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Abstract
Leishmaniasis is a vector-borne neglected tropical disease endemic in over 100 countries around the world. Available con-
trol measures are not always successful, therapeutic options are limited, and there is no vaccine available against human 
leishmaniasis, although several candidate antigens have been evaluated over the last decades. Plenty of studies have aimed 
to evaluate the immune response development and a diverse range of host immune factors have been described to be associ-
ated with protection or disease progression in leishmaniasis; however, to date, no comprehensive biomarker(s) have been 
identified as surrogate marker of protection or exacerbation, and lack of enough information remains a barrier for vaccine 
development. Most of the current understanding of the role of different markers of immune response in leishmaniasis has 
been collected from experimental animal models. Although the data generated from the animal models are crucial, it might 
not always be extrapolated to humans. Here, we briefly review the events during Leishmania invasion of host cells and the 
immune responses induced against Leishmania in animal models and humans and their potential role as a biomarker of 
protection against human leishmaniasis.
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Introduction

Leishmaniasis is a vector-borne neglected tropical disease 
endemic in over 100 countries around the world. Clinical 
manifestations of the disease are mainly cutaneous (CL), 
mucocutaneous (MCL) and visceral (VL) and post kala-azar 
dermal (PKDL) leishmaniasis [1, 2]. The pathogenesis of 
leishmaniasis is influenced by elements from the triad of 
parasite–host–vector interplay. At least in murine model 
of leishmaniasis, the type of immune response generated 
upon infection with Leishmania plays a crucial role in the 
outcome of the disease either cure and protection or progres-
sion and even death. Although plenty of data concerning 
the factors involved in pathogenesis of Leishmania infection 
and the effector mechanisms of the host immune response 

are collected in animal models and patients during the last 
decades, but yet the immune biomarkers of cure/protection 
or exacerbation in human leishmaniasis are not well defined.

It is well known that CL caused by natural infection or 
leishmanization induces strong protection against further 
CL lesion development, which justifies to develop vaccine 
against leishmaniasis [3]. Wealth of information which is 
accumulated over the past years on the biology of intracel-
lular parasites, map of Leishmania genome, and numerous 
experimental studies on the immunology of leishmaniasis, 
supported search to develop an effective vaccine (reviewed 
in [4, 5]). In the last decades, numerous Leishmania vac-
cine candidates have been introduced as vaccine candidate 
including whole live, attenuated, genetically modified, 
killed parasites, and subunits or fusion proteins, but only a 
few have been tested in clinical trials [4]. The absence of a 
vaccine against leishmaniasis is primarily attributed to the 
absence of clear understanding of correlates of protection 
[6]. Moreover, animal models of leishmaniasis do not always 
mimic human leishmaniasis [7], and extrapolating results 
of protection assays obtained with the experimental murine 
models to humans is doubtful.
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Methods

A literature search using the PubMed, Scopus and Google 
Scholar databases has been conducted for publications 
with full text or abstract in English language over the last 
45 years. Relevant additional articles identified during 
review by authors were also included.

Search terms included were “Leishmania* AND 
(immune response OR immunology OR protection)” or 
“leishmaniasis AND biomarker”. The initial search strat-
egy identified more than 10,000 results. To limit search 
hits, other fields such as title [Ti], title abstract [Tiab], 
English [lang] and publication year [dp] were used which 
decreased the number of results to 7897 articles. Based on 
the title and the abstract, 523 articles including 46 review 
papers and 477 original papers were carefully analysed and 
finally 280 were cited.

Macrophages and initiation of Leishmania infection

Macrophages (MΦ) are known as the primary antigen 
presenting cells (APCs), other phagocytic cells includ-
ing monocytes, dendritic cells and neutrophils are also 
recruited to the site of infection and play important roles 
(reviewed in [8]). It has been proposed that Leishmania 
parasites use neutrophil polymorphonuclear leukocytes 
(PMNs) as temporary host cells to silently enter mac-
rophages without activation of defence mechanisms (Tro-
jan horse hypothesis) [9]. Subsequently, macrophages 
phagocytose free parasites and apoptotic PMNs infected 
with Leishmania parasites and serve as the definitive host 
cells and permit parasite growth. However, macrophages 
are naturally responsible for killing of invading para-
sites by activation of effective microbicidal mechanisms 
(reviewed in [10]). The effective elimination of parasites 
by macrophages and development of protective immune 
response against Leishmania require involvement of den-
dritic cells (DCs) [10].

Leishmania parasites are able to engage different cell 
surface receptors including complement receptors [11, 12], 
fibronectin receptor [13], Toll-like receptors 2, 3 [14] and 
4 [15] and mannose receptor [16] to enter into the host 
cells. The leishmanial membrane protease gp63 cleaves 
C3b attached to its surface, converts it to C3bi inactive 
form which binds to CR3 receptor, and mediate entry of 
opsonized promastigotes into macrophages. This strategy 
protects the parasites from lysis by complement activity 
[17].

Leishmania parasites are engulfed by macrophages and 
are eliminated by production of interferon gamma (IFN-
γ), reactive oxygen species (ROS) and nitric oxide (NO) 

derivatives inside phagolysosome; however, intracellular 
amastigotes modulate various antimicrobial defense path-
ways and interfere with a number of critical macrophage 
functions to sustain and multiply inside the cell (reviewed 
in [18]). Macrophages successfully phagocytose Leishma-
nia parasites, but the production of IL-12 is inhibited by 
the intracellular parasites [19]. It was shown that internali-
zation of L. major through CR3 receptor, which is a mech-
anism of silent entry into macrophages, leads to blockade 
signaling cascade and synthesis of interleukin 12 (IL-12) 
[20, 21]. IL-12 is necessary for the killing of Leishmania 
parasites by macrophages, as it allows for upregulation 
of inducible nitric oxide synthase (iNOS or NOS2) and 
NO synthesis and subsequent parasite elimination [22, 23] 
by promoting the development of  CD4+ T cells and pro-
duction of IFN-γ (basic findings on the role of Th1/Th2 
cytokines in reference [24]). Leishmania infection also 
leads to induction of other regulatory cytokines such as 
IL-10 and transforming growth factor β (TGF-β) which 
interfere with macrophage effector functions in favor of 
parasite survival and disease progression [25].

Macrophage: arginine metabolisms 
and NO production

Among the most important players are arginine-derived 
metabolites which significantly influence the parasite sur-
vival in macrophage (reviewed in [26]). Polyamines are 
essential metabolites in trypanosomatid protozoa and play 
a role in the synthesis of thiol trypanothione. Polyamines 
are synthesized by a metabolic process involving arginase 1 
enzyme (arg1) which catalyzes the hydrolysis of l-arginine 
to l-ornithine. Animal studies showed that induction of arg1 
enzyme promotes Leishmania growth and dissemination 
in vivo, and induction of non-healing leishmaniasis [27]. In 
contrast, inhibition of arg1 activity is associated with limited 
pathology, the lower parasites burden and delays in disease 
outcome in BALB/c mice [28]. Spleen macrophages isolated 
from L. donovani-infected hamster showed low iNOS but 
high arg1 enzyme along with increased polyamine synthesis 
[29].

In human leishmaniasis, higher levels of arg1, TGF-β, 
ornithine decarboxylase (ODC), and prostaglandin E2 in 
plasma and higher expression of arg1 and ODC in lesion 
biopsies have been shown in L. amazonensis-infected 
patients with diffuse CL (DCL) compared with patients with 
localized CL (LCL), indicating a role for arg1/polyamines in 
DCL development [30]. It was shown that the level of arg1 
activity is higher in blood PMNs of patients with chronic 
CL than that of acute CL, suggesting a possible role of arg1 
in chronicity of CL lesions caused by L. major/l. tropica 
[31]. A high arg1 activity was shown in peripheral blood 
mononuclear cells (PBMCs) and plasma of VL and VL-HIV 
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co-infected patients and as such an increase level of arg1 is 
suggested as a marker of VL severity [32].

Polarising signals activate macrophages leading to their 
development into functionally distinct subsets which influ-
ence intracellular Leishmania survival and determine dis-
ease outcomes. Th1 type of cytokines particularly IFN-γ, 
induce classically activated (M1) macrophages which pro-
duce a significant amount of NO and initiate parasite kill-
ing. Classically activated macrophages may contain lower 
concentrations of arginine, as a result of NO production. 
In contrast, by activation of Th2 type of cytokines such as 
IL-4 and IL-13, alternatively activated macrophages (M2) 
are developed which characterized by increased expression 
of arg1 and polyamine biosynthesis, favouring amastigote 
growth in macrophages and disease progression [33, 34]. 
Genetic disruption of amastigote arginase resulted in reduc-
tion of parasite replication [35] and significantly attenuated 
infection in murine model [36], an indication of amastigotes 
reliance on de novo synthesis of polyamines.

Mononuclear cells produce two major anti-Leishmania 
components; ROS which is generated by respiratory burst 
during phagocytosis, and NO, which is produced by iNOS 
in response to IFN-γ (reviewed in [37, 38]). T cells are the 
main source of IFN-γ production, an initial macrophage 
activation through IFN-γ is necessary for parasite killing 
through oxidative-burst mechanisms [39]. In addition to 
IFN-γ, there are a number of other inflammatory cytokines, 
such as IL-1, tumor necrosis factor (TNF), interferon alpha 
(IFN-α), and interferon beta (IFN-β) which are also involved 
in macrophage activation and induction of iNOS expression 
and NO production (reviewed in [40]).

Production of ROS showed to be an important part of 
host cell immune response to induce anti-parasitic effector 
mechanisms, albeit the role of ROS in Leishmania infection 
control in murine model varies and depends on the parasite 
species and mouse strains. Unlike what observed in L. major 
infection, NADPH oxidase, which is required to generate 
ROS, showed no impact on the course of L. braziliensis 
infection in mouse model [41]. In human, however, produc-
tion of ROS is shown to be an important part of control 
mechanisms of L. braziliensis infection [42].

Similarly, NO is an essential factor in control of Leish-
mania infection in mouse model, genetic deletion or func-
tional inactivation of iNOS in L. major infected mice on a 
resistant background at early stage of infection, abolished 
IFN-γ release by NK cells and increased TGFβ expression, 
resulted in a progressive parasite dissemination throughout 
the infected mouse. Furthermore, induction of iNOS was 
dependent on IFNα/β production [43, 44]. The function of 
iNOS and NO in human leishmaniasis is less known, while 
production of ROS is shown to be involved in killing of L. 
braziliensis by human macrophages, NO alone was found 
not to be sufficient to control the infection of monocytes 

from CL patients in vitro [42]. It was reported that NO 
production is not traceable in supernatants of human mac-
rophages infected with L. chagasi, but in vitro blockade of 
NO affected parasite growth in human macrophages [45]. 
iNOS gene expression in the lesions of CL patients due to 
L. braziliensis was comparable to that of normal skin [39]. 
However, anti-Leishmania activity is shown for iNOS in skin 
biopsies collected from American CL patients where the 
frequency of iNOS-positive cells had a reverse correlation 
with parasite burden in L. mexicana CL lesions and the most 
prominent expression of iNOS was seen in lesions with the 
lower number of parasites [46].

Briefly, infected macrophages through production of res-
piratory burst-mediated ROS derivatives and IFN-γ medi-
ated NO are involved in parasite killing. On the other hand, 
there is evidence showing a protective role for NO or ROS 
in human leishmaniasis which might be used as a basis for 
future investigations on the role of NO/iNOS in human and 
an application as a biomarker.

Dendritic cells and interactions with Leishmania

Macrophages and DCs are both professional APC, but in 
regard to Leishmania infection, they use different strategies 
for parasite uptake, internalization and antigen presenta-
tion. DCs preferentially uptake Leishmania amastigotes 
opsonized with IgG through surface FcγRI or FcγRIII recep-
tors [47]. Although the phagocytosis capacity of DCs is not 
completely comparable with that of macrophages [48], but 
antigen presentation and IL-12 production by DC is critical 
in CD4+ Th1 and CD8 + T cells development to mediate 
protective immune response against Leishmania infection 
[22, 49], In contrast to L. major and L. donovani parasites 
which promote production of IL-12 by murine DCs, infec-
tion with L. mexicana and L. amazonensis amastigotes failed 
to activate DCs or to induce IL-12 production [50, 51].

Several subtypes of DCs have been identified in both 
humans and mice that have distinct functions and molecu-
lar features (reviewed in [52]). Plasmacytoid DCs (pDCs) 
are considered resident DCs which specially produce type 
I interferon, and classical DCs (cDCs), mediate antigen 
processing and presentation to T cells [53]. cDCs express 
the integrin CD11c and MHC class II, cDCs can be fur-
ther divided into two major subsets cDC1s and cDC2s. A 
transcription factor Zbtb46 (BTBD4) was identified which 
specifically expresses by all cDCs in both human and mouse 
but not by pDCs, monocytes, and macrophages [54].

Langerhans cells (LCs) are seen in human skin epidermis 
and mucosal tissues similar to murine langerhans cells which 
are identified by the presence of a transmembrane lectin with 
mannose binding specificity called langerin. LCs are differ 
markedly from other migratory DCs in their ontogeny and 
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may have a protective or suppressive function in skin pathol-
ogy (reviewed in [55]).

During inflammation, monocytes recruit to the site of 
inflammation and differentiate into “inflammatory DCs” 
which present DC markers (CD11c and zbtb46) and DC 
functions [56].

During recent years, numerous mouse models for the spe-
cific depletion of DC subsets have been generated which are 
used for elucidating specific functions of DCs (reviewed in 
[57]). In one approach, mouse models are developed that 
express diphtheria toxin (DT) receptor (DTR) under the con-
trol of a cell type-specific promoter, and subsequent admin-
istration of DT mediates selective depletion of the DTR-
expressing cells. DT disrupts protein translation by involving 
elongation factor 2 which eventually leads to cell death.

Several DTR mouse strains have been generated for 
depletion of specific DC subsets, such as Zbtb46-DTR strain 
for specific depletion of cDCs, Cd207-DTR strain for deple-
tion of LCs as well as cDC1s in skin-draining LNs, Ly75-
DTR strain for depletion of CD205+ cDCs (the majority are 
CD8α+ cDC1s), Clec9a-DTR BAC strain for depletion of 
cDC1s, Xcr1-DTRvenus and Karma strains for complete 
depletion of cDC1s, and Clec4a4-DTR strain that allows 
for ablation of cDC2s [57]. Similarly, several DTR mouse 
strains have been generated for depletion of pDCs, mono-
cytes and macrophages, allowing functional study of specific 
cell subsets (reviewed in [58]).

In the early phase of murine Leishmania infection, three 
types of DCs including epidermal LCs, dermal DCs (dDC) 
and inflammatory DCs, are localized at the site of infection 
and mediate APC function. DCs take up parasites at the site 
of infection and then migrate to the dLN to present antigens 
to T lymphocytes, initiating an adaptive immune response 
[59], but there is a discrepancy about the extent to which 
each subset of DCs is involved in the immune response gen-
eration against Leishmania [60]. This discrepancy seems to 
be mainly due to differences in the parasite species, the dos-
age, and the route of administration [61]. A timing sched-
ule is proposed in establishment of a protective immune 
response to L. major infection in murine model, in which 
dDCs and LCs play a role early in infection, but later the 
cells are replaced by inflammatory monocyte-derived DCs 
and lymph node-resident DCs (reviewed in [61]).

Another study showed that CD8alpha–Langerin–DCs 
migrate to dLNs to present antigens to specific T cells to 
induce protective immune response against L. major infec-
tion [62], later a functional dichotomy has been suggested 
for two subsets of dDCs, where Langerin–dDC population 
mediates a CD4+ T-cell response, but Langerin + dDC sub-
set is involved in early priming of CD8+ T cells [63].

Experimental data indicate a suppressive role for skin 
LCs in low dose L. major infection by expansion of parasite-
specific regulatory T cells, whereas both murine and human 

data suggest that dermal inflammatory DC is associated with 
enhanced induction of Th1 response and promoting protec-
tion [61, 64].

Leishmania persistent infection and immune 
evasion mechanisms

Leishmania parasite uses several immune evading strategies 
[65–67] which might need involvement of cell surface mol-
ecules, particularly gp63 and LPG [68]. Metacyclic Leish-
mania promastigotes  avoid complement-mediated lysis via 
surface LPG by deactivation of the classical and alternative 
pathways [69].

Leishmania amastigotes inhibit the assembly of NADPH 
complex which generates ROS [70], and interfere with sev-
eral phosphorylation signaling pathways of the cells [71–73]. 
Down-regulation of Toll-like receptors (TLR) and the Janus 
kinase (JAK)-signal transducer and activator of transcription 
(STAT) signaling pathways genes are suggested in NK cells 
from DCL patients caused by L. mexicana [74]. Similarly, L. 
donovani infected macrophages are defective in the ability 
to phosphorylate downstream molecules of JAK2/STAT1 
signaling pathways including STAT-1, JAK1, and JAK2 in 
response to IFN-γ [71, 75].

It was shown that inhibition of PKC-dependent activ-
ity contributes to the survival of L. donovani inside the 
macrophages [76] and inhibition of a mitogen-activated 
protein kinase (MAP kinase) of host cells following Leish-
mania infection is confirmed by several studies [77, 78]. 
Induction of ceramide synthesis in L. donovani-infected 
murine macrophages mediate inactivation of ERK1/2 MAP 
kinases which results in inhibition of transcription factors 
AP-1 and NF-κB, NO generation, and a lower parasite bur-
den [79].

Leishmania also activates various molecules that inhibit 
intracellular signaling cascades. An important negative regu-
latory molecule is PTP SHP-1 which is involved in limit-
ing the activation of the JAK/STAT pathways following L. 
donovani infection [75]. Induction of SHP-1 is vital for inhi-
bition of NO generation which occurs through the inactiva-
tion of JAK2 and ERK1/2, and transcription factors NF-kB 
and AP-1 [80]. Another survival strategy used by Leishma-
nia parasites is detoxification of important antimicrobial 
molecules that are secreted into the phagolysosome includ-
ing superoxide radicals and nitrite derivatives, such as per-
oxidoxins LcPxn1/2 [81] and a superoxide dismutase [82].

Within macrophages, Leishmania promastigotes trans-
form into amastigotes and replicate continuously until 
causing cell death and rupture. Microbicidal mechanisms 
of macrophages later on infection eliminate the intra-
cellular parasites through NO production [83]. The fate 
of Leishmania parasites within DC is less clear, in both 
human CL and murine Leishmania infection, parasites 
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persistence has been reported [84–86], but the main host 
cells for long-term persistence is not clearly defined. In 
the lymph nodes of mouse after cure of L. major infec-
tion, both macrophages and dendritic cells which derived 
from the skin, showed to harbour viable parasites [84]. 
LCs containing parasite are also detected in the skin lesion 
infiltrate from L. major-infected mouse [87].

Bogdan et al. showed that fibroblasts are responsible for 
about 40% of the persisting parasites in the draining lymph 
nodes of mouse after healing of cutaneous lesion due to L. 
major infection. The infected fibroblasts did not eliminate 
the parasites comparable to the infected macrophages, thus 
fibroblasts are proposed as safe host cells for the parasites 
in latent infection [88].

Owing to limited capability of de novo synthesize, 
Leishmania amastigotes require essential nutritional ele-
ments, such as amino acids, purines, lipids, and other 
metabolites which must be available within the parasito-
phorous vacuole (PV) to support amastigotes growth (met-
abolic pathways reviewed in [89]). Upon phagocytosis, 
metacyclic promastigotes transform into amastigotes in 
the host cell where they encounter a limitation in the avail-
ability of several nutrients (reviewed in [89, 90]). Leish-
mania parasites constitutively express genes involved in 
core pathways of carbon metabolism throughout the life 
cycle [91]. Oligosaccharides such as mannose and galac-
tose are integrated into the structure of LPG [92] which 
play a significant role in survival of the parasites within 
phagolysosomes by involvement in macrophage oxida-
tive responses [93]. Additionally, lipid bodies are orga-
nelles in the macrophage consist of neutral lipids mainly 
triacylglycerol and sterol esters which partially support 
parasite’s nutrient requirements and are involved in phago-
some maturation and production of eicosanoids molecules 
which regulate immunity by either promoting or modulat-
ing inflammatory responses [94].

On the other hand, parasite ferric iron reductase 
(LFR1), ferrous iron transporter (LIT1) and heme trans-
porter (LHR1) contribute to provide iron sources for Leish-
mania parasites and as such these molecules are essential 
for Leishmania viability and intracellular survival [95]. Up 
regulation of iron exporters including natural resistance-
associated macrophage protein (NRAMP-1) and Ferropor-
tin (Fpn-1) which restrict the availability of iron to the 
parasite are recently shown in monocytes isolated from 
PKDL patients [96]. A secretory peroxidase of L. dono-
vani down regulates NRAMP1 expression in peritoneal 
macrophages and allows iron access to Leishmania inside 
PV [97] and another iron regulator, hepcidin, facilitates 
iron sequestration within macrophages by mediating cell 
surface degradation of the iron exporter ferroportin [98]. 
For more detailed survival factors see reference [99].

Interleukin 12 (IL‑12) production

Leishmania induces IL-12 production at early hours of infec-
tion which leads to NK cell activation and IFN-γ production 
[100, 101]. A central role is assumed for both IL-12 and 
IFN-γ to drive CD4 + T-cell differentiation and subsequent 
induction of protective immune response to L. major infec-
tion in mouse [102]. In normally resistant mouse strains, 
in vivo neutralization of IL-12 results in inhibition of IFN-γ 
production by NK cells in lymph nodes [101], IL-12 is also 
necessary for down-regulation of Th2 type responses dur-
ing L. major infection in vivo [103]. Nevertheless, there is 
evidence showing that the early IFN-y production following 
L. major infection is IL-12 independent [104].

In vitro and ex vivo studies showed that IL-12 deficient 
mice from resistant strain mount a strong Th2 type response 
with a high level of IL-4 and a low level of IFN-γ expres-
sions and develop progressive uncontrolled lesions similar 
to genetically susceptible BALB/c mice [105]. The role of 
IL-12 in the development of protective CD4+ T-cell-medi-
ated immunity in Leishmania infection has been shown in 
several other studies through neutralization of IL-12 using 
monoclonal antibody or deletion of IL-12 gene in resistant 
mice strains [106, 107] or through rIL-12 treatment in sus-
ceptible mice strains [100, 108, 109]. These findings impli-
cate that IL-12 is essential for the development of effective 
Th1 type of response in leishmaniasis [110].

As mentioned in the previous sections, L. major has the 
ability to block IL-12 production in macrophages [19, 111] 
and DCs remain the major source of IL-12 in Leishmania 
infection. IL-1α acts in conjunction with IL-12 and promotes 
Th1 differentiation and prevents disease progression in L. 
major susceptible BALB/c mice [48, 112]. Experimental 
studies suggested that sustained IL-12 is required for the 
maintenance of Th1 response in Leishmania infection [106, 
109, 113].

Although, IL-12 seems to be essential in the dichotomy 
of immune responses to L. major infection in susceptible 
vs. resistant mice strains [107, 110], the role of IL-12 in 
human leishmaniasis is not fully clear. PBMCs culture 
from CL patients of Old World indicates a higher level of 
IFN-γ and IL-12 expression and a lower level of IL-4 and 
IL-10 expression in the healing compared to non-healing 
CL patients [114]. In contrast, in CL caused by L. mexicana, 
in situ expression of IL-12 mRNA was found to be higher in 
non-healing lesions coincide with high expression of IL-l0, 
indicating that IL-12 alone could not induce lesion healing 
[115, 116]. Unresponsiveness of T cells to IL‐12 activation 
is associated with persistence of parasite and active lesion 
due to L. guyanensis [117].

IL-12 was initially used as an adjuvant with soluble 
Leishmania antigen (SLA) against L. major challenge in 
murine model [118], recombinant human IL-12 was used 
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as adjuvant with alum plus heat-killed L. amazonensis anti-
gen [119] or killed L. major in primate models [120] how-
ever, the use of rhIL-12 in human leishmaniasis has not been 
verified, mainly due to safety issues and significant toxicity 
explored during clinical trials on other diseases (reviewed 
in [121]).

Neutralization of IL-12, both at early or late stage of L. 
donovani infection caused increased parasite load, reduced 
IFN-γ, IL-4, TNF and iNOS production, resulting in inhibi-
tion of tissue granuloma formation in the liver of susceptible 
BALB/c mice [122, 123]. IL-12 is crucial for induction of 
IFN-γ producing T cells and protective host responses in 
the liver. Although in experimental model of L. donovani 
infection, IL-12 has an anti-Leishmania activity even in the 
absence of IFN-γ, which appears to be dependent on TNF 
production [124]. DCs in the spleen are the critical source of 
early IL-12 production following L. donovani infection and 
activation of DCs is crucial for optimal induction of immu-
nity in the liver during the early phase of VL infection [122, 
125, 126]. Study on L. infantum infected mice demonstrated 
that myeloid DCs, TLR9, and IL-12 are functionally linked 
to the activation of NK cells to produce IFN-γ [127].

In human VL, CD4+ T cells mediate a protective immune 
response by production of various cytokines and chemokines 
that contribute in granuloma formation and parasite killing, 
such as IL-2, IL-12, IFN-γ, TNF, lymphotoxin (LT) and 
granulocyte/macrophage colony-stimulating factor (GM-
CSF), which have been measured in serum samples [128, 
129]. PBMCs from active VL patients failed to produce 
IL-12 or IFN-γ in response to in vitro stimulation with L. 
donovani antigens, however, the addition of exogenous rhIL-
12 to PBMCs from the same patients resulted in the expan-
sion of IFN-γ production [130]. Similarly, addition of IL-12 
to the PBMCs cultures from American VL patients restored 
cellular immune responses showed by proliferative response 
and IFN-γ production [131].

Cytokines of Th1/Th2 types

It is well known that L. major infection in susceptible 
BALB/c mice is associated with generation of Th2 response 
with a high level of IL-4, progression of the disease and 
death, whereas almost in all other strains of mice, resist-
ance is associated with generation of Th1 type of response 
with production of high IFN-γ level that induce healing 
lesion and protection against further lesion development [83, 
132–134]. Although there are well established explanation 
in regard to immune response in murine model of leish-
maniasis, but regardless of tremendous studies on Th1/Th2 
cytokine responses (as reviewed in [135]), the mechanisms 
of cure and protection in human leishmaniasis is not well 
defined yet [4, 136].

In anthroponotic CL (ACL) caused by L. tropica, cor-
relation of a high expression level of Th2 cytokines includ-
ing IL-4 and IL-10 with antimonial unresponsiveness, 
and upregulation of Th1 cytokines including IL-1β, IL-12 
P40 and IFN-γ genes with response to treatment is shown 
[137]. In New World, individuals cured from CL showed 
a significant increase in the frequency of cells expressing 
Th1-type cytotoxic production profile (IFN-γ+/granzyme 
 B+/perforin+) which is an indicative of imbalance toward a 
cytotoxic response [138]. In some clinical forms of human 
leishmaniasis such as American CL, non-healing ACL and 
PKDL a mixed Th1/Th2 response is seen in vitro and in situ 
[139–142]. Furthermore, it is well established that human 
VL displays a Th2 response at early stage of the disease 
which shifts toward a mixed Th1/Th2 patterns, with high 
levels of IFN-γ as well as IL-4/IL-13 secretion [143–145].

Several studies have been completed over the last decades 
to explore the role of Th1/Th2 responses in human leishma-
niasis [146–149] and phenotype of Th1/Th2 cells or their 
polarised cytokines in lesion, cell culture or plasma have 
been characterized in leishmaniasis patients [136, 150–154]. 
However, several Leishmania antigens predominantly stimu-
late Th1 responses in vitro, that are not necessarily associ-
ated with protection [155]. In some cases, antigens which are 
associated with an early Th2 response such as Leishmania-
Activated C-Kinase Antigen (LACK) or cysteine protease 
CPB2.8 are found to be protective if administered with an 
appropriate adjuvant [155–158].

Interferon‑γ (IFN‑γ)

At early stage of Leishmania infection, IFN-γ participates 
in the control parasite growth and lesion development. 
IFN-γ activates effector mechanisms/signaling pathways of 
macrophages to eliminate intracellular pathogens primar-
ily through NO production. Characterization of immune 
response in CL patients shows an upregulation of IFN-γ 
production around the lesions [114, 159–161] and produc-
tion of a significant high level of IFN-γ but a low level of 
IL-10 from T cells in culture after healing [147, 148, 162], 
indicating the possible involvement of IFN-γ in healing pro-
cess of CL lesions. In L. braziliensis infection a long-lasting 
Th1 response with elevated level of IFN-γ and down regu-
lation of IL-4 and IL-10 production is shown in vitro and 
in situ which is apparently associated with healing of the 
skin lesion(s) [140, 141, 163].

In our studies on CL patients, a role for both CD4 + and 
CD8 + T lymphocytes as the main source of IFN-γ produc-
tion is shown [151, 152, 164], but prior to the development 
of adaptive immune response, IFN-γ is primarily produced 
by NK cells [165], the role for NK cells in innate immune 
response is shown in different forms of human leishmaniasis 
[163, 166] (reviewed in [167]).
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It should be noted that exacerbated Th1-cell-mediated 
immune response during CL, accompanies with excessive 
secretion of pro-inflammatory cytokines including IFN-γ, 
could cause tissue damage and contribute to the lesion pro-
gress [168].

VL is associated with T-cell suppression, which is char-
acterized by lack of proliferation and IFN-γ production by 
PBMCs in response to Leishmania antigens in vitro [169, 
170]. While it is assumed that this in vitro unresponsive-
ness of VL patients might be due to the defects in immune 
system, whole blood cells of active VL patients maintain 
the capacity to secrete significant levels of antigen specific 
IFN-γ and IL-10 [171] and CD4+ T cells are found as the 
main source of IFN-γ production [172]. Individuals cured of 
VL usually mount antigen-specific IFN-γ response in vitro 
and convert to leishmanin skin-test positive [173–175].

In experimental VL, IFN-γ plays a critical role in the 
early immune response leading to control of parasite bur-
den and eventual resolution of L. donovani infection which 
occurs within well-formed tissue granulomas in the liver of 
mice [176, 177]. Treatment of L. donovani infected nude 
BALB/c mice with IFN-γ activated macrophages in mice but 
requires the presence of T cells for anti-Leishmania activ-
ity [178]. Experiments in mice showed that administration 
of IFN-γ increased the efficacy of antimony chemotherapy 
[179] and IFN-γ is used as an adjunct therapy for severe or 
refractory cases of VL [180].

IFN-γ is a key cytokine of the immune system that 
involves in regulation of various cellular events through 
transcriptional control over different genes [181]. Up-regu-
lation of class I and class II MHC expression [182], activa-
tion of microbicidal mechanisms including induction of the 
NADPH-dependent oxidase system, priming NO production, 
tryptophan depletion, up-regulation of lysosomal enzymes 
[182], augmenting surface expression of FcγRI on mono-
nuclear phagocytes, thereby promoting antibody-dependent 
cell-mediated cytotoxicity, and stimulation of complement-
mediated phagocytosis are among the most important func-
tions of IFN-γ.

In addition, IFN-γ orchestrates the trafficking of immune 
cells to the sites of inflammation through regulating the 
expression of adhesion molecules (e.g., ICAM-1, VCAM-
1) and chemokines (e.g., IP-10, MCP-1, MIG, MIP-1/, 
RANTES) [182]. Also, IFN-γ synergizes or antagonizes the 
effects of many cytokines through involvement in the cell 
signaling pathways. IFN-γ exerts its effector anti-microbial 
functions in macrophages through inducible transcription 
factor Stat1 [183], a cytosolic latent transcription factor that 
participate in regulation of target genes and transmit the 
immunological effects of IFN-γ [184]. Stat1 induces expres-
sion of iNOS and cytokines such as IL-12, TNF, and IL1β. 
Findings from L. major infection in resistant C57BL/6 mice 
lacking the Stat1 gene demonstrated that Stat1‐mediated 

IFN-γ induction is indispensable for the development of 
protective immunity against Leishmania infection [185]. 
Furthermore, a novel function of constitutive Stat1 in mod-
ulation of phagosomal acidification is shown, which con-
tributes in intracellular Leishmania growth in macrophage 
[186] (Table 1).

Interleukin 4 (IL‑4)/interleukin 13 (IL‑13)

Early evidence showed that expansion of IL-4 induces 
Th2 response in murine L. major infection and results in 
exacerbation of the lesion and generalization of the disease 
which eventually kills the animals [187, 188], neutraliza-
tion of IL-4 using anti-IL-4 antibodies significantly but 
not completely attenuated the progression of infection in 
BALB/c mice [189, 190]. IL-13 plays a role in chronicity 
of non-healing infection in mice [191]. Evidence provided 
from experiments on the IFN-γ/IL-4 genetically engineered 
mice showed that IL-4 is a key player in susceptibility to 
L. major infection and magnitude of IL-4 response deter-
mines the severity of the disease in BALB/c mice [192]. 
Down-regulation of Th1 response through inhibition of 
IL-12 receptor (IL‐12Rβ2) expression is mediated by IL-4 
in L. major [193–195], by IL-13 in L. amazonensis [191] or 
independent of IL-4/IL-13 in L. mexicana infection [196].

Despite these evidence, the role of IL-4 as a major factor 
which contributes in susceptibility is controversial. Although 
IL-4/IL-13 mediate susceptibility to Leishmania infection 
in murine model [192, 197] effector Th2 immune response 
is also evidenced in the absence of IL-4/IL-13 cytokines, 
where IL-4 −/− and IL-4Rα −/− mice were highly suscepti-
ble to L. major parasite [198]. These data suggested the pos-
sibility of involvement of other cytokines in the development 
of Th1/Th2 immune response during Leishmania infection. 
Furthermore, in contrast to the general consensus, a role 
for IL-4 cytokine in promoting a Th1 immune response has 
also been suggested [199]. Based on this report the time at 
which IL-4 is presented is determinative, during the initial 
activation of DCs, IL-4 induces production of IL-12 and 
promotes a Th1 response which is associated with resist-
ance to L. major infection in susceptible BALB/c mice, but 
later during the period of T cell priming, IL-4 induces a Th2 
response associated with progressive infection in resistant 
mice [199]. An experiment on the influence of recombinant 
IL-4/IFN-γ on murine macrophage showed that IL-4 syn-
ergizes with IFN-γ to activate macrophages and provides a 
strong stimulus to kill L. major amastigotes at low concen-
trations of IFN-γ [200].

In human leishmaniasis, usually IL-4 level is negligible 
and hard to measure on culture supernatant of stimulated 
PBMCs in vitro [201, 202]. It was shown that in chronic 
and destructive MCL a mix Th1/Th2 type cytokines exist, 
with prominent upregulation of IL-4 mRNA expression in 



88 Medical Microbiology and Immunology (2021) 210:81–100

1 3

Ta
bl

e 
1 

 B
io

m
ar

ke
rs

 o
f i

m
m

un
ity

 a
ga

in
st 

le
is

hm
an

ia
si

s

B
io

m
ar

ke
rs

M
ic

e 
stu

di
es

Re
f.

H
um

an
 st

ud
ie

s
Re

f.

O
ld

 W
or

ld
N

ew
 W

or
ld

IF
N

-γ
IF

N
-γ

 p
ar

tic
ip

at
e 

in
 th

e 
co

nt
ro

l o
f 

in
tra

ce
llu

la
r p

ar
as

ite
 g

ro
w

th
 a

nd
 

le
si

on
 d

ev
el

op
m

en
t

A
 c

rit
ic

al
 ro

le
 in

 th
e 

ea
rly

 im
m

un
e 

re
sp

on
se

s o
f V

L 
le

ad
in

g 
to

 
re

so
lu

tio
n 

of
 L

. d
. i

nf
ec

tio
n 

w
ith

in
 

gr
an

ul
om

as
 o

f l
iv

er

[1
76

, 1
77

]
Po

ss
ib

le
 ro

le
 in

 h
ea

lin
g 

pr
oc

es
s i

s 
su

pp
os

ed
U

pr
eg

ul
at

io
n 

of
 IF

N
-γ

 in
 th

e 
le

si
on

s a
nd

 P
B

M
C

 c
ul

tu
re

 a
fte

r 
he

al
in

g 
of

 C
L 

pa
tie

nt
s i

s s
ho

w
n

Ex
ce

ss
iv

e 
se

cr
et

io
n 

m
ay

 c
au

se
 

im
m

un
op

at
ho

lo
gi

ca
l e

ffe
ct

s
A

ct
iv

e 
V

L 
is

 a
ss

oc
ia

te
d 

w
ith

 la
ck

 
of

 im
m

un
e 

re
sp

on
se

 in
 P

B
M

C
s 

cu
ltu

re
C

ur
ed

 V
L 

m
ou

nt
 a

nt
ig

en
-s

pe
ci

fic
 

IF
N

-γ
 re

sp
on

se
s i

n 
vi

tro

Po
ss

ib
le

 ro
le

 in
 h

ea
lin

g 
pr

oc
es

s i
s 

su
pp

os
ed

U
pr

eg
ul

at
io

n 
of

 IF
N

-γ
 in

 th
e 

le
si

on
s 

an
d 

PB
M

C
 c

ul
tu

re
 a

fte
r h

ea
lin

g 
of

 
C

L 
pa

tie
nt

s i
s s

ho
w

n
Ex

ce
ss

iv
e 

se
cr

et
io

n 
m

ay
 c

au
se

 
im

m
un

op
at

ho
lo

gi
ca

l e
ffe

ct
s

[1
14

, 1
41

, 1
47

, 1
48

, 1
59

–1
63

, 1
69

, 
17

0,
 1

73
, 1

74
]

IL
-1

2
Ea

rly
 IL

-1
2 

pr
od

uc
tio

n 
le

ad
s t

o 
N

K
 

ac
tiv

at
io

n 
an

d 
IF

N
-γ

 p
ro

du
c-

tio
n 

le
ad

in
g 

to
 p

ro
te

ct
iv

e 
T 

ce
ll 

re
sp

on
se

 to
 L

. m
. i

nf
ec

tio
n

Th
e 

ab
se

nc
e 

of
 IL

-1
2 

re
ve

rts
 T

h1
 

re
sp

on
se

 to
 T

h2
 a

ga
in

st 
L.

m
. 

in
fe

ct
io

n
A

ct
iv

at
e 

eff
ec

to
r m

ec
ha

ni
sm

s o
f 

M
Q

 in
cl

ud
in

g 
N

O
 p

ro
du

ct
io

n 
Es

se
nt

ia
l r

ol
e 

fo
r d

ev
el

op
m

en
t o

f 
eff

ec
tiv

e 
Th

1 
re

sp
on

se
 a

nd
 in

du
c-

tio
n 

of
 IF

N
-γ

 p
ro

du
ct

io
n 

fro
m

 T
 

an
d 

N
K

 c
el

ls
Ro

le
 in

 th
e 

gr
an

ul
om

a 
fo

rm
at

io
n 

in
 

th
e 

liv
er

 o
f L

. d
. i

nf
ec

tio
n

[4
8,

 1
00

, 1
01

, 1
02

, 1
03

, 
10

5,
 1

06
, 1

09
,

10
5,

11
0,

 1
13

]

N
ot

 fu
lly

 c
le

ar
H

ig
h 

le
ve

ls
 o

f I
L-

12
 a

nd
 IF

N
-γ

 
in

 P
B

M
C

 c
ul

tu
re

 o
f h

ea
lin

g 
C

L 
ca

se
s

U
se

d 
as

 a
n 

ad
ju

va
nt

 to
 k

ill
ed

 L
. m

. 
va

cc
in

e 
in

 v
er

ve
t m

on
ke

y
Ex

og
en

ou
s r

IL
-1

2 
to

 P
B

M
C

s 
fro

m
 V

L 
pa

tie
nt

s r
es

ul
te

d 
in

 th
e 

ex
pa

ns
io

n 
of

 IF
N

-γ
 p

ro
du

ct
io

n 
in

 
re

sp
on

se
 to

 L
. d

on
ov

an
i s

tim
ul

a-
tio

n

N
ot

 fu
lly

 c
le

ar
H

ig
h 

ex
pr

es
si

on
 o

f I
L-

12
 a

nd
 IL

-1
0 

in
 n

on
-h

ea
lin

g 
le

si
on

s (
L.

 m
ex

.)
IL

-1
2 

un
re

sp
on

si
ve

ne
ss

 c
on

tri
bu

te
d 

in
 a

ct
iv

e 
C

L 
(L

.g
.)

U
se

d 
as

 a
n 

ad
ju

va
nt

 to
 k

ill
ed

 L
.a

m
. 

va
cc

in
e 

in
 rh

es
us

 m
ac

aq
ue

s
A

dd
iti

on
 o

f I
L-

12
 to

 c
ul

tu
re

s o
f 

PB
M

C
s f

ro
m

 A
m

er
ic

an
 V

L 
pa

tie
nt

s r
es

to
re

d 
th

e 
pr

ol
ife

ra
tiv

e 
re

sp
on

se
 a

nd
 IF

N
-γ

 p
ro

du
ct

io
n

[1
14

–1
17

, 1
19

, 1
20

, 1
30

, 1
31

, 2
04

]

TN
F

Sy
ne

rg
is

m
 w

ith
 IF

N
-γ

 in
 a

ct
iv

at
io

n 
of

 M
Q

 to
 p

ro
du

ce
 iN

O
S

Es
se

nt
ia

l f
or

 th
e 

gr
an

ul
om

a 
fo

rm
a-

tio
n 

in
 li

ve
r a

nd
 in

du
ct

io
n 

of
 

pr
ot

ec
tiv

e 
im

m
un

ity
 a

ga
in

st 
V

L
Pr

og
re

ss
iv

e 
pa

ra
si

te
 b

ur
de

n 
an

d 
de

at
h 

of
 m

ic
e 

la
ck

in
g 

TN
F

[2
09

, 2
10

, 2
13

, 2
14

]
H

ig
h 

pr
od

uc
tio

n 
in

 in
 a

ct
iv

e 
C

L,
 

re
du

ce
d 

in
 h

ea
le

d 
C

L
In

cr
ea

se
d 

le
ve

ls
 o

f T
N

F 
an

d 
fr

e-
qu

en
cy

 o
f T

N
F-

pr
od

uc
in

g 
T 

ce
lls

 
co

rr
el

at
ed

 w
ith

 se
ve

rit
y 

of
 d

is
ea

se
 

in
 C

L 
ca

se
s

El
ev

at
ed

 le
ve

ls
 in

 le
si

on
s o

f t
re

at
-

m
en

t n
on

-r
es

po
nd

er
 C

L 
ca

se
s

Po
ss

ib
le

 ro
le

 in
 e

ar
ly

 le
si

on
 d

ev
el

-
op

m
en

t i
n 

C
L

C
lin

ic
al

 u
se

 o
f T

N
F 

in
hi

bi
to

r 
re

du
ce

s T
N

F 
pa

th
ol

og
y

[1
36

, 1
50

, 2
07

, 2
11

, 2
08

]



89Medical Microbiology and Immunology (2021) 210:81–100 

1 3

Ta
bl

e 
1 

 (c
on

tin
ue

d)

B
io

m
ar

ke
rs

M
ic

e 
stu

di
es

Re
f.

H
um

an
 st

ud
ie

s
Re

f.

O
ld

 W
or

ld
N

ew
 W

or
ld

IL
-1

0
N

at
ur

al
 C

D
25

 +
 F

ox
P3

 +
 T

re
g 

ce
lls

 re
sp

on
si

bl
e 

fo
r s

up
pr

es
si

ng
 

im
m

un
e 

re
sp

on
se

 in
 in

fe
ct

io
n 

si
te

C
D

25
-F

ox
P3

- I
L-

10
 p

ro
du

ci
ng

 T
re

g 
ce

lls
 p

re
ve

nt
 st

er
ile

 c
ur

e 
an

d 
de

la
y 

he
al

in
g

A
 d

et
er

io
ra

tin
g 

ro
le

 in
 e

xp
er

im
en

ta
l 

V
L,

 im
pa

ire
d 

Th
1 

re
sp

on
se

[2
16

, 2
17

, 2
26

, 2
30

]
El

ev
at

ed
 le

ve
ls

 o
f I

L-
10

 in
 h

um
an

 
V

L
A

nt
ig

en
-s

pe
ci

fic
 p

ro
du

ct
io

n 
of

 
IL

-1
0 

in
 w

ho
le

 b
lo

od
 c

ul
tu

re
 o

f 
pa

tie
nt

s w
ith

 a
ct

iv
e 

V
L

Th
e 

ab
se

nc
e 

of
 IL

-1
0 

w
ith

 
in

cr
ea

se
d 

le
ve

ls
 o

f p
ro

in
fla

m
m

a-
to

ry
 c

yt
ok

in
es

 c
au

se
 e

xa
ce

rb
at

in
g 

le
si

on
 d

ev
el

op
m

en
t. 

(L
.b

.)

[1
71

, 2
27

–2
29

]

IL
-1

7
H

ig
h 

le
ve

ls
 o

f I
L-

17
 in

 B
A

LB
/c

 
m

ic
e 

in
fe

ct
ed

 w
ith

 L
.m

IL
-1

7 
de

fic
ie

nc
y 

as
so

ci
at

ed
 w

ith
 

be
tte

r c
on

tro
l o

f d
is

ea
se

[2
32

, 2
33

]
N

o 
si

gn
ifi

ca
nt

 d
iff

er
en

ce
 b

et
w

ee
n 

ac
tiv

e 
vs

. h
ea

le
d 

C
L 

ca
se

s i
n 

pr
od

uc
tio

n 
of

 IL
-1

7

IL
-1

7 
le

ve
ls

 c
or

re
la

te
 w

ith
 in

fla
m

-
m

at
or

y 
re

sp
on

se
 in

 C
L 

an
d 

M
L 

le
si

on
s

[1
36

, 2
34

, 2
35

]

IL
-4

/IL
-1

3
Po

la
riz

in
g 

im
m

un
e 

re
sp

on
se

 to
w

ar
d 

Th
2 

ty
pe

 a
ss

oc
ia

te
d 

w
ith

 n
on

-
he

al
in

g 
di

se
as

e 
in

 B
A

LB
/c

 m
ic

e
IL

-1
3 

pl
ay

s a
 ro

le
 in

 m
ai

nt
ai

ni
ng

 a
 

ch
ro

ni
c 

no
n-

he
al

in
g 

in
fe

ct
io

n
M

ay
 d

ow
nr

eg
ul

at
e 

IL
-1

2 
pr

od
uc

tio
n

[1
87

–1
90

, 1
93

–1
96

]
IL

-4
 le

ve
ls

 a
re

 h
ar

d 
to

 m
ea

su
re

 in
 

bl
oo

d 
cu

ltu
re

IL
-1

3 
ex

pr
es

si
on

 in
 le

si
on

s a
nd

 
bl

oo
d 

cu
ltu

re
 a

re
 m

ea
su

re
d 

as
 

in
di

ca
to

r o
f T

h2
 re

sp
on

se

IL
-4

 le
ve

ls
 a

re
 h

ar
d 

to
 m

ea
su

re
 in

 
bl

oo
d 

cu
ltu

re
IL

-1
3 

ex
pr

es
si

on
 in

 le
si

on
s a

nd
 

bl
oo

d 
cu

ltu
re

 a
re

 m
ea

su
re

d 
as

 
in

di
ca

to
r o

f T
h2

 re
sp

on
se

[1
49

, 1
64

, 2
02

, 2
04

]

iN
O

S/
N

O
/R

O
S

Ro
le

 o
f R

O
S 

in
 in

fe
ct

io
n 

co
nt

ro
l 

va
rie

s a
nd

 d
ep

en
ds

 o
n 

th
e 

pa
ra

si
te

 
sp

ec
ie

s
N

O
 is

 e
ss

en
tia

l i
n 

co
nt

ro
lli

ng
 L

ei
sh

-
m

an
ia

 in
fe

ct
io

n
In

 th
e 

ab
se

nc
e 

of
 iN

O
S,

 L
. m

. i
s d

is
-

se
m

in
at

ed
 in

 th
e 

bo
dy

 o
f m

ic
e

[4
1,

 4
3]

Th
e 

fu
nc

tio
n 

of
 iN

O
S 

an
d 

of
 N

O
 

in
 h

um
an

 le
is

hm
an

ia
si

s i
s l

es
s 

kn
ow

n

RO
S 

im
po

rta
nt

 in
 c

on
tro

l o
f L

. b
. 

in
fe

ct
io

n,
 is

 sh
ow

n 
to

 b
e 

in
vo

lv
ed

 
in

 k
ill

in
g 

of
 L

. b
. b

y 
hu

m
an

 m
ac

-
ro

ph
ag

es
A

nt
ile

is
hm

an
ia

l f
un

ct
io

n 
iN

O
S 

is
 sh

ow
n 

in
 sk

in
 b

io
ps

ie
s f

ro
m

 
A

m
er

ic
an

 C
L 

pa
tie

nt
s d

ue
 to

 L
. 

m
ex

C
on

tro
ve

rs
y 

on
 th

e 
ro

le
 o

f N
O

[3
9,

 4
2,

 4
6]

A
rg

in
as

e 
1

In
du

ct
io

n 
of

 a
rg

in
as

e 
1 

pr
om

ot
es

 
un

co
nt

ro
lle

d 
gr

ow
th

 o
f L

ei
sh

m
a-

ni
a 

in
 v

iv
o,

 le
ad

in
g 

to
 n

on
he

al
in

g 
in

fe
ct

io
n

In
hi

bi
tio

n 
of

 a
rg

in
as

e 
1 

is
 a

ss
oc

ia
te

d 
w

ith
 re

du
ce

d 
pa

ra
si

te
s a

nd
 d

el
ay

s 
in

 d
is

ea
se

 o
ut

co
m

e 
in

 B
A

LB
/c

 
m

ic
e

L.
 d

. i
nf

ec
te

d 
ha

m
ste

r s
pl

ee
n 

sh
ow

ed
 lo

w
 N

O
S2

 b
ut

 h
ig

h 
A

rg
1 

ac
tiv

ity
 a

nd
 e

xp
re

ss
io

n 
an

d 
in

cr
ea

se
d 

po
ly

am
in

e 
sy

nt
he

si
s

[2
9,

 3
0]

In
cr

ea
se

d 
le

ve
ls

 o
f a

rg
in

as
e 

1 
is

 
fo

un
d 

in
 P

B
M

C
s a

nd
 p

la
sm

a 
of

 V
L 

an
d 

V
L-

H
IV

 c
oi

nf
ec

te
d 

pa
tie

nt
s

H
ig

h 
le

ve
ls

 o
f a

rg
in

as
e 

1 
ac

tiv
ity

 
in

 le
si

on
s a

nd
 P

M
N

s o
f p

at
ie

nt
s 

w
ith

 a
ct

iv
e 

an
d 

ch
ro

ni
c 

C
L 

du
e 

to
 

L.
 m

./l
. t

Si
gn

ifi
ca

nt
 p

la
sm

a 
le

ve
ls

 a
nd

 le
si

on
 

ex
pr

es
si

on
 o

f a
rg

in
as

e 
1 

in
 L

. a
m

. 
D

C
L 

pa
tie

nt
s

[3
0,

 3
1,

 3
2]



90 Medical Microbiology and Immunology (2021) 210:81–100

1 3

the lesions [203]. In both Old World [149, 164] and New 
World [204] leishmaniasis, IL-13 production in the lesions 
and peripheral blood have been measured as an indicator of 
Th2 response.

Tumor necrosis factor (TNF)

Existing data on the role of TNF in human leishmaniasis 
development are controversial, but most of the reports impli-
cate that unregulated production of TNF contributes to the 
clinical outcome of leishmaniasis at early stage of infec-
tion [205, 206]. In two sequential studies of Zoonotic CL 
(ZCL) caused by L. major, we have shown that the mean 
level of TNF in plasma and supernatant of stimulated cells 
in culture is significantly higher in active CL patients than 
in healthy volunteers and significantly reduces after treat-
ment of the lesion(s) [136, 150]. Similar reports from New 
World are exist showing elevated levels of TNF produc-
tion in CL lesions of who are nonresponsive to antimonial 
treatment [207]. Investigation of the immune response of 
American CL patients revealed a significant upregulation of 
gene expression of TNF and IFN-γ cytokines within 24 h of 
in vitro stimulation of the cells which shifted to a dominant 
IL-10 and IL-4 production after 48 h [208], showing a pos-
sible role for pro-inflammatory cytokines in early phases of 
CL lesion development.

IFN-γ and TNF act synergistically in the activation of 
macrophages to produce iNOS/NO during murine Leishma-
nia infection [209, 210]. In leishmaniasis, cytokine balance 
is important in T-cell homeostasis and maintenance of pro-
tective immunity and imbalanced cytokines might induce 
pathogenesis. TNF shows a reciprocal role in the outcome 
of human leishmaniasis and an increased level of TNF cor-
relates with severity of the lesion [211].

In mice, TNF antagonizes alternative activation of mac-
rophages and dendritic cells by IL-4 and TNF has a restrict-
ing effect on arg1 expression leading to the production of 
NO by iNOS and parasite control [212].

In experimental VL, TNF produced by Leishmania 
infected Kupffer cells is essential for the granuloma forma-
tion and induction of protective immunity in liver [213]. 
Parasite burden is progressively increased in mice lacking 
TNF which leads to death [214]. Therefore, TNF appears to 
be a critical cytokine in resolution of experimental visceral 
infection [215].

Interleukin 10 (IL‑10)

Following resolution of Leishmania infection in mice, a 
population of IL-10 producing  CD25+Foxp3+ Treg cells pre-
vent sterile cure and establish a chronic infection, allowing 
memory generation for a long-lasting protection (reviewed 
in [216]). Similarly, a population of antigen-induced Ta
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 CD25−Foxp3−  regulatory T cells that produce IL‐10 is 
expanded following Leishmania infection [217] which 
modulates immune response to control immunopathologi-
cal effects leading to delay in lesion healing.

The deteriorating role of IL-10 is shown in IL-10 defi-
cient BALB/c mice which were able to control the progres-
sive L. major infection with 1000-fold lower parasite burden 
[25]. Function of IL-10 as an inhibitory cytokine is well 
described; in vitro, IL-10 inhibits antigen-specific T-cell 
proliferation and type 1 cytokine production [218, 219] and 
renders macrophages refractory to activation by IFN-γ for 
intracellular killing [25, 220, 221]. Recombinant mouse 
IL-10 showed a potent suppressing effect on the ability of 
mouse peritoneal macrophages to release TNF, reactive 
oxygen intermediates (ROI) and to a lesser extent reactive 
nitrogen intermediates (RNI) [222]. In resistant C57BL/6 
mice following Leishmania infection, a low number of para-
sites persist after the lesion resolved [223–225] and naturally 
occurring  CD25+ Treg cells are shown to be the source of 
IL‐10 which is responsible for down regulation of effector 
immune response and parasite persistence.

A deteriorating role of IL-10 in experimental VL is seen, 
in which IL-10 overexpressed mice showed an increased par-
asite replication and impaired Th1 type responses. Despite 
subsequent granuloma formation, infection persisted, and 
antimony-treatment failed [226].In human leishmaniasis due 
to L. braziliensis, when increased production of IFN-γ and 
TNF coincides with the absence of IL-10 in situ, a strong 
inflammatory reaction is promoted leading to destructive 
lesion development especially in ML [227–229]. Elevated 
level of IL-10 has been frequently reported in clinical studies 
of human VL and seems to contribute in pathogenesis of VL 
[230]. IL-10 is the key immunosuppressive cytokine in VL 
patients which is hard to detect in cultures of PBMCs col-
lected from VL patients [170], but antigen-driven production 
of IL-10 is observed in whole blood of patients with active 
disease [171].

Interleukin 17 (IL‑17) and interleukin 22 (IL‑22)

Th17 population homing in skin and mucosal sites, produce 
cytokines such as IL-17, IL-22 and IL-23. IL-17 and IL-22 
which are involved in the rapid response to infections, both 
by recruiting neutrophils and inducing production of anti-
microbial peptides [231].

High levels of IL-17 have been found in BALB/c mice 
following infection with L. major, and IL-17 deficiency is 
associated with control of the disease [232]. In mouse model 
of leishmaniasis, in the absence of IL-10 modulation, both 
IFN-γ and IL-17 production levels are increased and cause 
more severe disease following high doses of L. major, which 
is reversed by neutralization of IL-17 [233]. IFN-γ and IL-17 
levels correlate with the inflammatory response in the skin 

of patients with CL and ML [234, 235] indicating possible 
involvement of Th17 population in pathogenesis. However, 
in our study on human leishmaniasis, no significant differ-
ence was seen between active and cured CL individuals in 
the production of IL‐17 from stimulated PBMCs [136]. Fur-
thermore, we found that the mean level of IL-22 produc-
tion in plasma and in SLA stimulated PBMCs of active VL 
patients was significantly higher than healthy controls and 
was significantly decreased in the same patients after healing 
of VL due to L. infantum [136, 150]. The results suggested 
that the level of IL-22 production is conversely related to VL 
cure. It is claimed that IL-17 and IL-22 may have a syner-
gistic role with Th1 cytokines in protection against human 
VL due to L. donovani [236].

Serum antibodies

There are studies that conceive a deteriorating role for B 
cells in experimental models of leishmaniasis by produc-
ing antibodies [237, 238] or cytokines such as IL-10 [226, 
239, 240]. Although antibody response is induced in leish-
maniasis especially VL, but antibody response does not 
play any significant role in protection. There are studies 
which indicate that IgG antibodies may be crucial in sup-
pressing the host immune response by generating a high 
IL-10 response. L. major amastigotes opsonized with host 
IgG antibodies may ligate FcγR on murine macrophages 
to induce production of IL-10 [25]. In vivo studies found 
that Fc-deficient mice infected with L. mexicana produce 
less IL-10 and are less susceptible to infection [241, 242]. 
In human or mouse infection with L. mexicana, antibodies 
are raised against surface glycoinositol phospholipids of the 
parasite which induce production of IL-10 from monocytes 
[243].

The role of antibodies is not completely clear, humoral 
immune response does not have a protective role in CL and 
antibody response in CL of Old World is very low and some-
times difficult to detect (Khamesipour A, unpublished data); 
therefore, antibody titration is not applicable as a marker 
of cure or protection (reviewed in [244]). Nevertheless, 
humoral immune responses have been measured as a diag-
nostic approach in New World CL [245] and high level of 
anti-Leishmania antibodies are seen in VL patients which 
is used as diagnostic tool [246, 247]. It is shown that upon 
recovery of kala-azar, different antibody titers decline [248].

It is shown that human or canine reservoirs that exposed 
to sand fly saliva induce a high antibody response which 
is used as marker of exposure in surveillance studies [249, 
250], reviewed in [251]. The yellow proteins LJM11 and 
LJM17 from saliva of Lutzomyia longipalpis are recognized 
by sera from humans living in VL endemic areas and animal 
reservoirs [252, 253]. PpSP32 is the immunodominant target 
for the serum antibody raised in humans naturally exposed 
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to Phlebotomus papatasi saliva [254]. The apyrases rSP01B 
and rSP01 and the yellow protein rSP03B from saliva of Ph. 
perniciosus, a principal vector of L. infantum in the Medi-
terranean Basin, are promising markers of canine exposure 
[255, 256].

Leishmanin (LST)/Montenegro (MST) skin test

Delayed type hypersensitivity (DTH), is used to evaluate cell 
mediated immune response in a few diseases, Leishmanin 
(LST) or Montenegro (MST) skin test is a DTH test similar 
to Mantoux test which is in use since 1929. In 1990s, at 
Pasteur Institute of Iran with full support of TDR/WHO a 
standard leishmanin was produced under GMP condition, in 
the recent one, the same L. major which was applied to mass 
leishmanization of more than 2 million people, was used. 
Leishmania was harvested at early stationary phase, washed 
and were killed using thimerosal (0.1%), then the parasites 
were washed and treated  with thimerosal, the number of 
parasite adjusted to 1 ×  107 Leishmania per mL, aliquoted 
and then each batch goes through control measures including 
toxicity, potency etc. tests. About 0.1 mL of leishmanin is 
inoculated intradermally using fine needle into ventral fore-
arm [257, 258]. LST is used in epidemiological studies and 
for investigation of past exposure and is almost the unique 
tool to evaluate efficacy of experimental vaccine efficacy 
[259]. Usually, a portion of the residents of endemic areas 
are leishmanin positive. In Iran, the percentage of recovered 
persons with LST-positive results (≥ 5 mm indurations) was 
99%, 94%, and 70% for areas with ZCL, ACL, and ZVL, 
respectively [260]. LST positivity is not an indication of 
protection, in studies completed in Iran, LST positive indi-
viduals are as sensitive as LST negatives in regard to develop 
CL lesion [261].

In New World, of healthy individuals without a history 
of CL living in endemic areas, 10–15% have a positive MST 
result [262, 163, 263]. Both LCL and MCL present posi-
tive response to MST, indicating a cell-mediated immunity 
against the parasite and MST is reported to be positive in 
more than 90% of American tegumentary leishmaniasis 
[264, 265].

In relation to various clinical forms, one evidence showed 
that most of the strongly positive responses are seen in 
lupoid, and most of the negative LSTs are seen in sporo-
trichoid type of CL [266].

Concluding remarks

Leishmaniasis, a neglected disease with strong links with 
poverty, has long been a major public health problem in 
many developing countries with high morbidity and mortal-
ity rates. It seems necessary to implement effective measures 

as diagnostics, prophylactics and therapeutics to control 
this infection [267]. Advances in the understanding of the 
biology of Leishmania have not yet been translated into the 
development of vaccine or new therapeutic measures. Dur-
ing recent years, large-scale genomic and proteomic analy-
ses have allowed characterization of the network pathways 
involving in the pathogenesis of Leishmania parasite. Com-
bining these data offers a more comprehensive body of infor-
mation that could be used to identify specific biomarker(s) of 
immunity against leishmaniasis. The potential biomarker(s) 
would be used as new target for development of vaccine and/
or drug against leishmaniasis.

Most of our current understanding of the role of differ-
ent markers of immune response in leishmaniasis has been 
obtained by works performed in experimental animal mod-
els. Although results from these studies provide important 
insights into Leishmania immunity, but cannot always be 
extrapolated to humans as there seem to be significant differ-
ences between human and murine immune response against 
Leishmania infection. Hence, limited numbers of biomark-
ers have been investigated and so far none of which could 
be used as a definitive out-standing surrogate of protection 
against human leishmaniasis.
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