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Introduction

Since its original description and then isolation by Mar-
garet Gladys Smith [1, 2], cytomegalovirus (CMV) has 
become well recognized as a pathogen in hosts with 
impaired immunity. This is most noticeable in those with 
impaired immunity, such as in congenital infection, in 
whom the immune system is intentionally suppressed, such 
as in transplantation, and in disease-imposed impairment of 
immunity, such as in human immunodeficiency virus and 
acquired immune deficiency syndrome.

With advances in monitoring and detection methods, 
CMV has been recognized to reactivate in numerous set-
tings in individuals that are not chronically immune sup-
pressed (reviewed in [3]). As will be discussed, there are 
growing data suggesting that such reactivation events could 
be pathogenic in previously immune-competent patients 
during critical illness [4]. In the current review, immune 
competent patients that have CMV reactivation will be 
referred to as non-immune suppressed, acknowledging that 
these previously immune competent patients might have 
transient immune compromise as a consequence of their 
illness.

Incidence of reactivation

Since the earliest descriptions of CMV reactivation in 
immune competent hosts, there have now been more than 
20 studies demonstrating reactivation in non-immune-
suppressed patients during critical illness [5–27]. There is 
significant variability in estimated reactivation rates, most 
of which may be explained by methodology or kinetics. 
When these results are summarized, the median/mean rates 
of reactivation, respectively, are 24 and 23 % (Fig. 1a). 
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It is becoming increasingly apparent that certain patient 
populations have different risks, with burn patients having 
much higher rates of reactivation, for example, than cardiac 
patients [5, 10, 27]. We now know that most reactivation 
events occur 7–28 days after onset of critical illness [10], 
likely explaining why studies utilizing very early monitor-
ing (<8 days) showed a 0–1 % reactivation rate [23–26]. 
In addition, several published studies used viral culture or 
shell vial methods [13, 14, 21, 22], and while these studies 
were fundamental to confirm true reactivation by recover-
ing live virus, these methods have lower sensitivity than 
current PCR or antigenemia-based methodologies. If these 
early detection and low-sensitivity studies are excluded, it 
seems that roughly one in three patients with critical illness 
will have CMV reactivation (Fig. 1b).

Sepsis and CMV

Bacterial sepsis is an associated trigger of CMV reactiva-
tion that was first recognized in the 1990s. Domart et al. 
[14] first showed that a significant number of non-immune-
suppressed patients with mediastinitis following cardiac 
surgery had CMV reactivation. Subsequent work by Prosch 
and Volk and the Berlin group showed in a trio of manu-
scripts that CMV reactivation occurs at a high rate in septic 

patients and suggested that this reactivation might be a 
consequence of TNF and nuclear factor-κβ stimulation of 
the major immediate early promoter [28–30]. This clinical 
association was later experimentally confirmed by combin-
ing murine models of CMV latency and polymicrobial sep-
sis [31] and then subsequently with direct administration 
of inflammatory mediators in the murine latency model 
[32]. It has been recently proposed that reactivation events 
associated with sepsis are a consequence of inflammatory 
stimulation of the major immediate early promoter, tran-
sient immune compromise, and likely some component of 
epigenetic regulation of viral DNA (reviewed in [33]).

Once the connection between bacterial sepsis and viral 
reactivation was solidified, focus was next turned to the 
consequences of such reactivation events. It has been shown 
that pulmonary inflammatory responses induced by pol-
ymicrobial sepsis are exaggerated in mice with latent CMV 
[34]. This exaggerated inflammatory response, something 
that we have termed CMV-ALI (CMV-associated lung 
injury) [4], is associated with enhanced pulmonary fibrosis 
in latently infected mice after sepsis [34]. Virgin et al. [35] 
demonstrated subsequently that previous infection with 
CMV or the Epstein–Barr virus homolog γ-herpes virus 
68 can confer protection against subsequent bacterial chal-
lenges. The mechanism for this resistance appeared to be 
macrophage activation [35], and more recent work suggests 

Fig. 1  Cytomegalovirus reactivation rates from previously published studies. a All studies included. b Results from all studies using DNA or 
antigen-based testing and monitoring >8 days
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that for CMV infection, this may be a consequence of 
enhanced Toll-like receptor (TLR) expression and respon-
siveness on infected macrophages [36]. This enhanced TLR 
responsiveness is accompanied by enhanced CD14 expres-
sion, thereby increasing macrophage responsiveness to 
TLR-2, TLR-4, and TLR-5 ligands.

Interestingly, this enhanced TLR responsiveness might 
actually provide a survival advantage for the virus, by 
ensuring that the major immediate early promoter is tick-
led repeatedly (if not continuously) by endogenous bacte-
ria throughout an infected host’s lifetime, perhaps causing 
shedding of virus and thus transmission opportunities. If 
this hypothesis is true, then one would expect to see some 
differences in germ-free hosts after CMV infection. It is 
known that CMV infection can induce dramatic CMV-
specific T cell responses, a phenomenon that is popularly 
referred to as “memory inflation.” Curiously germ-free 
mice do not develop memory inflation after CMV infection, 
but do develop memory inflation after bacterial reconstitu-
tion [37]. If CMV-specific T cells are inflating in response 
to viral transcriptional activity, then one could speculate 
that host bacteria facilitate such activity. This makes the 
enhanced TLR/CD14 expression after CMV infection even 
more interesting, leaving hosts even more susceptible to 
bacterial stimulation and inflammation. Such stimulation 
might explain the perpetual low-level viral transcriptional 
activity during “latency” shown by the Reddehase group 
[38, 39], and in moments of immune weakness during 
relative health allow intermittent shedding, giving survival 
advantage to the virus. Conversely, such enhancements in 
Toll-like receptors might also contribute to the exagger-
ated immune responses seen during sepsis, becoming det-
rimental when those same hosts encounter severe bacterial 
infections.

Whether such viral preconditioning by CMV has a ben-
eficial or detrimental impact on humans during bacterial 
septic challenges is unknown. On the one hand, it is logi-
cal that a viral infection that enhances immunity to bacte-
rial infections should benefit the septic host. If this is true, 
then latently infected mice should show enhanced survival 
following bacterial sepsis, which is not consistent with 
our experience (unpublished data). Likewise, IgG-positive 
patients should also show improved outcomes during sep-
sis, but the single study to date evaluating this shows no 
such benefit [40]. In fact, this study shows no association 
with improved or worsened outcomes in CMV-IgG-positive 
patients [40]. One shortcoming of this trial, however, is that 
IgG titers were not studied, and all studies to date that have 
correlated CMV serostatus with detrimental outcomes have 
found such associations only in those with the highest IgG 
titers [41–43].

On the other hand, the septic response is considered 
by many to be a deranged host response, and it is equally 

logical that CMV preconditioning might contribute to such 
exaggerated inflammation. Hosts with coincident CMV 
reactivation and bacterial infections have more inflamma-
tion and immune system activation that is accompanied by 
an increased risk of septic shock, supporting the detrimen-
tal hypothesis [34, 35, 44]. By looking at the CMV-specific 
immune responses to infection in human hosts, it seems 
clear that not all naturally occurring infections are equal 
and show a broad mix of infectious titers [41–43, 45]. This 
mix of high- and low-titer infections may in part explain 
why the work by De Vlieger et al. did not show an advan-
tage or disadvantage of previous CMV infection in out-
come after sepsis or critical illness.

Differences between human and murine sepsis 
responses

It is quite interesting that the study of sepsis has been 
plagued by significant differences between human and 
murine septic responses. History is now littered with many 
therapies for bacterial sepsis that have looked extremely 
promising in murine models, only to fail in subsequent 
human studies [46]. In fact, recent genomic work has sug-
gested that septic responses in mice are mostly disparate 
from humans [46].

One major difference between humans and murine mod-
els that has gone overlooked is the immune experience of 
subjects in sepsis studies. Welsh and Selin first popular-
ized the idea that previous immune responses to infectious 
challenges might shape and influence subsequent responses 
to new antigens, a concept that they termed “heterologous 
immunity” (reviewed in [47]). Most adult humans have 
been exposed to multiple previous virus infections, not 
to mention a standard battery of immunizations that may 
have significant and long-lasting impact on their immune 
responses to sepsis. For example, 60 % of patients have 
been infected by CMV prior to onset of critical illness, and 
the prevalence of other herpes family viruses is also very 
high during adulthood (reviewed in [3]). As previously 
discussed, precedent herpesvirus infection has the poten-
tial to significantly alter host responses to sepsis [34, 48]. 
Thus, comparing “immune-experienced” human immune 
responses that have been manipulated by innumerable pre-
vious infectious encounters to relatively “immune naïve” 
immune responses in mice is likely a comparison between 
the figurative apple and orange. Given the myriad combina-
tions of precedent antigen experience, including the num-
ber, type, sequence, organism load and of course timing 
of exposure (recent versus remote), it may be required for 
murine models of sepsis to include such immune precon-
ditioning to adequately recapitulate human responses to 
sepsis.
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CMV reactivation: pathogen or bystander

It is clear that patients that suffer CMV reactivation dur-
ing their critical illness have an associated mortality of 
roughly double that of those without reactivation [49]. 
It is interesting that this mortality rate is similar to that 
seen in HIV patients with DNAemia (2-4X more likely 
to die)—independent of HIV load and CD4 counts and 
despite HAART [50]. Recent clinical data have sug-
gested that it is not merely CMV, but the magnitude of the 
immune response to it that influences CMV-related mor-
tality [42].

The association between CMV reactivation and mor-
tality naturally prompts the question of pathogen or 
bystander. Several authors have suggested that CMV reac-
tivation events are merely an indicator of host immune 
compromise, which has been associated by itself with 
worsened outcomes [15, 51]. Because most investigators 
agree that CMV is never fully quiescent, requiring con-
stant immune surveillance to maintain functional latency, 
it makes sense that transient immune compromise during 
critical illness could allow reactivation [38, 39]. It is now 
clear that sepsis can induce contraction of CMV-specific T 
memory in mice, thereby facilitating transcriptional reacti-
vation [52]. Likewise, sepsis has been shown to cause con-
traction of CMV-specific IgG in humans [26]. Limited data 
on CMV-specific T immunity in non-immune-suppressed 
humans during critical illness show persistence of CMV-
specific T cells [8]. Given the lack of pre-illness baseline 
data, however, it is impossible to know whether the pres-
ence of such T cells is indicative of “intact” CMV-specific 
immune function or some fraction thereof. Also consistent 
with the immune compromise hypothesis is the observa-
tion that other human herpesviruses reactivate during sep-
sis [15].

For CMV to cause harm, one would expect that similar 
to immune-suppressed patients, there would be end organ 
injury from virus activity [53]. Among other organs, 
CMV is known to develop latent infections in both lungs 
and liver [54–56]. Patients with pulmonary reactivation 
have significantly prolonged durations of mechanical 
ventilation (reviewed in [3, 5–7, 9, 11, 13, 16, 18, 20, 
21], and there are murine data to suggest worse pulmo-
nary inflammation and lung injury in mice with latent 
CMV during sepsis [34]. There are also data confirming 
worse hepatitis in patients with reactivation [21]. As pre-
viously discussed, patients latently infected with CMV 
that have subsequent bacterial infections have increased 
risk of septic shock [44]. Altogether, these associations 
are intriguing but nonetheless circumstantial evidence 
that CMV reactivation is harmful in non-immune-sup-
pressed patients.

Treatment trials ongoing

Probably the most effective way to answer the question 
of whether CMV reactivation is pathogenic or merely a 
bystander in human disease will be properly controlled 
randomized trials with antiviral therapy [57]. In the case 
of immune-suppressed transplant patients, CMV was per-
ceived as a definite pathogen, and this led to widespread 
antiviral use when such agents became available. It was 
not until decades later that properly controlled trials in 
immune-suppressed patients proved a benefit [58]. Fortu-
nately, there has been a more circumspect and deliberate 
approach to antiviral treatment in critically ill patients with 
CMV reactivation.

There has been considerable debate about the antivi-
ral strategy that should be used in these patients because 
only one in three are expected to have reactivation. Avail-
able animal data suggest that the most effective reactiva-
tion prevention strategy will be early prophylaxis [59], but 
this approach would see 2/3 of critically ill patients without 
reactivation receiving potentially toxic medications. Alter-
natively, using preemptive therapy will limit the number of 
people receiving antivirals to those suffering reactivation, 
but it is unclear whether delayed treatment will have benefit 
[59].

There are currently three such clinical trials to address 
this important question in non-immune-suppressed ICU 
patients. The first reactivation prevention trial is still ongo-
ing (Boeckh and Limaye, NCT01335932) and compares 
ganciclovir to placebo in patients with ARDS. Of the two 
others, one has been recently completed and evaluated anti-
viral prophylaxis using high-dose acyclovir versus low-
dose ganciclovir (Bion, Cowley, and Moss NCT01503918). 
The third trial is also still underway evaluating preemp-
tive therapy with ganciclovir or acyclovir, respectively, 
for CMV or HSV (Papazian NCT02152358). There are 
some encouraging new data that suggest improved sur-
vival for treatment of herpes simplex virus in critically ill 
non-immune-suppressed patients [60]. Nonetheless, given 
the risks associated with available agents, it seems that the 
most prudent role for treating CMV reactivation will be to 
await results of ongoing trials.

Conclusions

There is a strong and long-standing association between 
CMV reactivation and sepsis. It is currently unclear 
whether CMV and sepsis are friend or foe. On the one hand, 
there is evidence that previous CMV infection can protect 
against subsequent bacterial infection by enhanced mac-
rophage activation. On the other hand, this same immune 
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enhancement may contribute to exaggerated inflamma-
tory responses during sepsis leading to septic shock and 
patient mortality. Determining how preconditioned immune 
responses to persistent herpesviruses impact subsequent 
immune system activation and inflammatory responses may 
provide significant insight into septic responses. Given the 
enormous number of patients that harbor latent CMV that 
become critically ill, and the attendant mortality associated 
with CMV reactivation, developing better understanding of 
CMV reactivation and possible new strategies to prevent it 
may significantly contribute to patient outcome.
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