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Neonatal spectral EEG is prognostic of cognitive abilities at school
age in premature infants without overt brain damage
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Abstract
Prematurity is a prototype of biological risk that could affect the late neurocognitive outcome; however, the condition itself
remains a non-specific marker. This longitudinal 6-year study aimed to evaluate the prognostic role of neonatal spectral EEG in
premature infants without neurological complications. The study cohort was 26 children born 23–34 gestational ages; all
neonates underwent multichannel EEG recordings at 35 weeks post-conception. EEG data were transformed into the frequency
domain and divided into delta (0.5–4 Hz), theta (5–7 Hz), alpha (8–13 Hz), and beta (14–20 Hz) frequency bands. At 6 years, a
neuropsychological and behavioral evaluation was performed. Correlations between spectral bands and neuropsychological
assessments were performed with a conservative and robust Bayesian correlation model using weakly informative priors. The
correlation of neuropsychological tasks to spectral frequency bands highlighted a significant association with visual and auditory
attention tests. The performance on the same tests appears to be mainly impaired.

Conclusions: We found that spectral EEG frequencies are independent predictors of performance in attention tasks. We
hypothesized that spectral EEG might reflect early circuitries’ imbalance in the reticular ascending system and cumulative effect
on ongoing development, pointing to the importance of early prognostic instruments.

What is Known:
• Prematurity is a non-specific marker of late neurocognitive risk.
• Precise prognostic instruments are lacking, mostly in patients with low-grade conditions.
What is New:
• Longitudinal long-term studies are scarce but crucial for the inferential attributive process.
• Spectral EEG frequencies are independent predictors of performance in attention tasks.
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Abbreviations
ADHD Attention/hyperactivity disorder
CGI Conners global index
CRS-R Conners’ Rating Scales-Revised
EEG Electroencephalogram
HMC Hamiltonian Monte Carlo
VMI Visual-motor integration
WPPSI-III Wechsler Preschool and Primary

Scale of Intelligence III
WISC-IV Wechsler Intelligence Scale for Children IV

Introduction

Long-term neurodevelopmental impairments remain a major
concern after premature birth, particularly in infants born at
the lowest gestational ages [1–3]. Prematurity is a prototype of
biological risk that could affect the neurocognitive outcome;
however, it remains a non-specific marker [4]. It may nega-
tively affect the normal maturational processes also in infants
without overt brain damage or medical complications [5, 6].
Thus, even apparently healthy children, who did not develop
major sequelae in the first years of life, are at risk for
neurocognitive impairments emerging at older ages, typically
during the school period [7, 8]. Deficits are reported in visual-
motor [9, 10], linguistic [11], attention and executive func-
tions [12], and learning and achievements [13–15].
Furthermore, children may manifest behavioral and psycho-
logical problems [16].

Abnormalities in high-order neuropsychological functions
require many years to manifest [17–19], due to the slow rate of
maturation of complex abilities such as attention and execu-
tive functions. Abnormalities in circuitry formation begin ear-
ly but will manifest only when the system is no longer able to
compensate for the constantly increasing demands of the sur-
rounding environment. The first years of age are characterized
by a high plasticity, but, once consolidated, the altered pattern
of functioning may become a stable characteristic, as shown
by studies on long-term follow-up in the adolescence and
adulthood [16, 20].

Although not so disabling compared with cerebral palsy
and intellectual disability, long-term neuropsychological and
behavioral impairments affect the life quality of children and
their families. Their incidence is growing [21], and school and
sanitary services are increasingly overloaded. The early iden-
tification of children at risk is hampered by the scarcity of
good neonatal markers, mainly when the perinatal period runs
without medical complications or signs of brain damage.

Several functional neuroimaging studies highlighted ab-
normalities in premature brain functioning even in the absence
of overt brain damage [1, 22–24]. The electrophysiological
tools have the advantage over imaging techniques of being
less expensive and available at the bedside. Abnormal devel-
opmental trajectories of early prematurity could be detected as
early as 35 weeks post-conception, both using event-related
potentials [25–27] and quantitative EEG [28–30].

Power spectral analysis is a simple, objective, and sensitive
method for quantifying the digitized EEG.

The prognostic value of spectral EEG analysis on long-
term sequelae is yet scarcely investigated. Still, the few avail-
able literature data suggest good prognostic abilities [31], also
in children born prematurely [32]. Long-term longitudinal
studies are crucial in developmental cognitive neuroscience,
for the inferential attributive process and in the understanding
of early developmental trajectories. Their use is limited by the
need for covering the years elapsing from the neonatal period
to the age when complex cognitive functions develop and can
be tested.

This prospective longitudinal 6-year study aimed to evalu-
ate the prognostic role of spectral EEG recorded at 35 weeks
post-conception in premature infants free of medical and neu-
rological complications, attaining school age. Thirty-five-
week gestation is a critical time of brain maturation [33],
and neurophysiological testing close to this period, rather than
40 post-conception, might highlight subtle and/or transient
abnormalities before the compensation mechanisms occur,
and could have a role in long-term prognosis.

Methods

Participants

The study cohort was a subset of 26 children born between
January 2011 and January 2012, recruited from our ongoing
prospective study on perinatal risk factors and long-term out-
comes of neonates admitted to the neonatal intensive care unit.

Inclusion criteria for the present study were gestational age
at birth lower than 35 weeks, having successfully performed a
neonatal multichannel EEG of at least 1-h duration at a
corrected age of 35 weeks, written consent of the parents to
the study, and adherence to all the follow-up.

Exclusion criteria were neonatal neurological risk factors
as detailed elsewhere [28]. Briefly, neonates were recruited
when none of the following neurological risk factors was pres-
ent: intrauterine growth restriction (defined as an estimated
fetal weight below the 10th percentile and umbilical artery
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pulsatility index greater than 2 standard deviations), craniofa-
cial malformations, clinical evidence of neonatal encephalop-
athy, brain ultrasound evidence of intra-ventricular hemor-
rhage or periventricular cystic leukomalacia, occurrence of
seizures, treatment with drugs (e.g., sedatives) affecting the
central nervous system. Furthermore, we excluded children
with abnormal EEG traces as evaluated by visual inspection,
a post-neonatal diagnosis of genetic, metabolic or neurode-
generative syndrome or intellectual disability, cerebral palsy,
sensorial invalidating deficits, epilepsy, at any time during the
follow-up period. Seventeen patients out of the total cohort of
26 patients were part of a previous study reporting the out-
come at 1 year of age [28].

The patient’s clinical characteristics are reported in Table 1.
All procedures contributing to this work comply with the

ethical standards of the relevant national and institutional
committees on human experimentation and with the Helsinki
Declaration of 1975, as revised in 2008. The Institutional
Ethical Committee approved the study (Comitato Etico per
la Sperimentazione Clinica dell’Azienda Ospedaliera di
Padova, Prot. N. 1693P).

Neonatal neurophysiological assessment

Recordings were performed before discharge from the hospi-
tal when infants were clinically stable. Post-conceptional age
was computed as the sum of gestational age at birth, and the
period of extra-uterine life elapsed from birth to the day of
EEG recording [34].

The methodology for EEG recording was previously de-
tailed [28].

In brief, electrodes were placed according to the 10–20
International System of electrode placement and international
guidelines for neonates. We used a Galileo EEG system (EB
Neuro, Florence, Italy). We choose to analyze EEG segments
recorded in active sleep because this state represents predom-
inantly neocortical activity [35]. We considered for spectral
analysis, only EEG segments where both EEG and behavioral
evaluation confirmed an active sleep stage. For offline

analysis, 30min of artifact-free EEG traces were selected from
at least 1-h recording.

Data analysis

Pre-processing and spectral analysis were performed as previ-
ously described [28] using the EEGLAB toolbox and a
custom-scripted software in the MATLAB environment. In
brief, the frequency spectrum was divided into the following
bands: delta (0.5–4 Hz), theta (5–7 Hz), alpha (8–13 Hz), beta
(14–20 Hz). Absolute power (defined as the integral of all
powers within the frequency band, expressed in μV2) was
calculated from the transformed signal. As the total absolute
spectral power may vary considerably, spectral values among
subjects were normalized for total power and expressed as
relative spectral power measures (defined as the ratio of abso-
lute band power and total power of all bands, expressed in
percentage).

Finally, we calculated the main total spectral power for the
delta, theta, alpha, and beta bands by performing the mean of
Fz, C3, Cz, C4, T3, and T4 locations activity. The Fp1, Fp2,
O1, and O2 locations were excluded because of the numerous
artifacts on these channels.

An example of the processing of EEG tracing in the fre-
quency spectrum is reported in Fig. 1 (panels A and B).

Follow-up neuropsychological assessment

Neuropsychological assessment was conducted by a psychol-
ogist trained in test administration and scoring (E.C.) at the
mean age of 6 years (SD 0.45).

Cognitive assessment We used the Wechsler Preschool and
Primary Scale of Intelligence III (WPPSI-III) test or the
Wechsler Intelligence Scale for Children IV (WISC-IV), stan-
dardized for Italian sample, to evaluate general cognitive per-
formance [36–38]. All results were expressed as an age-
standardized score, with a population means of 100 and a
standard deviation of 15.

Neuropsychological testing The following cognitive domains
were assessed: language, using the naming test and the seman-
tic verbal fluency test, which evaluates the ability to access the
lexicon through a categorial cue [39]; attention, using the vi-
sual and auditory attention tests of the NEPSY-II [40, 41];
memory, using the Corsi block-tapping test, which evaluates
short-term verbal and visuo-spatial memory, and the word’s
list and list recall, which evaluate learning and long-term ver-
bal memory [39]; executive functions, using the Tower of
London test, which evaluates planning and problem-solving
[42], the Coding test of the WISC-IV or WPPSI-III [37, 38],
the Stroop Test, which evaluates inhibitory control [43];
visuo-motor functions, using the visual-motor integration

Table 1 Clinical data of
the children recruited for
the study

GA mean (range) 29.5 (23–34)

Birth weight (g) 1350 ± 391

Birth length (cm) 37.6 ± 4.4

Birth CC (cm) 28.4 ± 3.5

Male rate 16 (61.5%)

1°-min Apgar score 6.8 ± 1.6

5°-min Apgar score 8.2 ± 0.97

pH at birth 7.25 ± 0.12

GA, gestational age; PCA, post-concep-
tional age; CC, cranial circumference
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(VMI, [44]); social skills, using the Theory of Mind and the
Emotional recognition tests of the NEPSY-II [40, 41]. The
entire test battery required nearly 3 h, divided into two meet-
ings, to be completed.

We administered to the parents the questionnaire Conners’
Rating Scales-Revised (CRS-R) in order to identify the pres-
ence of behavioral problems and ADHD. The Conners Parent
Rating Scales-long version (CPRS-R:L) report parent ratings
of child behaviors involving problems in seven psychopatho-
logical areas: oppositional, inattention, hyperactive, anxious–
shy, perfectionism, social problems, and psycho-somatic. For
the analysis, total scores were considered: the ADHD total
score, the CGI (Conners global index) total score, and DSM-
IV total score [45].

Statistical analysis

Continuous variables were tested for normality and summa-
rized as mean and standard scores. Scores for the cognitive,
neuropsychological, and questionnaires were age-corrected
and converted into z scores and scaled scores (neuropsycho-
logical tests), T scores (questionnaires), or standard scores
(cognitive tests), based on published normative data. The z
scores indicate the deviation from the mean population score,
which is set to 0, standard deviation 1. A z score of − 2 (or
less) comprised 2.5% of the normal distribution and was con-
sidered to be significantly lower than average. Scaled scores
indicate the deviation from the mean population score, which

was set to 10, standard deviation 3. A scaled score of 4 (or
less) was considered to be significantly lower than average.
The T scores indicate the deviation from the mean population
score, which was set to 50, standard deviation 10. A T score of
70 (or more) indicates a clinical condition.

Results of the WPPSI-III and of the WISC-IV have been
converted in standard scores having mean 100 and standard
deviation 15. Impairment was defined as a standard score
lying two standard deviations below the mean (< 70).

We evaluated the direct correlations between neuropsycho-
logical and EEG spectral data using a regression model robust
to outliers with bivariate Student’s t distribution [46]. We
performed the analysis in a Bayesian framework to avoid ar-
bitrary multiple-comparisons corrections and to minimize
false discovery rates by imposing weakly informative priors
on the model’s parameters [47, 48]. Specifically, we used LKJ
prior distribution [49] on the correlation’s parameters with the
concentration parameter equal to 4. Such prior distribution,
highly concentrated around zero, minimizes the risk of ob-
serving non-null correlations, which may arise only by ran-
dom chance, as it often occurs in small sample size settings,
like in our study. Significant correlations were identified as
those whose posterior intervals do not contain the zero value,
i.e., the value of no correlation. The sampling from the poste-
rior distribution of the model’s parameters was carried out
using the Hamiltonian Monte Carlo (HMC) algorithm with
Stan software for Bayesian inference [50]. The algorithm
was run with four chains and 2000 iterations, of which 500

Fig. 1 The processing procedure of transformation the EEG tracing
(panel A) of one neonate at 35 weeks post-conception in active sleep in
the frequency spectrum (panel B). Panel C shows the EEG power spectra

at 35 post-conception on C3 channel of children with impaired and nor-
mal performance to the visual attention task
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were discarded as warm-up. The convergence of the algorithm
was assessed using trace plots and an improved version of the
R-hat [51].

We implemented the statistical analysis in R software for
statistical computing [52] (version 3.6.2). The brms package
was used to fit the models (version 2.11.1) [53]. The full R
code of the model is available in the supplementary materials.

Results

Mean scores were in the range of normality for all the cogni-
tive and neuropsychological domains explored (Table 2).

The Bayesian correlation model converges for all the ana-
lyzed pairs of variables.

By considering individual impairments in cognitive and
neuropsychological tests, six children exhibited a borderline
cognitive profile (70 > IQ < 85); eight showed at least two
neuropsychological impaired tests (< 2 standard deviations).
By considering individual impairments on total scores of
CPRS-L questionnaire, five children obtained a borderline
score in the ADHD total score, one child a borderline score
in CGI total score, and finally, four impaired sores in the
DSM-IV total score.

The correlation of neuropsychological tasks to spectral fre-
quency bands highlighted a significant association with visual
and auditory attention tests (Table 3). Figure 1 (panel C)
shows the EEG power spectra at 35 post-conception on C3
channel of children with impaired and normal performance to
the visual attention task.

The same tests appear to be mainly impaired (7 children
with deficits in auditory attention, 6 in visual attention).

Scatterplots of performance to visual attention test and
spectral values are shown in Fig. 2.

Discussion

In the present study, we evaluated the prognostic role of spec-
tral analysis of the EEG in those infants without medical com-
plications. They are the most challenging group of premature
infants because the prognosis is particularly tricky, and gesta-
tional age remains the unique indicator of risk.

We recorded the EEG in a crucial phase of brain develop-
ment when first cortical circuitries start to develop [54]; the
outcome was measured 6 years after the perinatal period, at
another crucial phase of development, the school period.
Outcome measures included both neuropsychological tests
able to detect subtle deficits in cognition and parent’s ques-
tionnaire on child behavior.

We found that spectral EEG frequencies are independent
predictors of performance in attention tasks, both in the visual
and the auditory modality. In contrast, we did not found any
correlations with other tasks or questionnaires and, interest-
ingly, with gestational age.

Neonatal EEG of children performing worse to attention
tasks had a relatively lower amount of power in the alpha and
beta bands.

In the immature brain, the slow activity (i.e., in delta range)
is the predominant feature of the background EEG [30]. It has
an established role in the functional and structural shaping of
neuronal circuitries [55]. By contrast, the higher frequencies
are physiologically underrepresented before the beginning of
the cerebral cortex maturation and progressively emerge

Table 2 Mean and standard deviation scores of cognitive and
neuropsychological tasks

Domain Test Mean ± SD

General intelligence IQ 96.6 ± 20.5

Language Semantic fluency (z scores) − 0.86 ± 0.56
Naming (z scores) − 0.21 ± 0.48

Memory Corsi (z scores) 0.14 ± 0.68

Word’s list (z scores) 0.26 ± 0.91

List recall (z scores) 0.09 ± 2.47

Visual-motor
abilities

VMI (SS) 10.8 ± 0.0

Executive functions TOL (z scores) − 0.42 ± 0.12
Stroop (n, % impaired) 2 (7%)

Coding (SS) 7.64 ± 6.36

Attention Visual attention (SS) 10.8 ± 1.41

Auditory attention (n, % impaired) 7 (27%)

Social skills Mind’s theory total (SS) 8.45 ± 2.82

Emotional recognition (SS) 7.65 ± 5.65

SD, standard deviation; IQ, intelligence quotient; VMI, visual-motor in-
tegration test; SS, scaled scores; TOL, Tower of London

Table 3 Non-zero correlations from the Bayesian model

Parameters Correlation coeff.
Median (95% C.I.)

Visual attention vs. TOT alpha 0.46 (0.10–0.71)

Visual attention vs. Cz alpha 0.41 (0.05–0.68)

Visual attention vs. C4 alpha 0.41 (0.07–0.67)

Visual attention vs. T4 alpha 0.42 (0.07–0.68)

Visual attention vs. O2 alpha 0.37 (0.01–0.64)

Visual attention vs. TOT beta 0.52 (0.17–0.76)

Visual attention vs. C4 beta 0.45 (0.10–0.71)

Visual attention vs. T4 beta 0.47 (0.11–0.72)

Visual attention vs. T3 beta 0.40 (0.05–0.66)

Visual attention vs. O2 beta 0.43 (0.06–0.68)

Visual attention vs. TOT beta 0.52 (0.17–0.76)

Auditory attention vs. T4 alpha 0.40 (0.04–0.66)
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during the last trimester of pregnancy, around 34–35 weeks of
gestation [56, 57]. In fact, thirty-five-week gestation is a crit-
ical time of brain maturation: EEG background activity be-
comes continuous, cortical evoked potentials change from
prevalent negative to positive polarity, and spectral power
analysis shows increased high-frequency content [54]. These
changes are due to the major development of cerebral path-
ways and transient organization of both neuronal circuitry and
fetal brain lamination [33].

Evaluation of the emergence and characterization of spec-
tral EEG components and their deviation from the expected
typical trajectory may be important to understand early abnor-
malities of brain development. In a previous study, we
showed, at 35 weeks post-conception, a preponderant slow
and high-voltage activity in premature infants born at ex-
tremely low gestational age [28]. We speculated that an im-
balance between low- and high-frequency EEG content could
reflect a failure of the early developmental trajectory of the
cerebral organization since it was associated with worse
neurodevelopmental scores at 1 year. With the present study,
we prolonged the follow-up until 6 years of age on a broader
population, and we usedmore comprehensive and sophisticat-
ed outcome measures. We found an association between spec-
tral EEG data and attention performance, suggesting the pos-
sibility that spectral characteristics could reflect the activity of
early circuitries in the arousal–attentional system, with cas-
cade consequences and persisting effects on the development
of attention skills. Our findings may be explained by a failure
in the activation of the immature cerebral cortex, reflected by
the low content of high-frequency rhythms, from the

ascending reticular formation, and the consequent failure of
its modulatory activity [58, 59]. Research on reticular forma-
tion’s ascending pathways has demonstrated a gating activity,
which enables selective attention [60, 61] and regulates gaze
control as a response to arousing stimulation [62]. Therefore,
the reticular activating system is implicated in the regulation
of sleep-wake states and the arousal and attention systems.
Studies in children born preterm support our hypothesis,
reporting sleep-wake dysregulation and difficulties in sustain-
ing and modulating attention and arousal [63, 64], orienting
behavior [65], alerting [65, 66], and in tasks involving more
complex attentional processes such as shifting and divided
attention [67–69]. During their permanence in neonatal inten-
sive care units, preterm infants may undergo excessive stim-
ulation from the extra-uterine environment, despite advance-
ments in neonatal care. It is thought that intense and unexpect-
ed stimulation such as lights, sounds, smells, and pressure
signals incurred at this immature phase of maturation may
compromise early formation of the arousal–attention system
[70].

The impact of uncomplicated prematurity on cognition
may remain latent for several years until more complex func-
tions fail to emergence revealing the underlying neurobiolog-
ical vulnerability. Complex neuropsychological functions are
each other strictly interrelated. The maturation of attention is a
prerequisite for the rise of the highest functions, such as flex-
ibility, planning, and inhibition. The attention system allows
better coordination of different executive components with an
increase of vigilance and sustained attention [71]. After
5 years, the amount and complexity of executive skills

Fig. 2 Scatterplots of
performance to the visual
attention task in the total delta,
theta, alpha, and beta bands (raw
data)
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increase dramatically. In the life of each person, executive
functions have a crucial role in adaptive functioning, with
consequent effects on quality of life, and recent research indi-
cated executive dysfunctions as the core problem of some
psychiatric conditions [72–75]. Furthermore, executive defi-
cits are a frequent report after premature birth [76].

Our findings should be interpreted in light of potential lim-
iting factors. First, the sample size is very small; this long-term
longitudinal study requests the need for covering a long period
(from the neonatal period to the age when complex cognitive
functions develop and can be tested). In 6 years, some patients
dropped out or became untraceable. However, given the high
effort in the recruitment procedure, the percentage of parents
who refused to participate at this stage of the follow-up was
very low. Therefore, the majority of lost participants are due to
logistic reasons and not the choice of parents, often biased by
the effective outcome of their child. Finally, our statistical
approach is reliable even with small sample sizes, but, without
other confirmatory studies, the small number of patients could
limit the generalizability of our results.

Another limit is due to the high number of potential con-
founding variables that would interact and influence the out-
come in the 6 years of the life of the child. For example, we
could have investigated parental mental state, known to po-
tentially bias assessment of children’s health.

Finally, we selected a group of patients with no evident
neurological risk factors other than the prematurity itself.
Therefore, our results cannot be generalized to the entire pop-
ulation of preterm infants. However, we were specifically in-
terested in these children in whom the outcome is highly un-
certain. In premature infants with evident signs of neurologi-
cal dysfunctions, the prognosis is relatively simpler. Visual
inspections of EEG, MRI, and clinical evaluation may help
clinicians in the diagnosis.

Conclusion

In conclusion, the cumulative effect on the ongoing develop-
ment of early disruption in cerebral circuitries [77] prompts to
early identification of children at risk; results of the present
study point to a possible prognostic role of the neonatal EEG
spectral analysis also in the challenging group of premature
infants in whom the prognosis is particularly difficult because
of the absence of overt brain damage. During the time elapsed
between the insult and disclosure of impairments, the devel-
opmental window for therapeutic interventions may be lost. In
early infancy, rehabilitation programs can still favor changes
in brain circuitry and on cortical refinement. Currently, it is
important to support the achievement of the milestones at the
bottom of the subsequent maturation of more complex cogni-
tive abilities. In the absence of interventions, disrupted cere-
bral circuitries may accumulate during ongoing development,

with deleterious cascade effects on subsequent cognitive
functioning.

Future research should explore the utility of spectral EEG
also in premature neonates with neurological and medical
complications.
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