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Abstract
Both proportional assist ventilation (PAV) and neurally adjusted ventilatory assist (NAVA) provide pressure support synchronised
throughout the respiratory cycle proportional to the patient’s respiratory demand. Our aim was to compare the effect of these two
modes on oxygenation in infants with evolving or established bronchopulmonary dysplasia. Two-hour periods of PAVand NAVA
were delivered in random order to 18 infants born less than 32weeks of gestation. Quasi oxygenation indices (“OI”) and alveolar-
arterial (“A-a”) oxygen gradients at the end of each period on PAV, NAVA and baseline ventilation were calculated using capillary
blood samples. The mean “OI” was not significantly different on PAV compared to NAVA (7.8 (standard deviation (SD) 3.2)
versus 8.1 (SD 3.4), respectively, p = 0.70, but lower on both than on baseline ventilation (mean baseline “OI” 11.0 (SD 5.0)), p =
0.002, 0.004, respectively). The “A-a” oxygen gradient was higher on PAV and baseline ventilation than on NAVA (20.8 (SD
12.3) and 22.9 (SD 11.8) versus 18.5 (SD 10.8) kPa, p = 0.015, < 0.001, respectively).

Conclusion: Both NAVA and PAV improved oxygenation compared to conventional ventilation. There was no significant
difference in the mean “OI” between the two modes, but the mean “A-a” gradient was better on NAVA.

What is Known:
• Proportional assist ventilation (PAV) and neurally adjusted ventilatory assist (NAVA) can improve the oxygenation index (OI) in prematurely born

infants.
• Both PAVand NAVA can provide support proportional to respiratory drive or demand throughout the respiratory cycle.

What is New:
• In infants with evolving or established BPD, using capillary blood samples, both PAVand NAVA compared to baseline ventilation resulted in

improvement in the “OI”, but there was no significant difference in the “OI” on PAV compared to NAVA.
• The “alveolar-arterial” oxygen gradient was better on NAVA compared to PAV.
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Abbreviations
A-a Alveolar-arterial gradient
BPD Bronchopulmonary dysplasia

CPIP Chronic pulmonary insufficiency of prematurity
Edi Electromyogram of the diaphragm
FiO2 Inspired oxygen concentration
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MAP Mean airway pressure
NAVA Neurally adjusted ventilatory assist
OI Oxygenation index
PAV Proportional assist ventilation
PEEP Positive end-expiratory pressure
PIP Peak inspiratory pressure
PRVC Pressure-regulated volume control
VTe Expiratory tidal volume

Introduction

Mechanical ventilation can be live-saving in the neonatal pe-
riod but is also associated with complications such as
bronchopulmonary dysplasia (BPD) and chronic respiratory
morbidity [1]. Modes of ventilation that allow synchrony both
of the timing and the level of support to the infant’s respiratory
effort have been developed. Both proportional assist ventila-
tion (PAV) and neurally adjusted ventilator assist (NAVA)
provide support synchronised throughout the respiratory cy-
cle. PAV delivers support proportional to the infant’s respira-
tory effort. Inspiratory pressure can be delivered in proportion
to the change in flow (resistive unloading) and the change in
tidal volume (elastic unloading), and the clinician can adjust
the amount of unloading used [2]. The support delivered by
NAVA is proportional to the electrical activity of the dia-
phragm, which is reflective of the neural respiratory drive.
NAVA uses a specialised nasogastric tube with an electrode
array at the distal end which detects the electromyogram of the
diaphragm (Edi). The Edi is the signal used to trigger the
ventilator and determines the level of support. The delivered
pressure throughout each inflation is in proportion to the Edi
signal. The clinician can adjust the NAVA level to increase or
decrease the amount of pressure delivered per microvolt of
Edi detected [3, 4].

The results of short-term studies [5–15] suggest that both
PAV and NAVA improved oxygenation and were associated
with lower airway pressures compared to conventional or oth-
er triggered modes of ventilation in prematurely born infants
with evolving BPD, otherwise known as chronic pulmonary
insufficiency of prematurity (CPIP) [16]. There are no studies
in that population comparing PAV and NAVA, and hence the
aim of this study was to compare the effect of PAVand NAVA
on the oxygenation index in infants with evolving or
established BPD. It has been demonstrated in an in vitro study
that PAV was associated with a relatively long trigger delay
[17]. In studies in adults, longer trigger delays have been
found with PAV compared to NAVA [18, 19]. Hence, we
hypothesised that NAVAwould be associated with a superior
(i.e. lower) OI in a crossover study as more of the infant’s
respiratory cycle would be supported by pressure support.

Methods

Infants were recruited from the tertiary neonatal unit at King’s
College Hospital NHS Foundation Trust between June 2017
and July 2018. Infants were eligible for the study if they were
born at a gestational age of less than 32 weeks and remained
ventilated at or beyond 1 week after birth, that is, they had
evolving or established BPD [20]. Those receiving neuromus-
cular blockade or with complex congenital cardiac abnormal-
ities were excluded. The study was approved by the London-
South East NHS Research Ethics Committee and the Health
Research Authority and prospectively registered on
clinicaltrials.gov with the identifier NCT02967549. Written
informed parental consent was obtained.

Infants were routinely ventilated via shouldered Coles en-
dotracheal tubes (Portex, Smith Medical, Hythe, UK) which
have been shown to have minimal to no leak [21]. Prior to
entry into the study, the infants were ventilated using SLE
5000 or 6000 ventilators (Specialised Laboratory
Equipment, Croydon, UK) in assist control (A/C) or
synchronised intermittent mandatory ventilation (SIMV)
modes. Volume targeting was preferentially used, with target
tidal volumes between 5 and 7 ml/kg as per the Unit’s guide-
lines. Some clinicians, however, preferred to use pressure-
limited ventilation. During the study, the infants were trans-
ferred to either the Servo-n ventilator (Maquet Critical Care,
Solna, Sweden) or the Stephanie ventilator (Stephan GMBH,
Gackenbach, Germany) depending on whether they had been
randomised to receive first NAVA or PAV. The ventilator cir-
cuits were changed according to ventilator type. The
randomisation sequence was generated with a random number
generator and allocations concealed inside opaque, sealed and
consecutively numbered envelopes. Infants received ventila-
tion at their baseline settings on either ventilator, followed by
2 h of either NAVA or PAV. At the end of the 2-hour period, a
blood gas was taken, and the infant was transferred to the other
study ventilator, following which the above sequence was
repeated, that is, 1 h on their baseline settings and 2 h on the
study mode. Infants were monitored throughout, and the heart
rate, respiratory rate and oxygen saturations were recorded
every 10 min, and all desaturations less than 88% were
documented.

NAVAwas delivered by the Maquet Servo-n ventilator. A
six French Edi catheter of appropriate length for the infant’s
weight (49 cm for 500–1500 g, 50 cm for 1000–2000 g) was
inserted oro- or nasogastrically prior to the commencement of
the study and left in place until the study was completed. The
Edi catheter was positioned as per the manufacturer’s guid-
ance using the specialised tape measure in the packaging and
correct position confirmed using the Edi catheter positioning
guide function on the ventilator (Maquet Servo-n User
Manual Version 1.1). The Edi was monitored using the
Servo-n ventilator throughout the entire study, including on
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baseline settings, and whilst PAV was delivered via the
Stephanie ventilator.

During NAVA, the NAVA level was set by observing the
displayed pressure waveform on the ventilator during three to
five breaths, whilst the infant was ventilated using their base-
line settings and then adjusted so that the pressure on NAVA
closely matched that delivered on baseline settings, aiming for
a peak Edi of between 5 and 15 μV. The apnoea time was set
to 2 s to avoid hypoventilation and the Edi trigger to 0.5 μVas
recommended by the manufacturer for neonatal use. The pos-
itive end-expiratory pressure (PEEP) was set at the same level
as during baseline ventilation. Maximum PIP was initially
limited to 5cmH2O above that set on baseline settings, as the
Servo-n ventilator will not deliver pressures more than
5cmH2O below this limit. Ventilator parameters were manu-
ally collected with a single value that was expected to repre-
sent the existing stable baseline.

PAV was delivered using the Stephanie ventilator (Stephan
GMBH, Gackenbach, Germany). Whilst ventilating on base-
line settings, the infant’s compliance was recorded from the
ventilator display every 10 min. The mean of the six results
was calculated to determine the degree of elastic unloading
required to return the infant’s compliance to normal, that is,
2 ml/cmH2O [22]. Initial elastic unloading was set at 75% of
that value and increased to 100% after 10 min if no abnormal
waveforms were observed [17]. No resistive unloading was
used as this can result in oscillation in the airway pressure
waveform, which may inhibit diaphragm activity [23, 24].
The PEEP was set as the same level as during baseline
settings.

The FiO2 was adjusted to maintain saturations between 92
and 96% as per the Unit’s guidelines. Expiratory tidal volume,
FiO2, respiratory rate, MAP, PIP and PEEP were recorded
from the ventilator display (no PIP or PEEP is displayed dur-
ing PAV). Blood gas analysis was performed using capillary
samples. Capillary samples were not formally arterialised.
Blood gas samples were analysed immediately using the
blood gas analyser on the neonatal unit (ABL90 Flex,
Radiometer, Brønshøj, Denmark).

As capillary blood samples were used, we calculated
quasi OIs and alveolar-arterial oxygen gradients which
we have designated “OIs” and “A-a” gradient, respective-
ly. The primary outcome, “OI” , was calculated as
(MAP*FiO2*100)/(partial pressure of oxygen (pO2).
Secondary outcomes included the “A-a” gradient calculat-
ed as (FiO2*(Patm – pH2O) – (PCO2/0.8)-pO2), where
Patm = 101.33 kPa and pH2O = 6.3 kPa; the oxygen satu-
ration to fraction of inspired oxygen ratio (SF ratio) calcu-
lated as SpO2/FiO2 and the PO2/FiO2 ratio. In addition, the
peak and tonic Edi during each epoch were obtained from
the Maquet ventilator.

BPD was diagnosed as oxygen dependency for at least
28 days and as mild, moderate or severe depending on support

required at 36 weeks corrected gestational age as per the NIH
consensus guidelines [25].

Sample size

A sample size of 18 infants was chosen as this would allow
detection of one standardised difference in the results with
80% power at the 5% significance level. In a previous study
[14], we reported a difference in the mean OI of infants sup-
ported by NAVA compared to ACV was greater than 3 with a
standard deviation of the infants’ results being 2. We had also
reported a difference of 3 in previous studies of PAV [6, 8].
Thus, the calculated sample size would be able to detect such a
difference (i.e. > 3) between the results on the two modes.

Statistical analysis

Results were compared from the end of each period of PAV,
NAVA and conventional ventilation. Data were assessed for
normality using a Shapiro-Wilk test. Normally distributed data
were analysed using a one-way repeated measures ANOVA
with Bonferroni correction. If the assumption of sphericity
was violated, a Greenhouse-Geisser correction was applied.
Non-normally distributed data were analysed using a
Friedman test. Statistical analysis was carried out using IBM
SPSS Statistics version 25 (IBM Corporation, Armonk, New
York, USA.)

Results

Eighteen infants were studied (Table 1) (eight male, ten fe-
male). They were born at a median gestational age of 25.3
(range 23.6–30.3) weeks with median birthweight of 750
(range 454–950) grams. They were studied at a median of
20.5 (range 8–58) postnatal days. All of the infants were sub-
sequently diagnosed with BPD; 13 had severe BPD, 3 mod-
erate and 2 mild. Prior to the study, 15 infants were receiving
volume-targeted ventilation, with target tidal volumes be-
tween 5 and 7 ml/kg; the others were receiving pressure-
limited ventilation. Nine infants were randomised to receive

Table 1 Baseline demographic details

N 18

Sex (male) 8

Gestational age (weeks) 25.3 [23.6–30.3]

Birthweight (grams) 750 [454–950]

Postnatal age at study (days) 20.5 [8–58]

Weight at study (grams) 865 [700–1800]

Results are presented as median [range]
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NAVA first (Fig. 1). NAVA levels used ranged between 0.4
and 1.8.

There was no significant difference in the mean “OI” at the
end of 2 h on PAV compared to on NAVA (mean 7.8 (standard
deviation (SD) 3.2) versus 8.1 (SD 3.4), p = 0.7), but on both
PAV and NAVA, the mean “OI” was significantly lower than

on baseline ventilation (Table 2, Fig. 2). The FiO2 was higher
on PAV than on NAVA (mean 0.39 (SD 0.15) versus 0.37 (SD
0.13) p = 0.024) and the MAP lower on PAV than on NAVA
(8.3 cmH2O (SD 1.1) versus 9.0 cmH2O (SD (0.9), p =
0.025)) (Table 2). If only those 13 infants who went on to
develop severe BPDwere included, the “OI”was significantly
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lower on NAVA or PAV than at baseline (8.4, 8.8 vs 12.8, p =
<0.001, p = 0.023, respectively), but the “OI” was not signif-
icantly different on PAVand NAVA (p = 0.29).

The “A-a” gradient was significantly higher on PAV than
on NAVA (20.8 versus 18.4, p = 0.015.) It was also signifi-
cantly lower on NAVA than at baseline (18.4 versus 22.9,
p < 0.001), but there was no statistically significant difference

between PAV and baseline (20.8 versus 22.9, p = 0.127)
(Table 2). If the 13 infants who went on to develop severe
BPD were analysed separately, both PAV and NAVA were
associated with lower “A-a” gradients compared to baseline
ventilation (23.2 (SD 13.7) and 20.9 (SD 11.4) versus 26.5
(SD 12.1) kPa, p = 0.031, 0.001, respectively), but there was
no statistically significant difference between the results on

Table 2 Comparison of
ventilatory, blood gas and
diaphragmatic electrical activity
parameters between baseline
ventilation, PAVand NAVA

Baseline PAV NAVA p Pairwise
comparisons

“OI” 11.0 [5.0] 7.8 [3.2] 8.1 [3.4] 0.001 n-p 0.70

b-p 0.002

b-n 0.004

Mean airway pressure
(cmH2O)

9.5 [1.1] 8.3 [1.1] 9.0 [0.9] <0.001 n-p 0.025

b-p < 0.001

b-n 0.02

FiO2 0.40 [0.15] 0.39 [0.15] 0.37 [0.13] <0.001 n-p 0.024

b-p 0.28

b-n 0.003

“A-a” gradient (kPa) 22.9 (11.8) 20.8 (12.3) 18.4 (10.8) <0.001 n-p 0.015

b-p 0.127

b-n < 0.001

SpO2/FiO2 268 [96] 268 [92] 295 [102] 0.002 n-p 0.04

b-p 1.0

b-n 0.04

PO2/FiO2 104 (35) 120 (40) 126 (42) 0.001 n-p 0.79

b-p 0.033

b-n 0.002

PCO2 [kPa] 8.1 [1.7] 8.9 [1.8] 8.8 [1.7] 0.026 n-p 1.0

b-p 0.007

b-n 0.16

PO2 [kPa] 5.4 [0.76] 5.66 [0.68] 5.6 [1.0] 0.69

Respiratory rate
(breaths/min)

61 [9] 66 [8] 56 [9] 0.001 n-p 0.003

b-p 0.19

b-n 0.093

Expiratory tidal volume
(ml/kg)

6.2 [0.7] 6.4 [1.0] 6.5 [1.2] 0.32

Peak inspiratory pressure
(cmH2O)*

17.8 [3.5] 14.3 [3.0] b-n < 0.001

Positive end-expiratory
pressure (cmH2O)*

5.6 [4.7–7] 6 [5–7] b-n 0.94

pH 7.31 [0.67] 7.29 [0.68] 7.3 [0.66] 0.053

Peak electrical activity of
the diaphragm
(microvolts)

13.6 [5.8–40.4] 13.1 [2.4–38.4] 11.3 [5.2–28.5] 0.33

Minimum electrical
activity of the
diaphragm (microvolts)

2.2 [0.9–4.2] 2.3 [0.7–4.2] 2.4 [0.7–4.5] 0.92

Results are presented as mean (standard deviation) or median [range]

n-p = comparison between NAVA and PAV; b-p = comparison between baseline and PAV

b-n = comparison between baseline and NAVA

*Data unavailable for two infants
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PAVand NAVA (p = 0.18). The SpO2/FiO2 ratio was lower on
PAVand baseline than on NAVA (p = 0.004) (Table 2). There
was no significant difference in the PO2/FiO2 between NAVA
and PAV, but both were higher than at baseline (Table 2).

There were no significant differences between the expira-
tory tidal volumes or the pCO2 levels on PAV compared to on
NAVA (Table 2). There were no significant differences be-
tween base excess or HCO3 results on PAV and NAVA. The
PCO2 was statistically significantly higher on PAV than at
baseline (8.9 vs 8.1 kPa, p = 0.016). The respiratory rate was
significantly higher on PAV than on NAVA. The peak and
minimum Edi were not significantly different between modes
of ventilation (Table 2).

Discussion

We have demonstrated that there was no significant dif-
ference in mean “OI” between PAV and NAVA, but both
modes resulted in a reduction in “OI” compared to base-
line conventional ventilation. We used the “OI” as the
primary outcome as this gives a summary of the effective-
ness of each ventilator mode compared to baseline. The
mean airway pressure, however, was lower and the FiO2

higher on PAV than on NAVA. As the “OI” is a composite
of the MAP and FiO2, then those differences being in the
opposite direction resulted in similar “OIs”. The lower
MAP on PAV resulted in a higher FiO2 requirement to

maintain the same level of oxygenation. The lower MAP
on PAV might reflect lower levels of synchrony, a differ-
ent shape to the airway pressure waveform and/or a longer
trigger delay [17–19]. The significantly higher “A-a” gra-
dient (i.e. worse) on PAV compared to NAVA is consistent
with the higher FiO2 requirement, as is the significantly
lower SpO2/FiO2 (ie worse). The PO2/FiO2 was lower on
PAV, but this did not reach statistical significance.

Both PAV and NAVA have been compared to conven-
tional and other triggered modes of ventilation in small
short-term studies in infants. PAV as compared to
pressure-controlled conventional ventilation has been
shown to reduce the OI in infants with respiratory distress
syndrome [5] and to reduce the OI, peak and MAP and
the work of breathing (as measured by PTPdi) in infants
with evolving or established BPD [6–8]. Although there
have been no randomised controlled trials of PAV in neo-
nates, in adults, PAV versus pressure support ventilation
resulted in a shorter duration of intensive care days [9].
NAVA has also been shown to have advantages over con-
ventional ventilation in prematurely born infants. NAVA
compared to pressure control ventilation and to pressure-
limited synchronised intermittent mandatory ventilation
(SIMV) in crossover studies, including those where in-
fants had longer durations on each mode, resulted in low-
er peak inspiratory pressures (PIP) and a reduction in the
work of breathing [10–13]. In prematurely born infants
with evolving or established BPD, NAVA compared to
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pressure control ventilation in a crossover study resulted
in reduction in the OI, MAP, FiO2 and PIP [14]. There has
been one randomised controlled trial of NAVA, which was
compared to pressure control ventilation and enrolled in-
fants born between 28 and 36 + 6 weeks gestational age
with acute respiratory distress. There was no significant
difference in the primary outcome of the duration of ven-
tilation (35 versus 26 h, p = 0.21). There was also no
difference in the incidence of BPD, but the study was
not powered to detect this [15].

To our knowledge, there have been no previous studies in
the neonatal population that have compared NAVA and PAV,
but a study in adults compared NAVA and PAV to baseline
pressure support ventilation [19]. The OI was not reported, but
when targeting the same tidal volumes, the PIP andMAPwere
higher on NAVA than on PAV with comparable blood gases,
although the PaCO2 was statistically significantly higher on
PAV than on NAVA, as was also found in our study. The small
increase in PaCO2 may be due to the way that NAVA and PAV
switch to back up ventilation after an apnoea period or to the
amount of unloading during PAV and the NAVA level set. If
either were to be used for longer periods, then careful moni-
toring and adjustment of settings as required would be
advised.

There are strengths and some limitations to our study. We
calculated the “OI” and “A-a” gradients from capillary sam-
ples, but this was a crossover study, so each infant acted as
their own control. Thus, whilst arterial samples may have
been more precise, we suggest that use of capillary blood
samples would not have substantially influenced our results.
Wedidnot use arterialisationof the capillary samples as there
is controversy in the literature as towhether this improves the
correlations with arterial results. Furthermore, capillary
blood gases have been shown to correlate well with arterial
gases if infants are stable and not cardiovascularly compro-
mised [26], particularly at lower levels of arterial oxygena-
tion as in our cohort [27].Additionally, it has been shown that
in infants with congenital diaphragmatic hernia, indices of
oxygenation obtained from capillary blood gas samples and
changes in these indices over time predict survival, thus sug-
gesting that capillary oxygenation is a valid method of mon-
itoring clinical status [28]. Nevertheless, for future studies,
transcutaneous monitoring of carbon dioxide and oxygen
levels could be considered. We did not assess the infants’
comfort levels, and this plus assessment of the degree of
asynchrony would be useful in future studies.

The NAVA level was set as per the manufacturer’s guide-
lines. Using the manufacturer’s guidelines, the MAP level
during NAVA was decreased compared to baseline setting
suggesting that the level was appropriate. All of the infants
in our study either had or were subsequently diagnosed with
BPD, indicating that our inclusion criteria successfully iden-
tified those with evolving or established BPD. The wide range

of postnatal ages in our study population may have influenced
our results, but advantages of PAV and NAVA over conven-
tional ventilation have been demonstrated in infants with a
variety of postnatal ages in previous studies. Targeted tidal
volumes of between 5 and 7 mls/kg were used, as studies have
shown chronically ventilated infants may require 7 mls/kg
[29, 30] and in the latter study (30) to reduce the work of
breathing. It could be suggested that in babies with BPD 2-
hour epochs may not be sufficient to demonstrate changes in
oxygenation. Previous studies, however, have demonstrated
changes in oxygenation using both modes for shorter epochs
of 45–60 min [5, 6, 14]. Indeed, we were able to demonstrate
improved oxygenation over baseline settings for both PAVand
NAVA using 2 h epochs and differences in the twomodes with
regard to the A-a gradient. In one study [12], 12-h periods
were used, but the order was not randomised. Although there
were no significant differences in blood gases between NAVA
and pressure-regulated volume control (PRVC), neural ap-
noeas were only seen during PRVC, and less fentanyl was
administered during NAVA (12).

In conclusion, we have found no significant differences in
the “OI” after 2 h of support by PAVor NAVA but both sig-
nificantly improved the OI compared to baseline ventilation.
Other indices, as the ‘A-a’ gradient and SF ratio demonstrated
that NAVA improved oxygenation over PAV, but the differ-
ences were relatively small.
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