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Abstract
The early stage of oncogenesis is linked to the disorder of the cell cycle. Abnormal gene expression often leads to cell cycle 
disorders, resulting in malignant transformation of human cells. Epstein–Barr virus (EBV) is associated with a diverse range 
of human neoplasms, such as malignant lymphoma, nasopharyngeal carcinoma and gastric cancer. EBV mainly infects human 
lymphocytes and oropharyngeal epithelial cells. EBV is latent in lymphocytes for a long period of time, is detached from the 
cytoplasm by circular DNA, and can integrate into the chromosome of cells. EBV expresses a variety of latent genes during 
latent infection. The interaction between EBV latent genes and oncogenes leads to host cell cycle disturbances, including the 
promotion of  G1/S phase transition and inhibition of cell apoptosis, thereby promoting the development of EBV-associated 
neoplasms. Molecular mechanisms of EBV-driven cell cycle progression and oncogenesis involve diverse genes and signal 
pathways. Here, we review the molecular mechanisms of EBV-driven cell cycle progression and promoting oncogenesis.
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EBNA  Epstein–Barr virus nuclear antigen
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Introduction

Uncontrolled cell proliferation is a hallmark of cancer, with 
abnormal genes expressed in cancer cells directly involved in 
regulating cell cycle. The fundamental task of the cell cycle 
is to make sure that DNA is faithfully replicated once during 
S phase and that identical chromosome copies are distributed 
equally to two daughter cells during M phase. The decision 

of cell mitosis occurs as cells pass a restriction point (R 
point) late in G1, after which they enter S phase. There is 
a precise mechanism of cell cycle regulation in a normal 
cell. Malfunctions in cell cycle give access to cells to gain 
uncontrolled growth characteristics, primarily hyperprolif-
eration and a low rate of apoptosis, ultimately leading to 
oncogenesis [1]. The presence of the corresponding growth 
factor or proliferation signal allows cells to enter S phase 
from G0/G1 phase through the restriction point, completing 
the entire cell cycle.

It is more than 50 years since Epstein–Barr virus (EBV), 
the first human oncogenic virus, was discovered [2]. EBV, 
with the most common and persistent infection in humans, 
and roughly 95% of the world’s populations sustaining an 
asymptomatic life-long infection, mainly infects lympho-
cytes and oropharyngeal epithelial cells. EBV has subse-
quently been found to be associated with a diverse range of 
neoplasms, such as Burkitt lymphoma (BL) [3], Hodgkin 
lymphoma (HL) [4], AIDs-related non-Hodgkin lymphoma 
[5], post-transplant lymphoproliferative disorders (PTLD) 
[6], diffuse large B cell lymphoma (DLBCL) [7], NK/T cell 
lymphoma [8], nasopharyngeal carcinoma (NPC) [9], and 
EBV-positive gastric cancer (EBV-GC) [10] (Fig. 1). EBV 
can transform human B lymphocytes in vitro and make them 
immortalized [11, 12]. Human peripheral blood lympho-
cytes were transplanted to severe combined immunodeficient 
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(SCID) mice, and EBV-associated human-derived lympho-
mas generated in hu-PBL/SCID chimeric mice [13, 14]. 
This EBV-induced lymphoma model is similar to AIDs-
associated lymphoma and post-transplant lymphoprolifera-
tive disease (PTLD).

EBV virion, its diameter is about 150–170 nm, is com-
posed of lipoprotein capsules and icosahedral nucleocapsid 
that include 162 shell particles. The viral genome consists of 
about 170 kb double-stranded DNA. EBV long-term latent 
in lymphocytes in the form of circular DNA free in the cyto-
plasm can be integrated into cell chromosome. The EBV 
genome within LCLs usually exists in multiple copies of 
extrachromosomal circular genetic materials known as epi-
somes and expresses all latent genes (refer to as latency III or 
the ‘growth programme’), including six Epstein–Barr virus 
nuclear antigens [EBNA 1, 2, 3A, 3B and 3C and EBNA 
leader protein (EBNA-LP)], latent membrane proteins 
LMP-1 and LMP-2 (which encodes two isoforms, LMP-
2A and LMP-2B), EBV-encoded small RNAs (EBER1 and 
EBER2) and microRNAs (miRNAs). During different stages 
of B cell differentiation in vivo, EBV expresses either the 
latency III programme, or one of two alternative forms of 
virus latency (known as latency I and latency II) (Table 1). 
EBV-associated B cell lymphomas express three latent types 
(I, II, or III), which type of latency depends on the B cell 

stage of tumor origin. The majority of EBV-positive Burkitt 
lymphomas (BL) is characterized by latency I, but some BL 
cell lines drift towards latency III during culture in vitro, 
such as Raji cells [15, 16]. In contrast, EBV infection does 
not induce clonal expansion in primary epithelial cells, all 
EBV-associated epithelial cancers express a latency II pro-
gramme [17]. This viral gene expression pattern is essential 
for driving resting B cells into the cell cycle and maintains 
a proliferative state.

Latent membrane protein 1

Latent membrane protein 1 (LMP-1) is considered to be an 
oncogenic protein whose signal region contains three sites: 
carboxy-terminal activating region 1 (CTAR1) (194–232 
a.a.), CTAR2 (351–386 a.a.) and CTAR3 (275–330 a.a.) 
that directly interact with some cell factors and activate 
NF-κB, JNK (c-Jun N-terminal kinase), p38 MAPK, JAK/
STAT, and PI3K/Akt signal pathways which involved in cell 
cycle progression [18]. There is a difference between the 
LMP-1 gene derived from nasopharyngeal carcinoma and 
derived from B95-8 cells. Chinese nasopharyngeal carci-
noma, primarily carry deletion type LMP-1 with a 30-bp 
deletion (Cao LMP1), which has stronger transformation 

Fig. 1  EBV is associated with 
a diverse range of human 
neoplasms. EBV mainly infects 
B lymphocytes, making them 
malignant transformation, 
and then forms a malignant 
lymphoma, such as BL. EBV 
may transform epithelial cells 
into epithelial malignancies, 
such as NPC, EBV-GC. Recent 
studies have found that EBV can 
also infect NK/T cells to form a 
natural killer/T cell lymphoma 
(NK/T cell lymphoma)

Table 1  Different latent states of Epstein–Barr virus in EBV-associated neoplasms

EBV latent type EBV latent genes Diseases

I EBNA-1, EBERs BL
II EBNA-1, LMP-1, LMP-2A, LMP-2B, EBERs, BARTs NPC, HL, EBV-GC, NK/T cell lymphomas
III EBNA-1, LMP-1, LMP-2A, LMP-2B, EBNA-2, EBNA-3A/B/C/LP, 

EBERs, EBV-miR-BHRF1/BARTs
AIDs-related NHL, partial BL (after exten-

sive passage in vitro), PTLD, DLBCL
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ability [19]. Sueur et al. found that weak IFN-γ expression 
and specific alteration of the cell cycle might be a way for 
del30-LMP1 infected cells to escape the immune anti-viral 
response and to promote the development of cancer [20]. 
Studies have characterized the ability of LMP-1 to recruit 
TRAFs (TRAF1, -2, -3, and -5) to CTAR1 through a con-
sensus TRAF-binding site at positions 204 to 208. Xie’s data 
revealed that CD40 and LMP1 unexpectedly used TRAF3 
in different ways and that TRAF3 was required for LMP1-
mediated activation of B cells [21]. LMP1-CTAR1 is nec-
essary for rodent fibroblast transformation. LMP1-CTAR1 
has the unique ability to induce expression of EGFR and 
TRAF1, and can deregulate molecules involved in  G1/S cell 
cycle progression, such as an inhibitor of differentiation or 
DNA binding 1 (Id1), the CDK inhibitor  p27Kip1, CDK2, and 
Rb [22]. Increased levels of hyperphosphorylated CDK2 and 
total Rb, cellular markers involved in  G1/S cell cycle pro-
gression, were observed in LMP-1, LMP1Δ204–208, 1–220, 
and 1–231. LMP-1 regulates telomerase activity through the 
 p16INK4A/Rb/E2F1, PI3K-AKT and JNK signaling pathways 
to promote cell immortalization [23].

CTAR2 is known to engage the JNK and NF-κB path-
ways. Elipoulos et al. reported that induction of LMP-1 
directly activated functional JNK [24]. Then Wan et al. 
showed that CTAR2 specifically recruits TRAF6 in the 
LMP1-mediated JNK pathway [25]. Kutz et al. demonstrated 
that inhibition of the JNK pathway by the JNK-specific 
inhibitor SP600125 resulted in reduced tumor growth of 
LCLs in SCID mice. These indicated that the LMP1-induced 
JNK pathway was required for lymphoblasts to progress 
efficiently through the cell cycle and was used to maintain 
expression of the c-Jun and  G2/M cell cycle kinase Cdc2 
[26]. JNK activation mediated by LMP-1 was responsible for 
upregulation of CCL3 and CCL4 required for LCL survival 
and growth [27]. CD40, a member of the tumor necrosis fac-
tor (TNF) receptor family, plays an essential role in T cell-
dependent immune responses. Hömig-Hölzel et al. found 
that B cell-specific expression of LMP1/CD40 activated the 
MAPKs/JNK/ERK and the noncanonical NF-κB pathway 
[28]. The concerted action of these signaling pathways ulti-
mately leads to B cell lymphomagenesis. The DOK1 gene 
is a newly identified tumor suppressor gene with altered 
expression via hypermethylation of its promoter in a variety 
of human cancers. Siouda et al. found that LMP-1 down-reg-
ulated DOK1 expression by altering the composition of the 
E2F transcription complex [29]. Lo et al. identified a novel 
function of LMP1 to inhibit the LKB1-AMPK pathway 
through phosphorylation of LKB1 at serine 428 with subse-
quent suppression of the phosphorylation of AMPK and its 
substrates, ACC and Raptor, which finally promoted prolif-
eration and transformation of human nasopharyngeal epi-
thelial cells [30]. Xiao et al. demonstrated that upregulation 
of HK2 by LMP-1 conferred NPC cells with a proliferative 

advantage and the ability to resist apoptosis [31]. Compre-
hensively, LMP-1 interacts with cell cycle-related molecules 
such as NF-κB, JNK, STAT, PI3K, Akt,  p27kip, CDK2, and 
Rb, thereby, promoting  G1/S phase transition, conferring 
cells proliferation advantages, and anti-apoptosis ability.

Latent membrane protein 2A

Latent membrane protein 2A (LMP-2A) of EB virus is 
expressed during different latency stages of EBV-infected B 
cells. Mancao et al. demonstrated that LMP-2A could rescue 
BCR-GC B cells from apoptosis in an in vivo situation. This 
indicated that EBV involved in the initial steps of lympho-
magenesis of GC-derived B cell lymphomas directly [32]. 
Wasil et al. demonstrated that LMP-1 and LMP-2A proteins 
jointly contributed to oncogenic mechanisms by modulat-
ing DNA repair [33]. LMP-2A contains 12 transmembrane 
domains and both the N and C termini face the cytosol. The 
cytoplasmic amino-terminal domain of LMP-2A contains an 
immunoreceptor tyrosine activation motif (ITAM). ITAM 
in the LMP-2A N terminus is constitutively phosphorylated 
and activates the Syk protein tyrosine kinase (PTK). Fukuda 
et al. found that the interaction of the LMP-2A ITAM with 
Syk was a key step for LMP-2A mediated transformation 
[34]. Engels et al. discovered that ITAM in the LMP-2A 
N terminus induced a ligation-independent activation sig-
nal during its initial expression which mimics that of the 
antigen-activated BCR, and thus passing survival signals 
to B cells, which is an important pathway for EBV regula-
tion of cell growth [35]. LMP-2A promotes cell transforma-
tion and survival through the activity of host cell signaling 
pathways. LMP2A-induced migration activity correlates 
with the ITAM/Syk signaling [36]. Fukuda et al. found that 
ITAM in the LMP-2A N terminus was required for LMP2A-
mediated Akt phosphorylation and anchorage-independent 
cell growth in several human cell lines [34]. LMP-2A dra-
matically affects epithelial cell transformation mediated 
through activation of the PI3-kinase–Akt pathway [37, 38]. 
Swart et al. reported that LMP-2A promotes constitutive 
phosphorylation of Akt through the PI3-K pathway [39], 
and subsequent studies have found that PI3-K/mTOR inhibi-
tor, NVP-BEZ235, is effective against follicular lymphoma 
[40]. LMP-2A couples with MYC to promote  G1/S transition 
and hyperproliferation of B lymphocytes through promot-
ing  p27kip1 degradation at the early stage of lymphomagen-
esis [41]. Fish et al. demonstrated that LMP-2A promoted 
hyperproliferation of B cells by way of up-regulating MYC 
expression and MYC-dependent degradation of the tumor 
suppressor  p27kip1 [42]. Incrocci et al. found that LMP-2A 
enhanced IL-10 production through the activation of Bru-
ton’s tyrosine kinase and STAT3, then B cell survival [43]. 
Wang et al. found that knockdown of LMP-2A inhibited the 
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proliferation and clonogenicity of GT38 cells which were 
arrested in the  G0/G1 phase [44]. As was stated above, LMP-
2A promotes cell transformation by interacting with PI3K/
Akt and ITAM/Syk, and LMP-2A can promote excessive 
proliferation of B cells by up-regulating MYC and degrad-
ing  p27kip.

Epstein–Barr virus nuclear antigen 1

Epstein–Barr virus nuclear antigen 1 (EBNA-1) is an 
essential viral protein, expressed in virus latency as well 
as EBV-associated neoplasm [45]. The EBV origin of plas-
mid replication (oriP), which is a 1.7 kb size area on the 
EBV chromosome, contains two functional elements: DS 
element and FR element [46]. FR, consisting of 20 binding 
sites for EBNA-1, is of great importance for viral replication 
and also works as a transcriptional enhancer. Malik-Soni 
et al. demonstrated that the histone chaperone nucleophos-
min was recruited by EBNA1 to the FR element, which was 
required for EBNA1-mediated transcriptional activation 
[47]. EBNA-1 binds to the FR element as a transcriptional 
activator to activate the expression of the promoter of the 
viral Cp and LMP genes, then enhances the expression of 
LMP-1, consequently promotes cell proliferation [48]. Bor-
eström et al. discovered that the cell cycle regulatory protein 
E2F1, the E2F-binding protein ARID3A, and the B-cell-
specific transcription factor Oct-2 bind the core promoter 
sequence of the EBV Cp as well as the minimal FR sequence 
containing eight EBNA1-binding sites, which was neces-
sary for transcriptional activation [49]. EBNA-1 together 
with a large cohort of cellular genes resorts to the survival 
and proliferation functions. EBNA-1 depletion from latently 
infected LCLs results in the loss of cell proliferation and 
the loss of gene expression for some EBNA1-bound genes, 
including MEF2B, EBF1 and IL 6R. These findings suggest 
that EBNA-1, as a critical regulator of transcription of host 
cell genes, has a vital importance for enhancing survival of 
latently infected cells [50].

Epstein–Barr virus nuclear antigen 2 and its 
co‑activator EBV nuclear antigen leader 
protein

Epstein–Barr virus nuclear antigen 2 (EBNA-2) is initially 
expressed after the infection of EBV, which is absolutely 
necessary for virus-mediated transformation. Cyclin D2 and 
CDK4 are both elements of the basic cell cycle machinery 
and driving cell cycle progression in early  G1. The coopera-
tion between EBNA-2 and EBNA-LP (leader protein) can 
induce cyclin D2 expression in resting B cells. LMP-1 and 
c-Myc are directly activated by EBNA-2, indicating that 

activation of c-Myc by EBNA-2 is an important step in the 
process of EBV-induced proliferation and immortalization 
[51]. EBNA-2 is able to expedite cellular proliferation and 
survival of EBV-infected B cells, which most likely by way 
of acting as a transcriptional activator of cellular and viral 
gene expression. It is a functional homolog of activated 
Notch receptor. Konforte et al. discovered that complete 
JAK/STAT pathway was indispensable to the IL-21-medi-
ated regulation of EBNA-2 and LMP-1 protein expression 
[52]. These suggest that EBNA-2 plays an important role in 
cell cycle and cell proliferation.

Epstein–Barr nuclear antigen leader protein (EBNA-
LP) is a phosphoprotein [53]. Phosphorylation appears to 
occur predominantly on serine residues, and while this can 
be detected throughout the cell cycle, it is hyperphospho-
rylated during  G2/M and hypophosphorylated during  G1/S 
phase [54]. Kato et al. found that cellular protein kinase 
cdc2 targets the functional phosphorylation site Ser-35 of 
EBNA-LP in vitro, which promoted  G1/S transition [55]. A 
strong co-activation between EBNA-LP and EBNA-2 was 
reported by Tierney et al. [56]. Co-expression of EBNA-2 
and EBNA-LP in primary B cells induces the expression 
of cyclin D2, thus promoting the  G1/S transition. Szymula 
et al. found that EBNA-LP did not simply co-operate with 
EBNA2 in activating gene transcription, but rather facilitates 
the recruitment of several transcription factors to the viral 
genome, to enable transcription of virus latency genes. And 
they also found that EBNA-LP was essential for the survival 
of EBV-infected naïve B cells [57]. These findings imply 
that EBNA-2 plays an important role in cell cycle and cell 
proliferation. Cooperation between EBNA-2 and EBNA-LP 
can induce cyclin D2 expression in resting B cells.

Epstein–Barr virus nuclear antigen 3A

Epstein–Barr virus nuclear antigen 3A (EBNA-3A) has been 
shown to play a role in the regulation of cell survival in 
B cells immortalized by EBV [58]. Tursiella et al. discov-
ered that knockdown of EBNA-3A expression resulted in 
abrupt cell cycle arrest in  G0/G1 phase that was concomitant 
with the conversion of retinoblastoma protein (Rb) to its 
hypophosphorylated state, followed by a loss of Rb protein; 
They also found that  p21WAF1/CIP1 expression was elevated 
following RNAi-mediated knockdown of EBNA-3A in LCLs 
[59]. Myc-interacting zinc finger protein-1 (MIZ-1) is a tran-
scription factor initially characterized as a binding partner of 
MYC. MIZ-1 activates the transcription of a number of tar-
get genes including the cell cycle inhibitor CDKN2B. Bazot 
et al. reported that EBNA-3A protein inhibited CDKN2B 
transcription via interaction with MIZ-1, thus promot-
ing the cell proliferation [60]. Carboxyl-terminal binding 
protein (CtBP) has been shown to be a highly conserved 
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co-repressor of transcription that is important in develop-
ment, cell cycle regulation, and transformation. EBNA-3A 
can physically and functionally interact with CtBP, whose 
interaction has been shown to depend on two cryptic sites 
located near the COOH terminus of the protein that binds 
CtBP synergistically. These sites appear to be necessary for 
EBNA3A-mediated repression of transcription and, as with 
EBNA-3C, binding to CtBP correlated with the ability of 
EBNA-3A to co-operate with oncogenic Ras in primary 
rodent fibroblasts. Skalska et al. showed that EBNA-3A, 
EBNA-3C, and CtBP were all involved in the epigenetic 
repression of  p16INK4A expression that is necessary for the 
proliferation of EBV-transformed B cells [61].

Epstein–Barr virus nuclear antigen 3C

Epstein–Barr virus nuclear antigen 3C (EBNA-3C) is a 
small subset of latent antigens critical for the transformation 
of human primary B lymphocytes into continuously prolif-
erating lymphoblastoid cell lines (LCLs) in vitro through 
manipulation of a number of major cellular pathways. More-
over, EBNA-3C can stabilize c-Myc and enhance c-Myc-
dependent transcription. EBNA-3C residues 130 to 190 
recruit and modulate the activity of retinoblastoma (Rb) and 
p27, both major regulators of the mammalian cell cycle. The 
inclusion of c-Myc in the group of cellular targets modulated 
by this domain further accentuates the importance of these 
critical residues of EBNA-3C in bypassing the cell cycle 
checkpoints [62]. An EBV recombinant deleted for residues 
130–159 in EBNA-3C can deregulate p53/Mdm2 and cyclin 
D1/CDK6 which results in apoptosis and reduce cell prolif-
eration [63]. The inhibitor of growth (ING), a tumor sup-
pressor, can be divided into three categories: one is ING1 
and ING2, and ING4 and ING5 are classified as type II, 
while ING3 is different from other members [64, 65]. Saha 
et al. found that EBNA-3C nullified the positive regulation 
of both ING4 and ING5 in the tumor suppressive activity 
of p53 [66]. The p73 protein has structural and functional 
homology with the tumor suppressor p53. Sahu et al. discov-
ered that the repressive effects of EBNA-3C on p73 function 
increased the efficiency of EBV-mediated lymphomagen-
esis. Interestingly, there is a colocalization between EBNA-
3C and nuclear p73 [67]. The role of the pRb-E2F path-
way in the regulation of cell cycle progression, particularly 
the  G1/S transition, is well established. E2F1 plays a dual 
role in controlling cell growth and apoptosis. For example, 
elevated expression of E2F1 promotes cell cycle progres-
sion by driving quiescent cells into S phase [68]. However, 
E2F1 expression can also induce apoptosis in the absence of 
proliferative signals [69]. Saha et al. discovered that EBNA-
3C efficiently blocked E2F1-mediated apoptosis, as well as 
its anti-proliferative effects in a p53-independent manner, 

in response to DNA damage [70]. E2F6 is one of the E2F 
family members with a unique property of transcriptional 
repression. E2F6 recruited together with EBNA3C binds 
E2F1 promoter and inhibits its activity, which contributes to 
B cell proliferation by reducing the expression of E2F1 [71]. 
EBNA-3C and EBNA-3A jointed repression of CDKN2A 
 p16INK4A and  p14ARF was essential for LCL growth, was 
reported by Maruo et al. [72]. These suggest that EBNA-
3C can facilitate  G1 to S transition. Accordingly, EBNA-3C 
inhibits p73,  p14ARF and  p16INK4A to promote  G1/S transi-
tion. At the same time, the combination of EBNA-3C and 
E2F6 can effectively block E2F1-mediated apoptosis and 
promote cell proliferation.

Additionally, Rovedo et al. [73] showed that LMP-2B 
negatively regulates the activity of LMP-2A. As described 
by White et al. [74], EBNA-3B is dispensable for B cell 
transformation in vitro. EBNA-3B is a virally encoded tumor 
suppressor gene that inhibits EBV-transformed B cell pro-
liferation to ensure long-term survival of the persistently 
infected host.

EBV‑encoded small RNAs (EBER1 and EBER2)

EBV-encoded small RNAs (EBERs, specifically EBER-1 
and EBER-2) are transcribed by RNA polymerase III into 
non-translated RNAs of 167 and 172 nucleotides, respec-
tively, and form stem-loop structures by intramolecular base-
pairing, giving rise to double-stranded RNA like structures. 
EBERs are considered as reliable markers for in situ hybridi-
zation to detect EBV infection in clinical samples of gastric 
carcinoma, lymphoma, nasopharyngeal carcinoma and etc. 
[75–78]. Herbert et al. found that EBER1 and EBER2 were 
functional back-ups of viral oncoprotein LMP-1, which 
activated the oncogenic PI3K/Akt signaling pathway [79]. 
Komano et al. demonstrated that EBER-expressing Akata 
cell clones restored the malignant phenotype, resistance to 
apoptosis, and up-regulated expression of a Bcl-2 protein to 
levels comparable to the restoration rates for EBER expres-
sion in EBV-reinfected cell clones [80]. Etodolac, cyclooxy-
genase-2 (COX-2) inhibitor, induced apoptosis via a COX-2 
independent pathway. Kobayashi et al. demonstrated that the 
expressions of EBER-1 and EBER-2 in EBV-positive Daudi 
and Raji cells were reduced, resulting in down-regulation 
of Bcl-2 by treatment with etodolac. This result indicated 
etodolac inhibits EBERs expression and induced apoptosis 
via a Bcl-2-regulated pathway [81]. EBERs inhibit the activ-
ity of the double-stranded RNA-dependent protein kinase, 
PKR, which is reputed to act as a tumor suppressor [82]. On 
the other hand, EBER can up-regulate IL-6 expression and 
activate signal transducers and activators of transcription 
(STAT), thus inhibiting the expression of cell cycle inhibi-
tion gene p21 and p27 and releasing the inhibition of CDK2 
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and CDK4, promoting the  G1/S transition finally [83]. In 
short, EBER promotes  G1/S transition by activating the 
oncogenic PI3K/Akt signaling pathway and inhibiting the 
tumor suppressor PKR and the cell cycle inhibitors p21 and 
p27.

EBV‑encoded microRNAs (EBV miRNAs)

EBV has been recently found to encode microRNAs (miR-
NAs), which expressed in infected B cells and some EBV-
associated neoplasms. EBV can encode approximately 
23 precursors and 44 mature miRNAs. EBV miRNAs are 
grouped into two clusters located either adjacent to the 
BHRF1 gene or in introns contained within the viral BART 
transcripts (Fig. 2) [84]. The first miRNA cluster is located 
within the mRNA of the BHRF1 (Bam HI fragment H right-
ward open reading frame 1) gene encoding a distant Bcl-2 
homolog (miR-BHRF1-1 to miR-BHRF1-3) [85]. MiR-
BHRF1-1 is located in the 5′UTR (untranslated region) 
and miR-BHRF1-2 and -3 are positioned in the 3′UTR of 
the BHRF1 mRNA [84]. To understand the function of the 
BHRF1 miRNA cluster, Feederle et al. constructed a virus 
mutant that lacks all its three members (∆123) and a rever-
tant virus, and showed that B cell transforming capacity of 
the ∆123 EBV mutant was reduced by more than 20-fold, 
comparative to wild-type or revertant viruses. It displayed 
slower growth in B cells which infected the knock-out virus, 
that exhibited a twofold reduction in the percentage of cells 
entering the cell cycle S phase [86]. PRDM1 (PR domain 
zinc finger protein 1, also known as BLIMP-1) is a tumor 
suppressor gene, Ma et al. found that EBV-miR-BHRF1-2 
inhibition up-regulated PRDM1 protein expression in 
lymphoblastoid cell lines (LCL), which was important for 
EBV-transformed B cell proliferation [87].

EBV BamHI-A rightward transcript (BART) miR-
NAs have nearly 30 kinds of BART miRNAs, which 

overexpressed in EBV-associated malignancies. Lung 
et al. found that down-modulation of LMP-2A expres-
sion by miR-BART22 might permit the escape of EBV-
infected cells from host immune surveillance, which may 
facilitate NPC carcinogenesis [88]. Lei et al. reported 
that EBV-encoded miR-BART3* miRNA targets DICE1 
tumor suppressor to promote cellular growth and trans-
formation in NPC [89]. Kang et al. demonstrated that 
EBV miR-BART miRNAs (miR-BART3, 6, 8, 16 and 22) 
expressed in EBV-infected epithelial tumor cell line AGS 
show anti-apoptotic activity to promote epithelial cell 
survival [90]. Lu et al. found that miR-BART6-3p inhib-
ited the EBV-triggered IFN-β response and facilitated 
EBV infection through targeting the 3′ UTR of RIG-I 
mRNA [91]. Wong et al. discovered that EBV microR-
NAs deregulated the canonical Wnt signaling pathway, 
which down-regulated Wnt inhibitory genes such as Wnt 
inhibitory factor 1 (WIF1), MAP kinase (MAPK)-related 
NEMO-like kinase (NLK) and adenomatous polyposis 
coli (APC), thus promoting oncogenesis [92]. Zhao et al. 
found that the activity of the Wnt pathway in EBV-associ-
ated tumors might be enhanced by miR-BART19-3p [93]. 
Zhou et al. discovered that cellular miRNA (miR-142) 
that functions together with EBV-BART-6-3p as onco-
genes to suppressed the expression of PTEN (Phosphatase 
and tensin homolog) which is a known tumor suppres-
sor [94]. Vereide et al. found that EBV BART miRNAs 
were able to promote B cell proliferation at early stage 
of EBV infection, and could target caspase3 and inhibit 
cell apoptosis, increasing the number of cells entering 
S phase [95]. Qiu et al. found that the BART miRNAs 
potentiate tumor growth and development in vivo [96]. 
Hooykaas et al. identified that miR-BART16 abrogated 
the production of IFN-stimulated genes in response to 
IFN-α stimulation and inhibited the antiproliferative 
effect of IFN-α on latently infected BL cells, which pro-
moted proliferation [97]. Lung et al. found that the four 

Fig. 2  Genomic positions of EBV-encoded miRNAs. EBV can encode approximately 23 precursors and 44 mature miRNAs. EBV-encoded miR-
NAs are grouped into two clusters: BHRF1 and BART clusters [84]
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EBV miRNAs, BART5-5p, BART7-3p, BART9-3p and 
BART14-3p, worked cooperatively to modulate ATM 
activity in response to DNA damage and to maintain viral 
latency, contributing to the tumorigenesis of NPC [98].

These findings indicate that EBV-encoded microRNAs 
play a contributing role in EBV-associated malignancies. 
EBV-miR-BHRF1-2 interacts with the tumor suppressor 
gene PRDM1 and plays an important role in cell prolifera-
tion. EBV-miR-BARTs can escape immune surveillance 
by down-regulating LMP-2A, and promote cell prolifera-
tion by down-regulating Wnt’s inhibitory gene and tumor 
suppressor PTEN.

Conclusions

As mentioned above, EBV plays a key role in driving cell 
cycle and oncogenesis of EBV-positive neoplasms. Mul-
tiple genes and signal pathways are involved in the occur-
rence of EBV-related neoplasms, including the interaction 
of virus gene and host genes (Fig. 3). Epstein–Barr virus 
genes activate oncogenes such as Bcl-2 and MYC, as well 
as signaling pathways such as NF-κB, JNK, JAK/STAT, 
and PI3K/Akt, and inhibit tumor suppressor DOK1, PKR, 
p53, PRDM1, DICE1, PTEN, and  p27kip1,  p21WAF1/CIP1, 

Fig. 3  A schematic diagram of EB virus involved in the  G1/S tran-
sition. Epstein–Barr virus infection is an early event in the develop-
ment of malignancies. The latent proteins and miRNAs encoded by 
EBV in host cells alone or in combination drive the cell cycle through 
a variety of pathways. LMP-1 regulates telomerase activity through 
the  p16INK4A/Rb/E2F1 signaling pathway to promote cell immortali-
zation. LMP-2A couples with c-Myc to promote  G1/S transition and 
hyperproliferation of B lymphocytes through promoting the expres-
sion of cyclin D and the degradation of  p27kip1 at the early stage of 
oncogenesis. The cell cycle regulatory protein E2F1, the E2F-binding 
protein ARID3A, and the B-cell-specific transcription factor Oct-2 
bind EBNA-1, which are necessary for transcriptional activation. 
EBNA-1 also enhances expression of LMP-1, and then promotes 

cell proliferation. The interaction between EBNA-2, EBNA-3C, and 
c-Myc further activates cyclin D2 and CDK4, then promoting the cell 
from G1 phase into S phase. EBNA-3A and EBNA-3C down-regulate 
the expression of  p15INK4b,  p16INK4a, and  p14ARF, thereby inhibiting 
apoptosis. EBAN-3C can directly bind to p53, to a certain extent, 
inhibit its transcriptional activity. EBERs can up-regulate Bcl-2 and 
down-regulate  p21cip1 and  p27kip1, thereby releasing the inhibition 
of CDK4 and CDK2 and promoting the cell cycle from  G1 phase 
to S phase. EBV-miR-BHRF1 inhibits apoptosis in B lymphocytes 
and epithelial cells. EBV-miR-BARTs can target caspase 3, thereby 
inhibiting apoptosis and increasing the number of cells entering the 
S phase
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 p16INK4A, p73, etc. The time from viral infection to tumo-
rigenesis is usually shorter in EBV-associated neoplasms 
with specific oncogene activation. EBV-encoded genes 
rapidly lead to oncogenesis by activating cellular onco-
genes or interacting with proteins in host cells. The latent 
proteins and miRNAs encoded by EB virus in host cells 
alone or in combination drive the cell cycle through a vari-
ety of pathways.

Identifying the molecular mechanism of EBV-driven 
cell cycle progression and oncogenesis may help to diag-
nose and guide clinical medication. Nevertheless, the 
precise mechanisms still remain unclear, especially those 
related to the dilemma between virus infection and the 
host cell. There are many kinds of literature about EBV 
driving host cell cycle and promoting oncogenesis, but 
there are few kinds of literature on how the expression 
changes of host cell genes affected by EBV. EBV-encoded 
genes, such as LMP-1, EBNA-1, and EBNA-3C, have been 
shown to interact with E2F1 to affect cell growth; however, 
its concrete mechanism is not yet clear and needs further 
study. E2F1 is expected to be a new therapeutic target for 
EBV-associated malignancies.

EBV driving cell cycle and promoting oncogenesis is a 
very complex process. It is also necessary to further reveal 
its molecular regulatory network and key nodes to find more 
precise molecular targets and provide an effective solution 
for the prevention and treatment of EBV-related neoplasms.
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