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Abstract
During 2022, the COVID-19 pandemic has been dominated by the variant of concern (VoC) Omicron (B.1.1.529) and its 
rapidly emerging subvariants, including Omicron-BA.1 and -BA.2. Rapid antigen tests (RATs) are part of national testing 
strategies to identify SARS-CoV-2 infections on site in a community setting or to support layman’s diagnostics at home. We 
and others have recently demonstrated an impaired RAT detection of infections caused by Omicron-BA.1 compared to Delta. 
Here, we evaluated the performance of five SARS-CoV-2 RATs in a single-centre laboratory study examining a total of 140 
SARS-CoV-2 PCR-positive respiratory swab samples, 70 Omicron-BA.1 and 70 Omicron-BA.2, as well as 52 SARS-CoV-2 
PCR-negative swabs collected from March 8th until April 10th, 2022. One test did not meet minimal criteria for specificity. 
In an assessment of the analytical sensitivity in clinical specimen, the 50% limit of detection (LoD50) ranged from 4.2 ×  104 
to 9.2 ×  105 RNA copies subjected to the RAT for Omicron-BA.1 compared to 1.3 ×  105 to 1.5 ×  106 for Omicron-BA.2. 
Overall, intra-assay differences for the detection of Omicron-BA.1-containing and Omicron-BA.2-containing samples were 
non-significant, while a marked overall heterogeneity among the five RATs was observed. To score positive in these point-
of-care tests, up to 22-fold (LoD50) or 68-fold (LoD95) higher viral loads were required for the worst performing compared 
to the best performing RAT. The rates of true-positive test results for these Omicron subvariant-containing samples in the 
highest viral load category (Ct values < 25) ranged between 44.7 and 91.1%, while they dropped to 8.7 to 22.7% for samples 
with intermediate Ct values (25–30). In light of recent reports on the emergence of two novel Omicron-BA.2 subvariants, 
Omicron-BA.2.75 and BJ.1, awareness must be increased for the overall reduced detection rate and marked differences in 
RAT performance for these Omicron subvariants.
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Introduction

During the ongoing COVID-19 pandemic new variants 
and subvariants of SARS-CoV-2 continue to emerge. Test 
strategies based on the detection of either viral nucleic 
acids, primarily by quantitative reverse transcription poly-
merase chain reaction (qRT-PCR), or of the viral nucle-
ocapsid protein by rapid antigen tests (RATs) contribute 
to COVID-19 diagnosis and the control of SARS-CoV-2 
transmission. This is exemplified by the recent manage-
ment of the 5th pandemic wave caused by Omicron-BA.1 
in Hong Kong [1]. A prerequisite for effective health care 
interventions is a good sensitivity (> 80%) and high speci-
ficity (> 97%) of such RATs fulfilling the minimal crite-
ria set by the Word Health Organization (WHO), espe-
cially for RATs recommended for layman’s use [2]. The 
sensitivity of RATs has been demonstrated to underlie a 
huge inter-test variability, ranging from 0 to 98.6% [3–6]. 
Importantly, RATs can also show pronounced differences 
in intra-assay comparisons of sensitivity for the detection 
of different variants of concern (VoCs) of SARS-CoV-2 
[7–11]. Thus, it is important to re-evaluate commercially 
available RATs on a regular basis by independent labora-
tories to identify those that still fulfill the WHO perfor-
mance criteria once a new VoC is starting to dominate the 
pandemic.

We and others have examined the sensitivity of a num-
ber of RATs to detect different VoCs documenting a highly 
variable inter- and intra-test performance [4, 6–10, 12–20]. 
With the appearance of the Omicron sublineages BA.1 and 
BA.2 in late 2021 and early 2022 [21, 22], more muta-
tions in the spike protein, but also in the nucleocapsid 
protein have been reported [23, 24]. In Germany, the cur-
rently available RATs for layman’s use have, to a limited 
extent, been re-analyzed by the Paul-Ehrlich Institute 
(PEI) in early 2022 [25]. They concluded that the major-
ity of RATs recognize the Omicron-BA.1 VoC based on 
their evaluation of a total of four respiratory sample pools 
and six tissue culture samples as well as theoretical con-
siderations of antibody’s presumed binding sites in a so 
called “bridging approach” [26]. Recently, the European 
Commission has updated their information on COVID-
19 antigen tests [27]. However, continued evaluations by 
independent laboratories using sufficient numbers of res-
piratory swabs from patients are pertinent, in particular 
with the rapidly evolving subvariants of Omicron. Thus 
far, only a few studies have addressed this [28–31]. While 
Omicron-BA.5 is currently dominating the pandemic, 
recent reports on the emergence of two novel BA.2 sub-
variants, Omicron-BA.2.75 and BJ.1 [32–35], have alerted 
the biomedical community to a potential recurrence of this 
earlier Omicron variant. The aim of our current study was 

to perform a side-by-side comparison of the diagnostic 
performance of five commercially available RATs using 
respiratory samples from patients infected with either 
Omicron-BA.1 or -BA.2.

Materials and methods

Respiratory swabs

Swab specimens were collected by trained medical per-
sonnel from patients at COVID-19 testing centers, nursing 
homes, regional hospitals, and family practices. Flocked 
Sigma-Transwabs® with 1 or 2 ml Amies Transport Medium 
(Medical Wire & Equipment Co Ltd; Corsham, UK) were 
used for this study. No information about vaccination status 
of individuals, previous infections, presenting symptoms, 
clinical course or the sampling site in the upper respiratory 
tract were available. Samples were initially submitted to 
Labor Becker MVZ GbR in Munich, Germany, a regional 
diagnostic laboratory, where samples were tested for SARS-
CoV-2 RNA by qRT-PCR and subsequently characterized 
by variant-specific PCR as either Omicron-BA.1 or -BA.2. 
Samples being detected as positive in this “screening PCR” 
were randomly included in the study, depending on the avail-
ability of a sufficient sample volume and covering naturally 
occurring viral loads, and analyzed the latest at 24 h after 
sample collection. Patient specimens in liquid transport 
medium with the potential for protein denaturation were 
excluded from the study. Original respiratory swabs and 
transport media were stored at 2–8 °C for up to 48 h, until 
samples were inactivated and SARS-CoV-2 RAT evaluation 
was performed. Due to complex logistics for swab trans-
port, we deviated at times from the recommended proce-
dure because we previously observed that short-term storage 
at 2–8 °C has no significant impact on the outcome of the 
test result [15]. Formally, we cannot exclude though that 
for some of the RATs this may have impacted their per-
formance. A total of 140 PCR-positive (Omicron-BA.1: 70 
samples, Omicron-BA.2: 70 samples) respiratory samples 
were analyzed. The study was conducted in the period 8th 
of March until 10th of April 2022.

SARS‑CoV‑2 rapid antigen tests

The method used in this study is an internationally 
accepted procedure, in which pre-defined aliquots of each 
sample need to be completely absorbed using the specimen 
collection device, e.g. swab, provided with the respective 
RAT. In this study, 50 µl of the available virus-containing 
virus transport medium (VTM) solution was completely 
absorbed. The binary results in this RAT study (“posi-
tive” or “negative”) are plotted relative to “RNA copies 
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subjected to test”. For a detailed protocol, please refer to 
[10]. Trained personnel eluted the soaked swabs in sup-
plied assay buffer following the manufacturer's instruc-
tions for processing. Only the use of VTM and storage 
time prior to testing partially deviated from the manufac-
turer's instructions (see Suppl. Table 1). RAT reading was 
performed by experienced and trained personnel blinded 
to the PCR result under constant light conditions after 
15 min incubation. Two visible test lines were recorded 
as “positive”. In the absence of a visible control line, tests 
were repeated when possible and the result otherwise was 
scored as “invalid”.

In detail, the following five RATs were included in the 
study (for detailed test characteristics, see Table 1 and Suppl. 
Table 1): Lungene-COVID-19 Antigen Rapid Test Cassette 
(Hangzhou Clongene Biotech Co.) (“Clongene”), Nadal 
COVID-19 Ag Test (test cassette) (nal von minden GmbH) 
(“nal von minden”), Novel Corona Virus (2019-nCoV) 
Antigen Test Kit (Colloidal Gold Immunochromatography) 
(Glallergen Co.) (“Glallergen”), InstantSure COVID-19 Ag 
CARD (Suzhou Soochow University Saier Immuno Biotech 
Co., Ltd.) (“Saier”) and EGENS Sars-CoV-2 Antigen Rapid 
Test (Nantong Egens Biotechnology Co.) (“Egens”).

Of the five RATs studied, four are listed in the HSC com-
mon list of the European Commission [27, 36] (except nal 
von minden), but all had been previously evaluated by the 
PEI (nal von minden and Glallergen with a different product 
version/REF number; see [24, 26]). The “bridging evalua-
tion” performed by the PEI rated four of the RATs as suit-
able for the detection of the Omicron VoC, only for the Glal-
lergen test this information was still pending at the time of 
writing the manuscript [25].

PCR screening, variant‑specific PCR and quantitative 
viral load determination

It was ensured that a time interval of 24 h was not exceeded 
between swab collection and determination of the viral load. 
In the retrospective laboratory study, PCR-positive samples 
from the Becker MVZ GbR laboratory were analyzed, which 
were identified using the “Munich Extraction Protocol” [37]. 
After determination of the Omicron sublineage by variant-
PCR (modified version of the COVID-19 direct RT-PCR 
kit (FRIZ Biochem GmbH, Neuried, Germany)), samples 
containing Omicron-BA.1 or -BA.2 were sent to the Max 
von Pettenkofer Institute, where quantification by Roche 
Cobas SARS-CoV-2 E-gene reaction on a Cobas 6800 sys-
tem (Roche, Mannheim, Germany) was performed under 
routine diagnostic laboratory conditions. For further details 
of this methodology, please refer to [10, 15, 38]. Until RAT 
evaluation swab samples were stored at 2–8 °C for at maxi-
mum an additional 24 h.

RAT specificity

The following approach was chosen for testing the speci-
ficity of RATs: In brief, healthy volunteers were swabbed 
using naso-/oropharyngeal swabs (eSwab™ (Copan Diag-
nostics, Murrieta, California, USA)). Each 100 µl of trans-
port medium was combined into pools containing a maxi-
mum of nine subjects per pool and pseudonymously tested 
for the presence of SARS-CoV-2 RNA using Xpert Xpress 
SARS-CoV-2 run on the GeneXpert System (Cepheid Inc., 
Sunnyvale, California, USA). If the PCR result was nega-
tive, all individual respiratory samples from this pool were 
anonymized. Subsequently, within 3 h after collection of the 
PCR swab, the five RATs were analyzed using fresh swab 
specimens, collected in parallel from the PCR-negative pool 
participants, according to the manufacturer's instructions 
under the supervision of trained laboratory personnel.

Statistical analyses

Statistical analysis was performed in R version 4.1.2. Bino-
mial confidence intervals for sensitivities and specificities 
were computed using the Wilson score interval. To further 
analyze analytical sensitivities, we used logistic regression, 
with viral loads and RNA copy numbers subjected to the test 
as independent and test outcomes as the dependent variable, 
yielding detection probabilities for each viral load level.

Results

Evaluation of RAT specificity

In light of the current Omicron subvariant waves, we sought 
to evaluate the performance of five different RATs, four of 
which have been positively evaluated by the PEI to detect 
Omicron-BA.1 with sensitivity fulfilling regulatory require-
ments [25–27]. First, the specificity was determined using 
nasopharyngeal swabs of 52 SARS-CoV-2 PCR-negative 
healthy volunteers (Table 2). The specificity ranged between 
96.15 and 98.08%. Thus, the WHO requirement for a spec-
ificity > 97% [2] was fulfilled for all RATs except for the 
Glallergen test.

Analytical sensitivity of RATs for detecting 
Omicron‑BA.1 and ‑BA.2

Next, we analyzed viral loads in 140 PCR-positive nasal/
nasopharyngeal swabs of which 70 were classified as Omi-
cron-BA.1 and 70 as -BA.2, respectively. Viral loads ranged 
between 35,432 Geq/ml and 1,473,100,589 Geq/ml for Omi-
cron-BA.1 (median: 6,765,509 Geq/ml) and 35,432 Geq/
ml and 2,607,495,346 Geq/ml for Omicron-BA.2 (median: 
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6,422,316 Geq/ml), respectively (Fig. 1). Thus, the median 
and range of viral loads were comparable for Omicron-BA.1 
and -BA.2-containing respiratory samples. Since Ct values 
vary between different PCR devices, we converted the for-
mer results to viral loads presented as Geq per ml to be 
independent of the respective method (Fig. 1B).

We then evaluated the analytical sensitivity of the five 
RATs for Omicron-BA.1 and -BA.2 (Table 3 and Table 4). 
Clongene showed similar sensitivities for Omicron-BA.1 and 
-BA.2, namely 67 and 56.5%, respectively. No difference 
between Omicron-BA.1 and -BA.2 could be detected for nal 
von minden and Saier—the sensitivity for both Omicron-
BA.1 and -BA.2 was 58.6% for nal von minden and 55.7% 
for Saier, respectively. The sensitivity of Glallergen was 
48.6% (Omicron-BA.1) and 50% (Omicron-BA.2). Egens 
detected the lowest percentage of PCR-positive samples for 
both Omicron subvariants (Table 3 and Table 4). 

Table 2  Determination of assay specificity for five qualitative SARS-
CoV-2 rapid antigen tests using SARS-CoV-2 PCR-negative respira-
tory swabs from adults

Binomial confidence intervals were computed using the Wilson score 
interval

Assay Specificity (%) 95% CI True 
negative/
total

Clongene 98.08 89.88–99.90 51/52
nal von minden 98.08 89.88–99.90 51/52
Glallergen 96.15 87.02–98.94 50/52
Saier 98.08 89.88–99.90 51/52
Egens 98.08 89.88–99.90 51/52
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Fig. 1  SARS-CoV-2 viral load distribution of respiratory samples 
included in the study. A Shown is the log10 viral load (Geq/ml) of 
70 SARS-CoV-2-positive Omicron-BA.1 (blue) and 70 SARS-CoV-
2-positive Omicron-BA.2 (red) patient samples, sorted by ascend-
ing magnitude of the viral load from left to right. Each dot indicates 
one patient and the sample’s ID is indicated. B Shown is the corre-
lation of the viral loads (Geq/ml) for both Omicron-BA.1 and -BA.2 
to the Ct-values, which were obtained with the Cobas 6800 system. 

C Depicted is the histogram of the viral load distribution for Omi-
cron-BA.1 by categorization of samples into defined log10 viral load 
ranges. Each histogram bar indicates the number of samples in the 
respective viral load range. D Depicted is the histogram of the viral 
load distribution for Omicron-BA.2 by categorization of samples into 
defined log10 viral load ranges. Each bar indicates the number of 
samples in the respective viral load range
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Next, we determined the 50% (dotted line in grey vertical 
area) and 95% (dotted line in yellow vertical area) limits of 
detection (LoD) based on a logistic regression model [10, 
12] (Fig. 2A—Omicron-BA.1; Fig. 2B—Omicron-BA.2). 
The LoD50 and LoD95 values for Clongene equaled 42,009 
and 2,082,586 RNA copies for Omicron-BA.1 (Fig. 2A, first 
panel), respectively. Interestingly, LoD50 and LoD95 val-
ues were 3.5 and 4.1-fold higher for Omicron-BA.2 with 
148,056 and 8,598,385 RNA copies, respectively (Fig. 2B, 
first panel).

Nal von minden had LoD50 and LoD95 values for 
Omicron-BA.1 with 113,386 and 1,607,971 RNA copies, 
respectively, which were threefold higher or comparable 
to Clongene. The LoD50 and LoD95 values for Omicron-
BA.2 were up to threefold higher compared to Omicron-
BA.1, reaching 127,937 and 4,885,350 RNA copies, 
respectively. In addition, nal von minden was slightly supe-
rior in detecting Omicron-BA.2 compared to Clongene 
(Fig. 2A, B, second panel). Glallergen showed sevenfold 
and 15-fold higher LoD values compared to Clongene with 
296,442 (LoD50) and 31,175,938 RNA copies (LoD95) 
for Omicron-BA.1 (Fig. 2A, third panel) and only two-
fold higher LoD values for Omicron-BA.2 with 301,671 
(LoD50) and 18,414,042 RNA copies (LoD95) (Fig. 2B, 
third panel). Here, detection of both Omicron-BA.1 and 
-BA.2 was comparable for the Glallergen tests. Com-
pared to Clongene, the RAT from Saier had up to fourfold 
(Omicron-BA.1) and up to fivefold (Omicron-BA.2) higher 
LoD values, yielding 141,383 (LoD50) and 9,182,132 
RNA copies (LoD95) for Omicron-BA.1 (Fig. 2A, fourth 

Table 3  Determination of assay sensitivity for five SARS-CoV-2 
rapid antigen tests in SARS-CoV-2 PCR-positive respiratory swabs 
classified as Omicron-BA.1

Binomial confidence intervals were computed using the Wilson score 
interval

Omicron-BA.1

Assay Sensitivity (%) 95% CI True 
positive/
total

Clongene 67.14 55.50–77.00 47/70
nal von minden 58.57 46.88–69.37 41/70
Glallergen 48.57 37.25–60.05 34/70
Saier 55.71 44.08–66.75 39/70
Egens 37.68 27.18–49.48 26/69

Table 4  Determination of assay sensitivity for five SARS-CoV-2 
rapid antigen tests in SARS-CoV-2 PCR-positive respiratory swabs 
classified as Omicron-BA.2

Binomial confidence intervals were computed using the Wilson score 
interval

Omicron-BA.2

Assay Sensitivity (%) 95% CI True 
positive/
total

Clongene 56.52 44.79–67.57 39/69
nal von minden 58.57 46.88–69.37 41/70
Glallergen 50.00 38.60–61.40 35/70
Saier 55.71 44.08–66.75 39/70
Egens 35.71 25.50–47.41 25/70
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patient samples for five SARS-CoV-2 RATs. A top panels: Omicron-
BA.1 dataset is shown in blue. B bottom panels: Omicron-BA.2 data-
set shown in red. The log10 RNA copies subjected to the test on the 
x-axis was plotted against a positive (+ 1) or negative (0) test out-
come on the y-axis. For readability of the figure, slight normal jitter 

was added to the y values. Red/blue curves show logistic regressions 
of the viral load on the test outcome; vertical dashed lines indicate 
log viral loads at which 50% (LoD50) and 95% (LoD95), respec-
tively, of the samples are expected positive based on the regression 
results
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panel) and 150,310 (LoD50) and 42,318,341 RNA cop-
ies (LoD95) for Omicron-BA.2 (Fig. 2B, fourth panel). 
In addition, the difference in LoD95 values between Omi-
cron-BA.1 and Omicron-BA.2 was 4.6-fold.

Among the five RATs analyzed, the performance 
of Egens was worst for both Omicron-BA.1 and -BA.2 
(Fig. 2A, B, fifth panel). The LoD50/LoD95 values were 
increased by 22- and 68-fold for Omicron-BA.1 and 
10- and 54-fold for Omicron-BA.2 compared to Clon-
gene, respectively. The viral loads for the LoD50/LoD95 
values were 918,552 and 142,176,897 RNA copies for 
Omicron-BA.1, respectively, and 1,492,762 (LoD50) and 
463,200,407 RNA copies (LoD95) for Omicron-BA.2, 
respectively (Fig. 2A, B, fifth panel). Furthermore, an up 
to 3.3-fold difference in LoD95 values between Omicron-
BA.1 and -BA.2 was observed for Egens. It is of particu-
lar note that, although differences in LoD values between 
Omicron-BA.1 and -BA.2 were noted, the LoD50 and 
LoD95 values were not significantly different for these 
two Omicron subvariants among each of the five RATs 
investigated. In summary, the overall analytical sensitiv-
ity of three RATs for the detection of Omicron-BA.1 and 
-BA.2 was largely comparable (Clongene, nal von minden, 
Saier), whereas the other two RATs (Glallergen, Egens) 
showed a considerably reduced sensitivity.

Comparative, Ct value‑stratified evaluation 
of analytical RAT sensitivity

Similar to our previous data [10], we next thought to com-
pare our results to those reported by Puyskens et al. and 
Scheiblauer et  al. [4, 39] (Table 5). This enabled us to 
score our results based on the Ct/Cp categories < 25, 25–30 
and > 30. Except for nal von minden, all other tests are also 
listed in the EU Common list of COVID-19 antigen tests 
[27]. In line with our previous analyses, the overall sensi-
tivities were comparable for both Omicron-BA.1 and -BA.2. 
Interestingly, the overall sensitivity for Clongene and nal von 
minden was superior to those reported for “Non-Omicron” 
VoC samples. For the others, the overall sensitivity dropped 
by 2.5-fold on average.

In the highest viral load category with Ct/Cp < 25, Clon-
gene and nal von minden had rather similar sensitivities as 
already reported for “Non-Omicron” VoC samples. In con-
trast, the sensitivities for Glallergen, Saier and Egens were 
reduced up to 2.2-fold, scoring only 80% down to 44.7% pos-
itive samples within this high viral load category (Table 5). 
The intermediate viral load category, reflected by Ct/Cp val-
ues ranging between 25 and 30, showed already more pro-
nounced differences for the Omicron-BA.1/-BA.2 samples: 
While Clongene and nal von minden had rather comparable 

Table 5  Comparative evaluation 
of the analytical sensitivity 
of five SARS-CoV-2 rapid 
antigen tests stratified for Ct/Cp 
value ranges based on studies 
by the Paul-Ehrlich-Institute 
(“non-Delta/non-Omicron”*) 
and the current study for 
respiratory samples containing 
Omicron-BA.1 and -BA.2

n.a. not available
a [25, 27]

Sample size Ct < 25 (%) Ct 25–30 (%) Ct > 30 (%) Overall 
sensitivity 
(%)

Clongene
 Non-Delta/non-Omicrona n.a 94.4 34.8 0.0 50.0
 Omicron-BA.1 70 91.1 21.7 50.0 67.1
 Omicron-BA.2 70 76.1 18.2 0.0 56.5
nal von minden
 Non-Delta/non-Omicrona n.a 83.3 13.0 0.0 36.0
 Omicron-BA.1 70 86.7 8.7 0.0 58.6
 Omicron-BA.2 70 76.6 22.7 0.0 58.6
Glallergen
 Non-Delta/non-Omicrona n.a 100.0 100.0 60.0 92.0
 Omicron-BA.1 70 71.1 8.7 0.0 48.6
 Omicron-BA.2 70 68.1 13.6 0.0 50.0
Saier
 Non-Delta/non-Omicrona n.a 100.0 100.0 80.0 96.0
 Omicron-BA.1 70 80.0 13.0 0.0 55.7
 Omicron-BA.2 70 74.5 18.2 0.0 55.7
Egens
 Non-Delta/non-Omicrona n.a 100.0 100.0 50.0 90.0
 Omicron-BA.1 70 52.3 13.0 0.0 37.7
 Omicron-BA.2 70 44.7 18.2 0.0 35.7
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sensitivities to the “Non-Omicron” samples, ranging from 
8.7 to 22.7%, the other three RATs had about five- to ten-fold 
lower sensitivities compared to “Non-Omicron” samples, 
with positive rates ranging between 8.7 and 18.2%. Similar 
to our previous study [10], samples with Ct/Cp values > 30 
were generally not detected with a single exception for Clon-
gene with an Omicron-BA.1-positive sample. In summary, 
re-evaluation of RATs is highly dependent on the circulat-
ing VoCs and should not rely on the previously published 
analyses with respiratory samples containing previous VoCs.

Discussion

At the beginning of 2022, the SARS-CoV-2 VoC of the Pan-
golin lineage B.1.1.529 (Omicron) prevailed in Germany, 
displacing the previously predominant Delta VoC. Being 
the most transmissible variant up to this point, the Omicron-
BA.1 wave led to the highest incidences in Germany up to 
now during the COVID-19 pandemic. While the subline-
age Omicron-BA.1 was globally dominant, it was rapidly 
replaced from March 2022 onwards by the apparently even 
more contagious Omicron-BA.2 sublineage. This study was 
conducted in early 2022 when Omicron-BA.1 and Omicron-
BA.2 were still dominating in Germany. While Omicron-
BA.4 evolved, but never became a dominant VoC on a global 
scale, Omicron-BA.5 has been responsible for the majority 
of SARS-CoV-2 infections from June 2022 onwards [40]. 
Currently, the Omicron-BA.5 subline BF.7 is circulating in 
Europe and increasing cases with Omicron-BA.2.75 and the 
BA.2-derived BJ.1 are noted worldwide [41]. Details on the 
performance of RATs for infections caused by Omicron-
BA.4 and -BA.5 are in progress but were unfortunately not 
in the scope of the current investigation. Nevertheless, our 
current study conducted with Omicron-BA.2 dominating 
in early 2022 might become more relevant once again due 
to the rapid evolution of different Omicron subtypes, some 
specific ones derived from BA.2.

Changes in the virus’ characteristics including also 
immune escape, in addition to the parallel withdrawal of 
contact-reducing measures in Germany and the resulting 
behavioral change in the general population led to a further 
increase in the number of reported infections [41]. During 
this period, RATs conducted in official COVID-19 testing 
centers were an integral part of the country's pandemic 
management.

The nucleocapsid protein of Omicron-BA.1 shows four 
mutations compared to the wild-type virus at amino acid 
positions P13L, DEL31/33, R203K and G204R, Omicron-
BA.2 has an additional mutation at S413R. The two Omicron 
sublineages BA.1 and BA.2 hardly differ in terms of their, 
on average, less severe clinical manifestation and suscep-
tibility to antibody-mediated neutralization [43–45], yet 

additional mutations in the spike protein of Omicron-BA.2 
seem to be associated with higher infectivity [46, 47]. The 
currently circulating Omicron-BA.5 has similar mutations in 
the nucleocapsid as Omicron-BA.2 [48]. Thus, we speculate 
that our results for Omicron-BA.2 might in part predict those 
for Omicron-BA.5. In addition to these phenotypic changes, 
mutations in other functional viral proteins also occur in 
Omicron and its sublineages, possibly underlying the altered 
pathogenesis [49, 50]. It has been suggested that a different 
cell tropism and entry mechanisms may account for differ-
ent infection kinetics with shortened incubation periods in 
Omicron compared to earlier VoCs [51–55].

Pre-existing immunity, vaccine- or infection-induced, 
with the presence of anti-spike antibodies in the swab sam-
ple on the one hand, but also different levels of nucleocapsid 
protein relative to viral RNA loads due to modified replica-
tion and pathogenesis on the other hand, may impact on the 
clinical performance of RATs. In the context of performance 
evaluation of RATs, it is not yet clear to what extent these 
factors need to be taken into account in the RAT assessment 
of VoCs as well as the changing population’s immunity. 
Potentially, also the nucleocapsid protein, which is the target 
of nearly all RATs, may accumulate additional mutations in 
future VoCs that could affect the performance of individual 
tests. With the emergence of the recent Omicron-BA.4 and 
-BA.5 subvariants [56], mutations already exist in regions 
of the nucleocapsid protein that were previously considered 
as highly conserved. Test manufacturers still protect infor-
mation regarding the binding sites of their RAT antibodies 
based on intellectual property claims. Consequently, a con-
stant laboratory-centered re-evaluation of RATs is necessary 
when newly emerging SARS-CoV-2 variants start circulat-
ing since a change of the antigenic epitopes or clinical char-
acteristics that are relevant for testing cannot be excluded.

Although various independent studies comparing Delta 
with Omicron VoCs show partly contradictory results, there 
is still appreciation of the potential influence of RAT extrac-
tion buffers in connection with the preexisting immunity 
of infected individuals [57]. Likewise, we are not aware of 
studies investigating how different concentrations of SARS-
COV-2-specific antibodies in pooled study samples influence 
the sensitivity of RATs.

In the current report, the S413R mutation present in the 
Omicron-BA.2 nucleocapsid protein does not seem to impair 
binding of the specific antibodies used in the five RATs eval-
uated compared to Omicron-BA.1. Similarly, differences in 
pre-existing antibodies in patients infected with Omicron-
BA.1 or -BA.2 that may bind viral particles and thus hamper 
nucleocapsid recognition by RAT antibodies, seem not to 
have had a marked influence on test performance.

In comparison to our previous study in which a marked 
VoC-dependent decrease in the detection of Omicron-BA.1 
compared to Delta was observed in 7 out of 9 RATs [10], 
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no significant intra-test specific differences between LoD50/
LoD95 values were observed between Omicron-BA.1 and 
-BA.2. Nevertheless, it is remarkable that the overall sensi-
tivities of the five RATs used in this study also showed con-
siderable inter-test variability and an impaired detection rate 
for Omicron-containing respiratory samples compared to PEI 
evaluations [26]. The RATs Glallergen (92% overall sensitiv-
ity), Saier (96% overall sensitivity) and Egens (90% overall 
sensitivity), that were rated “very good” in the PEI evalua-
tion for “non-Delta/non-Omicron” samples, performed worse 
in the overall sensitivity of our Omicron-based evaluation 
(Omicron-BA.1/-BA.2: 49–50%, 56%, and 36–38%, respec-
tively) compared to the RATs Clongene and nal von Minden, 
which were rated worse in the PEI evaluation with a 50 and 
36% overall sensitivity, respectively. The latter even achieved 
higher sensitivities (57–67% and 59%, respectively) in our 
study with Omicron-BA.1 and -BA.2 than for the “non-Delta/
non-Omicron” evaluation by the PEI [25, 26].

This underlines the need for internationally harmonized cri-
teria for independent evaluation studies of RATs, such as the 
ones launched in the meantime by the European Commission 
[27]. However, these need to be re-evaluated and adapted to 
meet the constantly changing requirements, namely the ongo-
ing changes in the immunity of the population and antigenic 
properties of the SARS-CoV-2 nucleocapsid protein. Only this 
way the usefulness of RATs as a testing strategy to identify 
acutely infected individuals can be assessed based on well-
founded evidence by policy-makers.
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