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Abstract
Conflicting hallmarks are attributed to cytomegalovirus (CMV) infections. CMVs are viewed as being master tacticians in 
“immune evasion” by subverting essentially all pathways of innate and adaptive immunity. On the other hand, CMV disease 
is undeniably restricted to the immunologically immature or immunocompromised host, whereas an intact immune system 
prevents virus spread, cytopathogenic tissue infection, and thus pathological organ manifestations. Therefore, the popular 
term “immune evasion” is apparently incongruous with the control of CMV infections in the immunocompetent human 
host as well as in experimental non-human primate and rodent models. Here, we review recent work from the mouse model 
that resolves this obvious discrepancy for the example of the virus-specific CD8 T-cell response. Immune evasion proteins 
encoded by murine CMV (mCMV) interfere with the cell surface trafficking of antigenic peptide-loaded MHC class-I 
(pMHC-I) complexes and thereby reduce their numbers available for interaction with T-cell receptors of CD8 T cells; but 
this inhibition is incomplete. As a consequence, while CD8 T cells with low interaction avidity fail to receive sufficient 
signaling for triggering their antiviral effector function in the presence of immune evasion proteins in infected cells, a few 
pMHC-I complexes that escape to the cell surface are sufficient for sensitizing high-avidity CD8 T cells. It is thus proposed 
that the function of immune evasion proteins is to raise the avidity threshold for activation, so that in the net result, only 
high-avidity cells can protect. An example showing that immune evasion proteins can make the difference between life and 
death is the lacking control of infection in a mouse model of MHC-I histoincompatible hematopoietic cell transplantation 
(allogeneic-HCT). In this model, only low-avidity CD8 T cells become reconstituted by HCT and almost all infected HCT 
recipients die of multiple-organ CMV disease when immune evasion proteins are expressed. In contrast, lowering the avidity 
threshold for antigen recognition by deletion of immune evasion proteins allowed control of infection and rescued from death.
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Introduction

Cytomegaloviruses (CMVs) belong to the β-subfamily of 
the herpes virus family and have co-evolved with their mam-
malian hosts for estimated 350 million years (for overviews, 
see [1, 2]). This co-evolution has led to perfect adaptation 
of any CMV species to its respective host. This accounts for 
host-species specificity of virus replication [3–5], balance 
of immune control and immune evasion [6], as well as the 
establishment and maintenance of latent infection, referred 
to as “latency” (for more recent reviews, see [7–10]). As a 
consequence, the clinically relevant human CMV (hCMV) 
cannot be studied in experimental animal models, with 
the exception of specific but limited questions that can be 
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addressed in humanized mouse models with human tissue 
implants [11, 12]. It is a matter of course that ethical con-
cerns limit the clinical investigation of CMV pathogenesis 
and immune control to natural primary infection and virus 
reactivation from latency in clinical settings, whereas experi-
mental genetic manipulation of virus and/or host for scien-
tific purposes is out of the question. Although non-human 
primate models are closest to human infection, they nonethe-
less differ in important aspects of CMV pathogenesis and 
immune control, are limited with respect to manipulation of 
host genetics, and may also raise ethical concerns [13–15]. 
Despite pronounced genetic differences in both virus and 
host between human infection and experimental animal 
models, convergent evolution resulted in molecularly dif-
ferent but functionally analogous mechanisms of virus–host 
interplay. As we have reviewed recently, the mouse model 
based on infection with murine CMV (mCMV) has iden-
tified principles of pathogenesis and immune control that 
have proven valid also for hCMV [16]. Specifically, clinical 
immunotherapy of hCMV infection in immunocompromised 
recipients of hematopoietic cell transplantation (HCT) by 
transfer of viral epitope-specific CD8 T cells [17–20] has 
been pioneered by preclinical data from the mouse model 
of experimental HCT and mCMV infection (reviewed in 
[21–23]).

A common feature shared by all CMVs is the rapid con-
trol of primary infection of the immunocompetent host by 
innate and adaptive immune responses. These prevent an 
extensive viral spread and overt organ manifestations caused 
by cytopathogenic tissue infection, but fail to clear viral 
genomes and thus result in the establishment of latency. 
Latency is maintained by continuous immune surveillance 
that prevents productive reactivation [24, 25]. CMV organ 
disease can develop after primary infection of an immuno-
logically immature or immunodeficient host or by recurrent 
infection after productive reactivation of latent virus under 
immunocompromising conditions that abrogate immune sur-
veillance. Accordingly, the risk of CMV disease leading to 
birth defects results from infection of the fetus after primary 
or recurrent infection of pregnant women (for overviews, 
see [26, 27]) and virus reactivation from latency is a feared 
complication in iatrogenically immunocompromised trans-
plant recipients.

Specifically, in solid organ transplantation (SOT), immu-
nosuppressive prophylaxis or therapy of a host-versus-graft 
(HvG) response to prevent immune-mediated graft rejection 
bears a risk of virus-mediated graft loss due to latent virus 
reactivation. This mostly occurs in the transplanted organ 
from a CMV-latent donor rather than in the CMV-latent 
recipient’s organs, as indicated by the recurrence of donor-
type CMV ([28–31], discussed in [9]).

In HCT, transient immunodeficiency due to hemato-
ablative therapy of the primary disease, such as leukemia, 

favors reactivation of latent CMV in a “window of risk” 
between HCT and successful immune system reconstitu-
tion. An often lethal interstitial pneumonia (CMV-IP) is the 
most deleterious clinical manifestation of recurrent CMV 
infection in HCT recipients (for more recent reviews, see 
[32–34]). Dependent on CMV status, virus reactivation can 
originate in the hematopoietic cell transplant, or in organs 
of the recipient, or in both. Notably, in HCT, the recurrent 
virus is more frequently of recipient-type, which indicates 
that hematopoietic stem and/or progenitor cells are not 
the predominant source of latent CMV ([31], reviewed in 
[9]). An additional risk of CMV reactivation and disease is 
posed in allogeneic-HCT (allo-HCT) by a graft-versus-host 
(GvH) reaction against mismatches in major and/or minor 
histocompatibility antigens, that is in MHC/HLA and/or 
in minor-H antigens (mHAg), respectively. On top of this, 
immunosuppressive prophylaxis or therapy of GvH disease 
(GvHD) further promotes lethal CMV disease by preventing 
the reconstitution of protective, antiviral CD8 T cells (for 
more recent reviews, see [35, 36]).

All in all, the lesson from clinical reality tells us that 
CMV disease is a typical “disease of the immunocompro-
mised host”. This contrasts fundamentally with numerous 
basic science reports on CMV “immune evasion” by encod-
ing proteins that subvert essentially all pathways of intrinsic 
host cell defense as well as of innate and adaptive immune 
responses (for more recent reviews, see [37–40]). Accord-
ingly, clinicians and basic scientists talk about CMV in dif-
ferent languages.

Here, we review recent work showing that in the case of 
CMV control by CD8 T cells, the key to resolve the seeming 
contradiction is CD8 T-cell avidity in antigen recognition.

Selection of high‑avidity and low‑avidity 
CD8 T effector cells

Studies on antigen presentation by CMV-infected cells to 
CD8 T cells were usually performed in cell culture using 
lines of CD8 T effector cells (TEC) as probes for detec-
tion. TEC lines were propagated with optimized doses of 
an antigenic peptide of interest with the aim to stimulate 
and expand most if not all cells that express T-cell receptors 
(TCR) specific for a corresponding peptide-MHC class-I 
(pMHC-I) complex [41, 42]. TCRs differ in their structural 
avidities of binding to monomeric pMHC-I complexes in a 
Gaussian-like distribution ranging from low to high avidi-
ties, measured as TCR-ligand koff rates [43]. In addition to 
TCR structural avidity, TCR cell surface density and acces-
sory molecules at the TEC-target cell synapse contribute 
cooperatively to the functional avidity of the interaction by 
receptor clustering [44]. Therefore, it is predictable that CD8 
T cells of high functional avidity are of superior sensitivity 
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Fig. 1  Selection of low-avidity 
and high-avidity TEC lines. 
A Scheme of the approach. 
The red-filled capsid in the 
wild-type (WT) virus symbol 
indicates the presence of vRAP-
encoding genes. Symbols in 
light blue and dark blue color 
indicate low avidity and high 
avidity, respectively. TEC T 
effector cells. B Frequencies of 
TEC responding to presented 
antigenic peptide with IFNγ 
secretion in an ELISpot assay. 
(Left panels) cumulative avidity 
distributions. Bars represent 
frequencies of TEC (error 
bars: 95% confidence intervals) 
responding in the assay to stim-
ulation by embryonic fibroblasts 
exogenously loaded with syn-
thetic antigenic peptide m164 at 
the graded molar concentrations 
indicated. NP no peptide.  EC50, 
effective concentration of anti-
genic peptide that leads to the 
half-maximal response. (Right 
panels) Gaussian-like avidity 
distributions. Bars represent the 
calculated increase in respond-
ing TEC frequencies between 
lower peptide concentrations 
and the peptide concentration 
indicated. These values quanti-
tate TEC with an avidity defined 
by the corresponding peptide 
concentration. Arrows mark 
the detection threshold for the 
low-avidity TEC line. Repro-
duced in modified form and 
with additional calculations of 
 EC50 values from an experiment 
published in reference [45]
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for detecting limited numbers of pMHC-I complexes at the 
surface of infected cells.

As tools for studying the impact of functional avidity on 
the recognition of target cells, low-avidity and high-avidity 
TEC lines were selected from polyclonal memory CD8 T 
cells by stimulation and propagation in cell culture with 
high  (10–8 M) and low  (10–10 M) concentrations of antigenic 
peptide, respectively (Fig. 1A, [22]). The antigenic peptide 
m164 (amino acid sequence AGPPRYSRI) of mCMV, which 
is presented by the MHC-I molecule  Dd, was chosen based 
on the previous finding that a broad range of TCR avidi-
ties in the memory cell population facilitates the selection 
of m164-specific TEC lines that differ in the target cell 
peptide loading concentration required for half-maximal 

cytolytic effector function [41]. In the present example, the 
effector function read-out was IFNγ secretion, and IFNγ+ 
TEC responding to target cells were quantitated for graded 
peptide concentrations used for exogenous target cell load-
ing (Fig. 1B, [45]). The 50% effective concentration  (EC50) 
values differed by a factor of ca. 20, namely 3.7 ×  10–9 M 
for the low-avidity TEC line and 1.8 ×  10–10 M for the high-
avidity TEC line. Based on this, only the high-avidity TEC 
line included cells able to recognize target cells exogenously 
loaded with  10–10 M of synthetic m164 peptide, whereas 
most cells of the low-avidity TEC line were sensitized by 
 10–8 M for IFNγ secretion as effector function.

Fig. 2  High avidity overcomes 
immune evasion. A Current 
view of the concerted function 
of vRAPs. ER endoplasmic 
reticulum, ERGIC ER-Golgi 
Intermediate Compartment, 
TGN Trans-Golgi Network, 
ERC Endosomal Recycling 
Compartment, EE Early Endo-
some, LE Late Endosome, 
AP Adapter Protein. For more 
detailed explanation, see the 
body of the text and reference 
[40]. B Avidity of TEC defines 
the sensitivity of detecting pre-
sented antigen. Bars represent 
the responses of TEC of the 
low-avidity and high-avidity 
TEC lines defined in Fig. 1, nor-
malized to the response to tar-
get/stimulator cells not express-
ing vRAPs after infection 
with the triple deletion mutant 
mCMV-ΔvRAP. Error bars 
represent the 95% confidence 
intervals. The IFNγ ELISpot 
assay was performed with 
target/stimulator cells express-
ing the indicated vRAPs after 
infection with the correspond-
ing combinatorial vRAP gene 
deletion mutants of mCMV. All, 
infection with the parental virus 
expressing all three vRAPs; n.i., 
uninfected cells. Reproduced, 
with modification, from refer-
ence [45]
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Only high‑avidity TEC recognize infected 
cells that express immune evasion proteins

In infected cells, pMHC-I complexes are formed in the ER 
after endogenous, mostly proteasomal processing of viral 
proteins, peptide translocation into the ER, and peptide load-
ing on nascent MHC-I molecules. Cell surface display of 
pMHC-I complexes for recognition by CD8 T cells is regu-
lated in mCMV-infected cells by synergistic and antagonistic 
action of proteins (viral regulators of antigen presentation, 

vRAPs) that dictate the intracellular trafficking of recently 
folded pMHC-I complexes from the ER to the cell surface 
or intracellular compartments [46] by hijacking intracellular 
cargo sorting pathways (comprehensively reviewed in [40]). 
In essence, the functionally predominant “immune eva-
sion” protein m152/gp40 of mCMV [47–49] traps pMHC-I 
complexes in an ER cis-Golgi intermediate compartment 
(ERGIC), whereas the m02 gene family members m04/gp34 
and m06/gp48 compete for pMHC-I cargo by binding in the 
ER and antagonize each other by guiding pMHC-I to the cell 

Fig. 3  Impact of functional 
avidity of TEC on in vivo 
antiviral protection. A Scheme 
of the adoptive cell transfer 
approach. Symbols in light blue 
and dark blue color indicate 
low avidity and high avidity, 
respectively. TEC specific for 
the presented antigenic peptide 
m164 were transferred into 
BALB/c recipient mice that 
were immunocompromised by 
total-body γ-irradiation (flash 
symbol) and infected with 
either wild-type (WT) mCMV 
encoding vRAPs (symbolized 
by a red-filled capsid) or with 
the vRAP gene deletion mutant 
mCMV-ΔvRAP (symbolized 
by a red-rimmed empty capsid). 
B Virus titers in the spleen of 
the adoptive transfer recipients, 
measured as plaque-forming 
units (PFU), were determined 
on day 11 after transfer of TEC 
in numbers indicated. Dot 
symbols represent mice tested 
individually. Median values are 
marked. Light blue and dark 
blue colors indicate low avidity 
and high avidity, respectively. 
Ø, no cell transfer (empty 
circles). The dotted lines rep-
resent the detection limit of the 
infectivity assay. Reproduced 
in modified arrangement based 
on an experiment published in 
reference [22]
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surface or by entering the endosomal-lysosomal pathway for 
disposal, respectively (Fig. 2A, [40]). In the net effect, the 
concerted action of these three vRAPs significantly limits 
the cell surface presentation of pMHC-I complexes.

For evaluating the impact of vRAPs, individually or all 
three in concert, target cells were infected with deletion 
mutants of mCMV expressing no vRAP or single vRAPs, or 
were infected with the parental virus expressing the full set 
of vRAPs (Fig. 2B, [45]). When tested with the low-avidity 
m164-specific TEC line, the number of TEC sensitized by 
cell surface pMHC-I (m164-Dd in the specific cells) was 
reduced by expression of m06 and even more reduced by 
m152. No cells in the TEC population recognized target cells 
expressing all three vRAPs. This finding bears the risk of 
falsely concluding that vRAPs would completely prevent 
antigen presentation [50]. When the same set of target cells 
was tested with the high-avidity m164-specific TEC line, no 
reduction in the number of responding TEC was observed 
for the expression of m06 and, compared to the low-avid-
ity TEC line, the reduction by m152 expression was less. 
Importantly, a fraction of the cells in this high-avidity TEC 
line recognized target cells despite the expression of all three 
vRAPs. This finding proved that vRAPs do not completely 
prevent antigen presentation and that functional avidity of 
TEC is decisive for the recognition of infected cells.

Immune evasion proteins prevent protection 
by low‑avidity but not by high‑avidity TEC

It almost goes without saying that high-avidity TEC are 
sensitized more efficiently than low-avidity TEC due to a 
prolonged interaction time between a TCR and a presented 

pMHC-I complex, that is a lower koff rate, and due to a lower 
number of such interactions required at the immunological 
synapse for triggering effector function. It was thus highly 
predictable that for an immunotherapy of infection by adop-
tive cell transfer, high-avidity TEC are superior over low-
avidity TEC in recognizing cells with limited antigen pres-
entation and thus in protection in vivo against infection and 
virus spread in host tissues [22, 43, 51].

Here, we discuss a link between TEC avidity and the 
phenomenon of immune evasion in CMV infections. As 
shown above exemplarily in the mCMV model, the con-
certed action of vRAPs largely reduces antigen presenta-
tion, so that only TEC with high avidity can detect trace 
amounts of pMHC-I complexes at the cell surface. Accord-
ingly, in an immunotherapy approach by adoptive cell trans-
fer (Fig. 3, [22]), even high numbers of low-avidity TEC 
failed to control infection of immunocompromised recipient 
mice after infection with wild-type (WT) mCMV. In con-
trast, under otherwise identical conditions, high-avidity TEC 
controlled the infection in a dose-dependent manner. Most 
instructive with respect to explaining the difference is the 
finding of very efficient protection even by low-avidity TEC, 
provided that recipients were infected with a vRAP gene 
deletion mutant mCMV-ΔvRAP.

This experiment unequivocally identified reduction of tar-
get cell antigen presentation by vRAPs, rather than a T-cell 
intrinsic signaling deficiency, as the cause of missing protec-
tion by low-avidity TEC.

CD8 T‑cell avidity makes the difference 
between survival and death from CMV 
disease in allo‑HCT

A critical link between CD8 T-cell avidity and limited 
antigen presentation caused by CMV-encoded vRAPs has 
recently been identified in mouse models of MHC-I and of 
minor histocompatibility antigen-mismatched allo-HCTs 
([52, 53], reviewed in [36]). It is long-established clinical 
experience that lethality in CMV-infected HCT recipients 
is associated with disparity in histocompatibility antigens 
between HCT donor and recipient, and it was proposed that 
this results from a fatal pathogenetic interplay between CMV 
infection and a graft-versus-host (GvH) reaction, enhanc-
ing each other (for reviews, see [35, 36]). The two mouse 
models of allo-HCT, however, concordantly identified an 
uncontrolled virus spread and extensive viral histopathology 
as the cause of death in the absence of GvH-reactive cells 
and the consequent absence of a histopathology character-
istic of GvH disease (GvHD). Instead, a quantitative failure 
in the reconstitution of protective high-avidity CD8 T cells 
caused by histoincompatibility in itself was found to account 
for lethal CMV organ disease. In contrast, in control HCT 

Fig. 4  Lethal CMV disease after allo-HCT corresponds to inefficient 
reconstitution of high-avidity CD8 T cells. A Experimental HCT pro-
tocols and survival rates of the infected HCT recipients. HCT donors 
and recipients were chosen to differ in the expression of the MHC-I 
antigen  Ld by either expressing it or lacking it (symbol Δ). Control 
HCT, no potential for a GvH response, because the target histocom-
patibility antigen  Ld is not expressed in the recipients. Allo-HCT, 
potential for a GvH response, because the target histocompatibility 
antigen  Ld is expressed in the recipients. B Gaussian-like avidity dis-
tributions (see Fig. 1B for explanation) of recipients’ liver-infiltrating 
CD8 T cells (day 20 post-HCT) specific for the viral antigenic pep-
tides indicated. C Corresponding liver histopathology. (Control 
HCT) Liver infection is controlled and eventually resolved by liver-
infiltrating T cells. (Allo-HCT), lack of liver-infiltrating T cells asso-
ciated with uncontrolled, disseminated liver infection. Infected liver 
cells, which are predominantly hepatocytes (iHc), are identified by 
red staining of the intranuclear viral protein IE1. Tissue-infiltrating T 
cells are identified by black staining of the CD3ε molecule. Frames 
in the upper images demarcate the tissue regions that are resolved to 
greater detail in the lower images. NIF nodular inflammatory focus 
consisting of T cells aggregating around infected cells. Bar markers, 
100 μm. Modified and presented in a new arrangement, based on ref-
erences [36, 52]

◂
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models designed to avoid recognition of histocompatibility 
antigens in the HCT recipients, high-avidity CD8 T cells 
were reconstituted, resolved tissue infection, and prevented 
lethality (Fig. 4, [52, 53]).

It is proposed that transplantation tolerance toward histo-
compatibility antigens is accompanied by a bystander non-
cognate tolerance against viral antigens (discussed in [36]). 
Notably, enhanced antigen presentation by deletion of the 
vRAP-encoding genes in the infecting virus allowed survival 
under otherwise identical conditions of allo-HCTs (Fig. 5, [52, 
53]). This finding excluded GvH-reactive cells as the cause of 
death, and instead revealed a critical role for sufficient antigen 
presentation to recruit also non-tolerized low-avidity CD8 T 
cells to antiviral protection.

Synopsis

We have here reviewed recent data from murine models 
of CD8 T-cell immunotherapy and allo-HCT that demon-
strate the importance of CD8 T-cell avidity for control-
ling CMV, and that link the requirement of high-avidity 
to the limitation of antigen presentation by the concerted 
function of vRAPs. A most instructive example is lethal 
CMV disease associated with allo-HCT (Fig. 6, Graphical 
Abstract).

In control HCTs, designed to avoid a recognition of 
histocompatibility antigens in the recipient, high-avidity 
TEC are reconstituted and recognize infected cells despite 
the action of immune evasive vRAPs. They confine and 

eventually clear the infection by tissue infiltration and 
accumulation in microanatomical structures, known as 
“nodular inflammatory foci” (NIF) (see Fig. 4C), which 
can serve as histological indicators of protection. Impor-
tantly, IFNγ secreted by sensitized high-avidity TEC 
enhances antigen presentation [54] and thereby recruits 
also low-avidity TEC into protective NIF (Fig. 6, left 
panel). In contrast, in allo-HCT, only low-avidity TEC 
are reconstituted, which fail to become sensitized through 
interaction with a too low number of presented pMHC-I 
complexes. As a consequence, infected cells are not recog-
nized and TEC are not recruited into NIF, so that the virus 
spreads uncontrolled and leads to a lethal histopathology 
(Fig. 6, center panel). Finally, deletion of vRAPs in the 
infecting virus prevents the inhibition of antigen pres-
entation, so that even low-avidity TEC reconstituted by 
allo-HCT become sensitized by TCR-pMHC-I clustering, 
infiltrate infected tissue, and control the infection within 
NIF (Fig. 6, right panel).

In summary, all data provide strong evidence to con-
clude that immune evasion proteins do not prevent but only 
limit the cell surface display of pMHC-I complexes. They 
thereby raise the TEC avidity threshold required for the 
recognition of infected cells and thus for protection against 
uncontrolled virus spread, viral histopathology, and CMV 
organ disease. This new understanding solves the long-
standing conflict between “immune evasion” of CMVs and 
the undisputable medical fact that CMV disease is a typi-
cal “disease of the immunocompromised host”.

Fig. 5  Deletion of vRAPs prevents lethality from CMV infection 
after allo-HCT. A Experimental allo-HCT protocols (see also Fig. 4). 
Recipients were infected either with WT mCMV expressing all three 
vRAPs (indicted by red-filled capsid in the virus symbol) or with the 

triple deletion mutant mCMV-ΔvRAP lacking all three vRAPs (indi-
cated by red-rimmed capsid in the virus symbol). B Corresponding 
survival rates of the infected allo-HCT recipients. Graphically modi-
fied based on data from reference [52]
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