the same leading to neonatal sepsis, which, as for
asphyxia, is associated with low HRV values [20, 39, 54,
76, 77].

(4) The presence of seizures, since autonomic alterations of-
ten occur during such events [58—61, 78], although only
very poor data are currently available in neonates with
HIE. Malarvilii et al. assessed HRV changes in eight ne-
onates with EEG-documented seizures, finding that HRV
was sensitive to changes in the cardioregulatory system
induced by seizure occurrence and suggesting a possible
role for HRV as physiomarker for an automatic seizure
detection [60]. Statello et al. investigated the reliability of
HRYV indexes of cardiac autonomic regulation for the de-
tection of neonatal seizures by contemporary assessments
of ECG tracings and video-EEG monitoring. The authors
found that infants with seizures had lower resting-state
HRYV compared with controls and that seizure episodes
were characterized by a short-lasting increase in vagal
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indexes of HRV. They also found GA-depending modi-
fications of HRV, since premature neonates had lower
HRYV values at rest compared with term neonates.
Furthermore, compared with the respective baseline
HRYV values, preterm infants showed no changes in
HRYV values before and during seizures whereas term ne-
onates showed a significantly increased HRV [61].

(5) Presumably, a combination of all these mechanisms
could be responsible for a depressed HRV in neonates
with HIE.

The number of studies focusing on the role of HRV as
marker of brain damage in humans is limited. Continuous
monitoring of the fetal HR has been widely used by obstetri-
cians to achieve detailed information about fetal status. Also,
abnormal HRV during fetal life correlates with a higher risk of
subsequent neonatal HIE [79-81]. Such abnormal HRV de-
tected in fetal monitoring may reflect placental hypoperfusion
leading to chronic hypoxemia [79]. In agreement with such
observations, some authors addressed HRV in the early post-
natal period to investigate whether this parameter may be of
help for the early diagnosis, stratification, and monitoring of
neonates affected by HIE. On this basis, we performed a sys-
tematic review of the current literature focusing on available
studies performed in asphyxic neonates with HIE to address
the reliability of HRV as biomarker of brain damage [82].

Methods
Search strategy and selection criteria

This systematic review was conducted in agreement with the
PRISMA guidelines [82]. For reliability, two review authors
(I.B. and F.P.) independently analyzed the available literature
through database searching (PubMed, Cochrane Library,
Scopus, Web of Science) from January 1976 to June 2020.
Search terms included “heart rate variability” AND “neonatal
brain injury” OR “neonatal asphyxia” OR “perinatal asphyx-
ia” OR “hypoxic ischemic encephalopathy” OR “hypoxic
ischaemic encephalopathy” OR “neonatal encephalopathy”
OR neonatal hypoxia.” English-language, peer-reviewed
studies were included. Case reports, animal studies, and con-
ference absracts were excluded. We considered the studies
eligible if including term/late preterm (> 35 weeks gestational
age) infants affected by HIE with a postnatal age < 7 days at
the beginning of HRV assessment. Possible biases that were
considered were the different holter-ECG techniques that were
used and the heterogenicity of the studies, as some babies
underwent therapeutic hypothermia and some did not. Any
disagreement about study eligibility was resolved by discus-
sion with a third review author (C.D.M) until consensus.
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Data extraction

Data from eligible studies were indipendently extracted by
two review authors (I.B. and F.P.). We included all prospec-
tive cohort studies, retrospective cohort studies, and case-
control studies assessing the HRV of asphyxic neonates in
comparison with abnormal neonatal neurologic outcome or
abnormal brain imaging on MRI. Any disagreement about
data extraction was resolved by discussion with a third review
author (C.D.M) until consensus. Pertinent findings from the
included studies were tabulated under the following headings:
study design; number, GA, BW of the HIE neonates included,
treatment with hypothermia; main outcomes (Table 1).
Disagreements about data extraction were resolved by discus-
sion with a third review author (C.D.M.) until consensus.
Disagreements about data extraction were resolved by discus-
sion with a third review author (YH) until consensus.

Results

The searches identified 1556 potentially relevant papers,
687 after duplicates were removed. After title and abstract
screening, 84 full-text studies were consided potentially
eligible for inclusion and (77 studies were excluded for
the following reasons: (1) animal poopulation (n = 12);
(2) fetal population (n = 33); (3) not relevant comparators
(n =25); (4) study design (n = 5); (5) preterm population
(n = 1); (6) non-English language (n = 1) (Fig. 1). Of the
7 included studies, 5 were retrospective [78, 84—87] and
two prospective [39, 83].

A total number of 297 HIE neonates was included in the
present review. Of these, 253 received hypothermia, while 44
did not since hypothermia was not a standard of care at the
study time. The characteristics and most relevant findings of
the included studies are reported in Table 1.

Table 1 Studies assessing HRV as marker of brain damage in asphyxic neonates with HIE
Study design HIE GA (weeks) Mean BW (g) Therapeutic Main outcomes Reference
neonates hypothermia
(n)
Prospective, 16 Mean 37.8+ >1800 g Yes Lower low-frequency power associated with more ~ Barbeau et al.
observational 2 severe brain injury pattern on MRI [39]
Prospective, 49 38.6+1.5 32408 Yes Correlation between the absolute spectral powers in  Govindan
observational three frequency bands (very LF (0.016-0.04 et al. [83]
Hz)/LF (0.05-0.25 Hz)/HF (0.3-1 Hz)) and
SDNN with brain injury patterns on MRI
Retrospective, 44 HIE group:  HIE group: 3384 No HRYV negatively associated with EEG grade at 12-48 Goulding
observational median 39 (1830, 5040) h after birth, with significant differences in HRV et al. [84]
(3642)  Controls: 3601 (2980, between mild/moderate and mild/severe EEG
4060) grades
Correlation between HRV and neurodevelopmental
outcome at 2 years of age
Retrospective, 67 Mean 38.4 + 3236+ 511 Yes Day 1 HRV and HRC Index associated with Vergales et al.
observational 1.4 moderate/severe EEG, moderate/severe MRI, [78]
death
Low HRV and high HRC index remained
significantly associated with moderate/severe en-
cephalopathy on EEG after rewarming
Retrospective, 74 >35 > 1800 Yes Correlation between brain injury pattern on MRl and Metzler et al.
observational degree of HRV suppression [85]
Negative associations between pattern of brain injury
and RMSS, RMSL, and LF power
Retrospective, 27 38.3+2.1 3240 + 894 Yes Correlation between brain injury patterns on MRI ~ Kayton et al.
observational and heart rate characteristic (HRC) index score [86]
Retrospective, 20 Adverse Adverse outcome: Yes Correlation between HRV and death/neurologic Massaro et al.
case-control outcome: 3630 + 150 outcome at 15 months [87]
mean Favorable
389+04 outcome: 3330 +
Favorable 290
outcome:
mean
38.5+0.6

HIE Hypoxic ischemic encefalopathy, GA gestational age, BW birth weight, /RV heart rate variability, EEG electroencephalography, MRI magnetic
resonance imaging, rMSSD Root mean square of successive R-R interval differences, HF High-frequancy band, LF low-frequency band
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Fig. 1 Flow-chart of study ’

Studies identified through database searching (n=1556) ‘

selection process

y

Studies after duplicates were removed (n=687)

4

Studies excluded (title not relevant) (n=523)

4

’ Studies screened (n=164)

‘ E— ’ Studies excluded based on abstracts screening (n=87)

4

Full-text studies excluded (n=77)

* Animal population (n=12)

’ Full-text studies assessed for eligibility (n=84) ‘ —

* Fetal population (n=33)

4

* Not relevant comparators (n=25)

* Study design (n=5)

’ Full-text studies included in qualitative synthesis (n=7) ‘

* Preterm population (n=1)

Discussion

The number of studies dealing with the role of HRV as marker
of brain injury in HIE infants has increased during the last
decade. Despite promising results, however, inconclusive data
exist about the accuracy of HRV as marker of HIE in asphyxic
neonates. This is mainly due to the fact that the available
studies on this topic are mostly retrospective, are affected by
the heterogeneity of the index and the reference test, used no
standardized methodology for HRV measurement, included
small sample sizes, and did not investigate properly multiple
confounding factors such as sedation/seizures/temperature
[88, 89].

Aliefendoglu et al., who assessed for the first time HRV
values by Holter ECG monitoring recordings in neonates with
HIE based on the criteria described by Sarnat and Sarnat [73],
found that HIE infants had significantly lower LF and LF/HF
values and higher HF values compared with controls.
Furthermore, cases with severe HIE showed decreased LF
and LF/HF values and increased HF values compared with
those with moderate HIE reflecting increased parasympathetic
and decreased sympathetic drive [90].

Barbeau et al. prospectively assessed HRV as predictor for
neurological impairment in infants with HIE treated with hy-
pothermia. HRV measurement was achieved from a 300-s
period of the ECG signal and measured first during cooling
(6-72 h of life) and then after rewarming. Of the 16 included
neonates, 11 had none/mild findings, and 5 had moderate/
severe findings on MRI. According to the study results, during
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* Non-english language(n=1)

hypothermia: (1) neonates with no/mild injury showed higher
levels of LF power than neonates with moderate/severe injury,
with similar LF power between male and female infants; (2)
comparable HF power and ratio of LE/HF power was detected
between the two groups and between males/females; (3) me-
chanical ventilation did not significantly affect HRV, although
LF power seemed to be weakly influenced; (4) the need for
pressor drugs was comparable between the two groups.
During normothermia, (1) there were no statystically signifi-
cant differences in LF, HF, or LF/HF by severity powers; (2)
HRYV differed by gender, being higher in males, who also had
a lower LF/HF ratio compared with females. Although limited
by its small sample size, this study provides further evidence
supporting the role of HRV as monitoring and prognostic tool
in HIE neonates [39].

Govindan et al. prospectively investigated HRV as moni-
toring tool in HIE neonates receiving hypothermia. The au-
thors found that the absolute spectral powers in three different
frequency bands, i.e., very low frequency (0.016-0.04 Hz),
low frequency (0.05-0.25 Hz), and high frequency (0.3—1
Hz), correlated with brain injury/death [83].

In a retrospective, observational study including neonates
born prior to the introduction of hypothermia, HRV was neg-
atively associated with EEG grade at 12—48 h after birth, with
significant differences in HRV between mild/moderate and
mild/severe EEG grades [84]. Such findings could be of spe-
cial help for clinicians, since although the clinical distinction
between mild and severe forms of HIE is usually easy, a prop-
er identification between the mild and moderate forms of HIE
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may sometimes be challenging [91]. The authors found a cor-
relation between HRV and neurodevelopmental outcome at 2
years of age. Considering that only a minority of neonatal
intensive care units have a 24-h/day access to EEG monitor-
ing, such results are promising [84]. However, as the authors
themselves state in the text, this study had multiple limitations:
(1) the intrinsic nature of a retrospective study; (2) being the
primary outcome the assessment of EEG activity in HIE neo-
nates, ECG quality was sometimes suboptimal; (3) these data
did not assess the EEG within the first 6 h of life which, to
date, represent a crucial cut-off for the beginning of
hypothermia.

Vergales et al. analyzed records of neonates with moderate-
severe HIE receiving hypothermia. HRV was significantly
lower within the first 24 h from birth in neonates with
moderate-severe abnormalities on EEG recordings compared
with those with mildly abnormal/normal EEG. Neonates with
moderate-severe anomalies on MRI also had depressed HRV
on day 1 of life compared with those with normal or mildly
abnormal MRI. Furthermore, HRV on the first day of life was
lower in neonates who died compared with survivors.
Considering that hypothermia itself may affect HRV, the au-
thors also assessed HRV before, during, and after rewarming
and found no statistical differences. This may reflect a pro-
gressive improvement in ANS function in the days after an
acute ischemia-reperfusion insult. They also found that HRV
was not influenced by plasma phenobarbital levels. HRV
values progressively improved in the first week of life, but a
statistical association between lower values of HRV and
moderate-severe anomalies on EEG after the rewarming phase
persisted. As a whole, these data suggested that HRV may
represent a precocious and noninvasive prognostic marker
for HIE. However, no data about the long-term neurologic
outcome were provided [78].

Metzler et al. investigated the presence of any correlation
between HRV values and brain injury patterns on MRI in
neonates with HIE treated with hypothermia, describing a cor-
relation between HRV low values at 24-27 h of life and brain
injury severity on MRI [85]. These results may be relevant
considering that although MRI provides accurate anatomical
information, its accessibility within the first 24 h of life is
limited due to clinical/logistic issues. Some limitations of the
study include the small sample size and the fact that covariates
which could have an impact on HR and HRV, such as intrinsic
myocardial dysfunction, dose/cumulative amount of vaso-
pressors required, and respiratory oscillations related to the
ventilator, were not exactly considered [85]. Kayton et al.
assessed the correlation between the so-called HRC index
score, based on a regression model including measures of
HRYV and patterns of brain injury on MRI in neonates with
HIE. The authors found statistically significant correlations
between HRC index scores and brain injury patterns on MRI
at baseline, 24, and 96 h [86].

In a significant pilot study including 20 term neonates with
HIE treated with hypothermia, Massaro et al. investigated
whether a longitudinal assessment of HRV over the course
of hypothermia and rewarming phases was able to predict
death or impaired neurodevelopment at 15 months of life.
The authors found lower HRV values in neonates with ad-
verse outcome. HRV was mostly affected at two main time
points: (1) at 24 h of life and (2) after 80 h of life, after
rewarming was completed [87]. These results are of particular
interest since such time-points reflect the pathophysiologic
events which are known to be crucial for HIE evolution. In
fact, it is known that a hypoxic-ischemic insult triggers a cas-
cade of excitotoxic, proinflammatory, oxidative stress, and
proapoptotic pathways, which peak at 24 h after the insult
[92]. Although hypothermia might improve the impact of such
dangerous cascade of events in most neonates, it might be
unable to annihilate such process in those who will develop
adverse outcomes despite cooling. Furthermore, the signifi-
cant HRV reduction assessed after 80 h of life may imply a
progression of brain injury after hypothermia cessation. As a
whole, these data could lay foundations for a cautious recon-
sideration of the optimal duration of hypothermia based on
HRYV monitoring [87]. However, as stated by the authors
themselves, the study had limitations which need to be taken
into account: (1) small sample size; (2) the authors were un-
able to differentiate whether decreased HRV was related to a
direct effect of asphyxia on the myocardium or rather to an
indirect effect of medications/critical care interventions, sei-
zures, or ANS dysfunction following brainstem damage; (3)
neurologic outcome was assessed at 15 months of life, a rela-
tively early age for conclusive considerations; (4) missing data
in EEG/ECG recordings, due to clinical/logistic issues.

In particular, the effect of hypothermia itself on cardiac
function should be considered properly before definitely
assigning HRV the role of brain physiomarker [93]. This
is of particular importance considering that hypothermia
has an influence on the cardiovascular equilibrium and is
associated with increased risk of bradycardia, arrhythmias,
transitory prolonged QTc interval, hypotension, and pul-
monary hypertension [7, 94-100]. The direct effect of hy-
pothermia on HRV was assessed in a prospective case-
control study including 44 neonates with moderate/severe
HIE treated with hypothermia. The authors analyzed the
data achieved by continuous ECG monitoring begun 2 h
prior to rewarming through 2 h after completion of
rewarming, to assess the effect of decreased esophageal/
axillary temperature on HRV. HRV decreased as tempera-
ture increased toward normothermia. Such results under-
line the importance of assessing for core temperature in
future analyses aimed at verifying the reliability of HRV
as marker for HIE monitoring, i.e., to verify whether HRV
modifications in asphyxic neonates receiving hypothermia
reflect disease severity/evolution rather than the changes in
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body temperature throughout the hypothermia/rewarming
phases [101]. However, as stated by the authors, this study
had limitations including that in some cases, ECG moni-
toring was stopped prematurely due to clinical reasons,
some data were incomplete/altered by artifacts, tempera-
ture assessment was not continuous, and the sample size
limited the ability to clearly elucidate the relationship of
HRV/temperature in neonates with severe HIE [101]. As a
whole, despite the small number of studies and the hetero-
geneous study designs, all the above mentioned studies
provided evidence of a good reliability of HRV as preco-
cious prognostic marker of brain injury in HIE neonates
which deserves further investigations.

Future perspectives

A growing body of research supports the use of HRV as
non-invasive, bedside tool for HIE monitoring. The avail-
able data about the role of HRV as prognostic marker in
case of HIE are promising but still fragmentary, and no
conclusive considerations are allowed yet. In particular,
future investigations should assess the ability of HRV to
differentiate between mild and moderate/severe forms of
HIE and the ability of HRV to identify within a narrow
therapeutic window (i.e., within the first 6 h of life) neo-
nates who would profit from adjuvant neuroprotective in-
terventions. Such data are eagerly awaited in order to de-
sign precocious, specific, and personalized treatments ac-
cording to HIE severity.
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