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tion of the inhibitory programmed death receptor 1 with its 
ligand in this animal model.
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Introduction

More than 240 million people worldwide are persistently 
infected with hepatitis B virus (HBV) and are at risk of 
developing chronic liver disease, cirrhosis and hepatocellu-
lar carcinoma (HCC) [1]. An effective and affordable ther-
apy to achieve sustained suppression of HBV replication 
and remission of liver disease is urgently needed. Pegylated 
interferon-alpha 2a (IFN-a) is recommended for the treat-
ment of chronic hepatitis B (CHB) in the current consen-
sus guidelines of many countries. Compared with conven-
tional recombinant IFN-a, however, pegylated IFN-a alone 
or in combination with nucleoside analogues does not 
significantly increase the rate of sustained response [2, 3]. 
Nucleos(t)ide analogues, such as, entecavir and tenofovir, 
suppress HBV replication and result in the improvement of 
liver architecture. However, these agents cannot eradicate 
HBV genomes from the liver and may further limited by 
the development increasingly select drug-resistant mutants 
with prolonged use [4, 5]. Therapy with additional antiviral 
drugs targeting other steps in the viral life cycle, in com-
bination with immunomodulatory options, might be more 
beneficial and effective.

More than 90 % of acutely infected adults resolve clini-
cal symptoms and maintain lifelong protective immunity 
by mounting a vigorous, multi-specific immune response 
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that combination of antiviral treatment with new formula-
tions of therapeutic vaccines is needed. The woodchuck 
(Marmota monax) and its HBV-like woodchuck hepatitis 
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ing new therapeutic approaches in chronic hepadnaviral 
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to HBV proteins. By contrast, patients with chronic hepa-
titis B tend to have delayed, transient or narrowly focused 
T cell responses [6–8]. Patients who spontaneously recover 
from HBV infection might experience reactivation of HBV 
under immunosuppressive treatments. Thus, the specific 
immune responses to HBV remain crucial for the long-term 
control of HBV infection even after resolution of the acute 
infection. For chronically infected patients, immunostimu-
latory and immunomodulatory strategies to boost or to 
broaden the weak virus-specific T cell response have been 
proposed to reach an effective control of viral infection.

Therapeutic vaccination studies in patients with chronic 
hepatitis B

Since more than 20 years, numerous clinical trials exploited 
the conventional prophylactic vaccine based on the hepa-
titis B surface antigen (HBsAg) for therapeutic vaccina-
tion (Table  1). These studies demonstrated reductions in 
viremia, seroconversion of the hepatitis B “e” antigen 
(HBeAg) to anti-HBe and HBV-specific T cell responses 
in some patients after vaccination. However, the antiviral 
effect was only transient and did not lead to an effective 
control of the HBV [9–17].

A more sophisticated therapeutic vaccination based on 
HBsAg complexed with human anti-HBs was proposed by 
the group of Wen et al. [18]. Immunogenic complexes (IC) 
stimulate robust T cell responses by increasing uptake of 

HBsAg through Fc receptors on antigen-presenting cells 
(APC) and, therefore, enhance HBsAg processing and pres-
entation. It was demonstrated that this vaccine administered 
to HBeAg-positive patients led to decrease of HBV DNA 
in serum and HBeAg seroconversion in some subjects [19]. 
In a phase II B clinical trial, HBeAg seroconversion was 
observed in about 21.6 % of treated patients. Moreover, a 
moderate decrease in serum HBV DNA and HBsAg lev-
els was observed after treatment [20, 21]. Very recently, a 
large phase III clinical trial with 12 injections of IC com-
plex failed to show any therapeutic efficacy when com-
pared to the placebo control injected only with alum [22]. 
Overstimulation with IC-based vaccine did not increase but 
decreased efficacy of the therapeutic vaccination. These 
results underline that an appropriate immunization protocol 
is crucial for the efficacy of therapeutic vaccination.

DNA vaccines using plasmids expressing viral proteins 
have gained popularity given their ability to induce strong 
cellular and humoral immune responses. Several phase 
I clinical studies investigated the therapeutic efficacy of 
plasmid DNA vaccines expressing HBsAg in chronic HBV 
carriers. These studies showed evidence for the safety of 
HBV DNA vaccination (for details see below), but T cell 
responses were restored or activated at only a low level. 
Furthermore, DNA vaccines expressing only HBsAg did 
not result in significant suppression of viremia in chronic 
carriers of HBV [23, 24].

From results of these studies, it can be concluded that 
the therapeutic vaccination alone is not sufficient to achieve 

Table 1   Therapeutic vaccination studies in patients with chronic hepatitis B using the conventional HBsAg vaccine, immune complexes, T cell 
vaccines and combination therapy

Vaccination strategy Vaccine Antigen References

Protein vaccine Licensed HBsAg vaccine for prophylactic use Pre-S2/S Pol et al. [13, 14]
Coullin et al. [9]
Ren et al. [15]
Yalcin et al. [17]
Dikici et al. [11]

Pre-S1/pre-S2/S Jung et al. [12]
Safadi et al. [16]

Immune complexes of HBsAg–anti-HBs S Wen et al. [18]
Yao et al. [19]
Xu et al. [21]
Xu et al. [22]

T cell vaccine CTL-peptide vaccine HBcAg Heathcote et al. [112]

DNA vaccine (HBsAg) Pre-S2/S Mancini-Bourgine et al. [23, 24]

Combination therapy Antivirals and protein vaccine (HBsAg) S Dahmen et al. [113]
Horiike et al. [114]
Vandepapeliere et al. [115]

Pre-S1/pre-S2/S Hoa et al. [28]

Antivirals and T cell vaccine Pre-S2/S Godon et al. [26]
Fontaine et al. [25]

Pre-S1/pre-S2/S, HBcAg, polymerase Yoon et al. [27]



105Med Microbiol Immunol (2015) 204:103–114	

1 3

the control over HBV. High load of virus particles and large 
amounts of HBsAg in the liver and peripheral blood may be 
responsible for the immune tolerant status in the patients. 
Therefore, pretreatment with nucleos(t)ide analogues has 
been proposed to achieve better CD8 T cell response and 
subsequent therapeutic efficacy after administration of 
DNA vaccines.

Recently, the results of the trial of this combination 
therapy have been published. In a large double-blind study, 
70 patients were treated effectively with nucleos(t)ide 
analogues for a median of 3  years resulting in undetect-
able levels of HBV DNA and thereafter randomized into 
two groups: one received five intramuscular injections of 
DNA vaccine expressing HBsAg and one received placebo. 
Nucleos(t)ide analogues were stopped. Although this com-
bination therapy was fairly well tolerated, the HBV DNA 
vaccine did not decrease the risk of relapse in HBV-treated 
patients and did not restore the anti-HBV immune response 
despite effective viral suppression by analogues [25, 26].

During a study in Korea, 27 patients randomly received 
either adefovir (ADV) alone or ADV in combination with 
HBsAg-expressing DNA vaccine. Therapeutic vaccination 
was safe and tolerable in CHB patients. Vaccine-induced 
HBV-specific T cell responses and HBeAg seroconversion 
were weaker in Korean patients than in Caucasian patients 
[27]. Asian patients, who are generally infected via verti-
cal transmission, may have a higher level of immune tol-
erance than Caucasians who are usually infected later in 
life. Improved vaccines for breaking immune tolerance 
may be needed to develop effective therapeutic HBV DNA 
vaccines.

The aim of a study in Vietnam was to evaluate viral sup-
pression following combined treatment with a new vaccine 
containing all three envelope proteins of HBV (pre-S1/pre-
S2/S) and lamivudine in CHB patients. The enhanced sup-
pression of viremia in the combination group was reversed 
after the discontinuation of vaccine treatment, suggest-
ing that booster doses are required for a sustained viral 

response. Anti-HBs was detected in 55/120 vaccine recipi-
ents, but only three patients demonstrated HBsAg loss, 
indicating that the vaccine-induced anti-HBs was unable to 
completely neutralize HBsAg in the serum [28].

Woodchuck model

The eastern woodchuck (Marmota monax) is naturally 
infected by woodchuck hepatitis virus (WHV) which was 
discovered in 1978 [29]. WHV was found to be closely 
related to hepatitis B virus (HBV) [30] and classified as 
the second member of the genus ortho-hepadnavirus, fam-
ily hepadnaviridae. In contrast to HBV-associated HCC in 
patients without a preferred integration site of HBV DNA, 
a frequent integration of the WHV genome close to the 
N-myc and c-myc gene has been observed in woodchucks 
developing HCC [31]. Infections of woodchucks with 
WHV have been shown to be endemic in the Mid-Atlantic 
States of the USA, whereas in the State of New York and 
New England woodchucks are rarely infected with WHV. 
Recently, a Chinese marmot Marmota himalayana was 
found to be susceptible to WHV infection [32] (Fig.  1). 
These findings indicate that M. himalayana is phylogeneti-
cally closely related to M. monax. Therefore, this Chinese 
Marmota species can be explored as a model for hepadna-
viral infection and prevention of infection [33] and in the 
future for the new therapies.

The molecular characterization of WHV and experimen-
tal infection of woodchucks with WHV have been of great 
value in modelling several aspects of hepadnaviral infec-
tion in humans, e.g. the natural course of infection [34–37], 
immunopathogenesis [38–42], including innate and adap-
tive immune responses, host and viral factors associated 
with development of chronicity.

From a medical point of view, the woodchuck model 
has been used to develop new strategies for prevention of 
infection [43, 44], post-exposure prophylaxis of hepatitis 

Fig. 1   Pictures of eastern woodchuck M. monax (a) and M. himalayana (b). Himalayan marmots are closely related to the woodchucks and can 
be infected with WHV. They are about the size of a large housecat and live in colonies
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B and therapy of chronic hepadnaviral infection including: 
nucleoside analogues [45–49], non-nucleoside analogues 
[50], therapeutic vaccination (reviewed in [51]) and gene-
therapeutic approaches for treatment of HCC [52]. Liver 
transplantation has recently been established for wood-
chucks to study early events in re-infection and adoptive 
immune transfer [53]. Lately, a significant progress has 
been made in this model to demonstrate that both cellular 
immune responses are needed for elimination of the virus 
from hepatocytes or to at least control viral replication [38, 
39, 41].

This review is focusing on the characterization of 
woodchuck genes related to innate and adaptive response, 
the recent development of new tools to determine virus-
specific T cell response, therapeutic vaccines, and finally 
immunostimulatory and immunomodulatory approaches 
to treat chronic WHV infection. These new findings in this 
preclinical model will help the development of new strate-
gies to treat chronic HBV infection in patients.

Cloning and characterization of components 
of woodchuck immune system

In recent years, many efforts have been devoted to clon-
ing and characterization of components of the woodchuck 
immune system. A number of immune function-related 
genes including cytokines and their receptors, immune cell 
surface markers and other immune function-related pro-
teins have been cloned and characterized.

So far, important woodchuck cytokines and their recep-
tors such as TNF-α, IFN-α, IFN-γ, IL-12, IL-15, GMCSF, 
lymphotoxin (LT)-α and IL-10R have been cloned and 
tested for their biological activities [54–61]. In patients, 
IFN has been used in the treatment of CHB for many years. 
Therefore, the IFN system has also been characterized in 
woodchucks. Woodchuck IFN-α was shown to reduce 
WHV surface antigen expression in a dose-dependent 
fashion in WHV-infected woodchuck hepatocytes [62]. 
The woodchuck IFN-α/β system and their expression in 
peripheral blood lymphocytes (PBLs) from naïve and 
WHV-infected woodchucks have also been studied [63]. 
The woodchuck IFN-α genes could be classified into ten 
subtypes and three pseudotypes. Poly(I:C) stimulation on 
naïve woodchuck PBLs could induce IFN-α subtypes one, 
four and five production, indicating a selective expres-
sion of woodchuck IFN-α subtypes. Moreover, PBLs from 
chronically WHV-infected woodchucks showed a reduced 
ability to produce woodchuck IFN when stimulated with 
poly(I:C). The complete or partial sequences of the type I 
IFN receptors (IFNARs) of woodchucks were also obtained 
and analysed by Fan et  al. [64]. IFN-α or IFN-γ stimula-
tion significantly upregulated IFNAR2 expression in 

primary woodchuck hepatocytes. A decreased IFNAR1 and 
IFNAR2 expression was observed in woodchucks chroni-
cally infected with WHV. These data are essential for stud-
ying type I IFN-related innate immunity and therapy in 
hepadnaviral infection in the woodchuck model. IL-10 is 
a pleiotropic cytokine acting on a variety of immune cells 
through its cell surface receptor (IL-10R). It has been sug-
gested to resuscitate antiviral immunity by interfering with 
IL-10/IL-10R pathway. An increased production of IL-10 
was observed in patients with CHB [65], which hints that 
blockade of IL-10R might become a feasible therapeutic 
approach for CHB. Very recently, Jiang et al. [54] success-
fully cloned woodchuck IL-10R and generated antibodies 
against this molecule. The blockade of woodchuck IL-10R 
enhanced the proliferation and degranulation of specific 
T cells from chronically WHV-infected woodchucks in 
vitro. This work provides a basis for potential therapeutic 
approaches in chronic HBV infection.

Important woodchuck immune cell surface molecules 
which have been cloned so far can be divided into two cate-
gories based on their function: molecules involved in innate 
immunity and molecules involved in adaptive immunity.

Toll-like receptors (TLRs) are a class of molecules that 
play a key role in the innate immune system. Recent pro-
gress in this field revealed that there are significant inter-
actions between the TLR system and pathogens in chronic 
viral infections [66]. So far, TLR2, TLR3, TLR4, TLR7, 
TLR8 and TLR9 have been successfully cloned in wood-
chucks [67]. In a recent study, Zhang et al. [66] showed that 
TLR2 ligands induced the activation of NF-κB, PI3K/Akt 
and different arms of MAPK signalling pathways and the 
production of pro-inflammatory cytokines in woodchuck 
hepatocytes. TLR2-mediated innate immune responses 
reduced replication and gene expression of HBV in 
HepG2.2.15 cells and WHV in primary woodchuck hepato-
cytes (see also article from Zhang and Lu, in this issue). 
In chronic WHV carriers woodchuck model, relatively 
low levels of TLR2 expression were found in PBMCs and 
in liver tissues. TLR2 expression in PBMCs was inversely 
correlated with WHV DNA titres in acute WHV infection 
and in entecavir-treated chronic WHV carriers.

An effective immune response against viral infections 
depends on the activation of CD8 T cells that can clear infec-
tion by killing virus-infected cells. Therefore, sequence infor-
mation of woodchuck CD3, CD4 and CD8 has been used to 
determine the kinetic of the influx of T cells into the liver dur-
ing incubation period and acute or chronic WHV infection. 
In week two post-infection, an influx of CD3+ lymphocytes 
could be observed and reached higher levels prior and dur-
ing the recovery phase. The peak level of CD4+ and CD8+ 
T cells coincided with recovery. During transient infection, T 
cells can accumulate in the liver and reach up to two-thirds of 
the total number of liver cells [35]. In the adaptive immune 
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response, CD28 and CTLA-4 are known to play impor-
tant roles for the regulation of T cell activation by delivering 
costimulatory signals. The complete coding regions of wood-
chuck CD28 and cytotoxic T-lymphocyte-associated antigen 4 
(CTLA-4) have been cloned and sequenced [68]. Woodchuck 
CD28 showed a similarity of 76 and 70 % to its human and 
mouse homologues, respectively, according to the deduced 
amino acid sequences. Woodchuck CTLA-4 has a higher sim-
ilarity of 86 and 75 % to the corresponding human and mouse 
CTLA-4 molecules, respectively. The strict conservation of 
critical amino acid residues like cysteine and asparagine resi-
dues in woodchuck CD28 and CTLA-4 suggests that both 
molecules may structurally resemble their human or mouse 
homologues. A hexapeptide motif MYPPPY which has been 
supposed to be essential for the interaction with CD80 is pre-
sent in both woodchuck CD28 and CTLA-4 [68].

The advances in sequencing technology provide new 
tools to characterize genes of the woodchuck immune 
system in large scale. Fletcher et  al. [69] performed the 
sequencing, assembly and annotation of the woodchuck 
transcriptome, together with the generation of custom 
woodchuck microarrays. By using this new platform, they 
characterized the transcriptional response to persistent 
WHV infection and WHV-induced HCC. Liu et  al. have 
also performed de novo woodchuck transcriptome assem-
bly by using deep sequencing technology (unpublished 
data). With the help of this advanced technology, sequence 
information of important immune genes such as APOBEC3 
of woodchucks has been revealed. It has been shown that 
upregulation of APOBEC3 led to specific and non-hepa-
totoxic degradation of nuclear HBV cccDNA [70]. There-
fore, future cloning and characterizing of APOBEC3 in 
the woodchuck model will evaluate the therapeutic poten-
tial for CHB. In summary, these efforts on establishing the 
translational value of the woodchuck model can provide 
new insight into characterizing immune pathways which 
may play a role in the persistence of HBV infection.

Evaluation of T cell response in woodchuck model

Studies in patients underline the important role of HBV-
specific T cell response as a leading factor of viral 

clearance. For many years, the lack of appropriate methods 
to evaluate antigen-specific T cell responses was the serious 
limitation of this model. The establishment of the assays 
for monitoring of cellular immune response in woodchucks 
is of great importance for a reliable evaluation of therapeu-
tic and immunomodulatory strategies for treatment of CHB 
in the woodchuck model.

Development of the 2[3H]-adenine-based proliferation 
assay enabled to detect the T-helper lymphocyte responses 
after stimulation of woodchuck PBMCs [39, 41]. In addi-
tion, several T-helper epitopes within WHcAg [39, 41] 
were identified in PBMCs from acutely WHV-infected ani-
mals. Significant progress in studying the T cell response 
of woodchucks was achieved by introduction of the flow 
cytometric CD107a degranulation assay that enables the 
detection of WHV-specific cytotoxic T cells (CTLs) in 
woodchuck PBMCs and splenocytes [38]. Several studies 
demonstrated that detection of CD107a, as a degranulation 
marker, is a suitable method for determination of antigen-
specific cytotoxic T lymphocytes [71, 72].

Introduction of the immunological tools for studying of 
the T cell response in woodchucks revealed a significant 
similarity between the pathogenesis of WHV infection in 
woodchucks and HBV in humans. It was demonstrated that 
acute self-limiting and resolved WHV infections correlate 
with robust multifunctional T-helper and cytotoxic T cell 
responses, while WHV chronic carriers demonstrate weak 
or no virus-specific T cell responses against the viral pro-
teins (Table  2) [38, 39, 41]. Moreover, these studies con-
firmed that the efficient cellular immune response to viral 
antigens results in liver injury and is necessary for viral 
clearance.

Therapeutic immunization in the woodchuck model: 
viral vectors and prime‑boost strategy

Recently described advancements in the characteriza-
tion and monitoring of the woodchuck immune system 
during the WHV infection made this animal model par-
ticularly useful for development of the immunomodula-
tory approaches in CHB. The pioneer investigations with 
therapeutic vaccines based on WHV core [73] or surface 

Table 2   Correlation between the outcome of WHV infection and cellular immune response to WHsAg, WHxAg and WHcAg in woodchucks 
neonatally infected with WHV: 11 woodchucks recovered from infection and 23 developed chronic hepatitis

The numbers of PBMC samples detected positive to WHV antigens during the study are given in brackets [41]

Outcome of the infection % of woodchucks responding to: % of PBMC samples positive to:

rWHcAg rWHsAg rWHxAg C97-110 rWHcAg rWHsAg rWHxAg C97-110

Resolved (n = 11) 100 (11/11) 82 (9/11) 91 (10/11) 100 (11/11) 59 (32/54) 34 (18/53) 34 (17/50) 51 (28/55)

Chronic (n = 23) 39 (9/23) 22 (5/23) 26 (6/23) 17 (4/23) 6 (16/262) 2 (6/242) 4 (10/242) 2 (5/265)
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antigens in combination with a helper peptide named FIS 
(encompassing amino acids 106-118: FISEAIIHVLHSR 
from sperm whale myoglobin) [74], or with potent Th1 
adjuvants like monophosphoryl lipid A [75] did not lead to 
satisfactory results. Those experiments proved that vaccina-
tions could induce specific B cell and/or T cell responses in 
chronic WHV carriers. However, this alone was not suffi-
cient to achieve the control of virus replication, as the very 
high load of virus may be responsible for the immune tol-
erant status in the animals. This idea is supported by Boni 
et  al. [76, 77] reporting that the T cell response to HBV 
was successfully restored in patients treated with lamivu-
dine. In addition, the quantity of antigen particularly the 
WHV surface antigen (WHsAg) to which the immune sys-
tem is exposed can induce different degrees of functional 
impairment of antiviral T cells, up to physical T cell dele-
tion [78, 79].

Combination therapy using lamivudine and serum-
derived WHsAg vaccination showed no effect on induc-
tion of anti-WHs antibodies or reduction of WHV DNA 
[80]. Our group evaluated the efficacy of the combination 
therapy in the woodchuck model by combining lamivu-
dine treatment, DNA vaccination (three plasmids express-
ing WHsAg, WHcAg and woodchuck IFN-γ) and WHsAg/
anti-WHs immunogenic complexes vaccination [81]. The 
triple combination led to a decrease in WHV viral load up 
to 2.9 log, in serum WHsAg up to 92 % and in develop-
ment of anti-WHs antibodies. Nevertheless, these effects 
were not sustained and all parameters reached the baseline 
levels shortly after withdrawal of lamivudine treatment. In 
addition, the vaccination did not induce WHV-specific T 
cell responses in the majority of woodchucks, even in ani-
mals that exhibited virological responses. Later, we modi-
fied this protocol by using the more potent antiviral drug 
entecavir (ETV) and increasing the number of the immu-
nizations (with plasmids expressing WHsAg and WHcAg 
from three to six) (Lu et  al., unpublished results). A sig-
nificant delay of the rebound of viremia was observed in 
woodchucks which received additional vaccination, com-
pared to controls treated only with ETV. In another study, 
chronic WHV carriers received a treatment of the potent 
antiviral drug clevudine in combination with an alum-
adsorbed WHsAg vaccine. Combination treatment resulted 
in significant and sustained reduction of WHV DNA loads 
and WHsAg concentrations in most treated animals. Com-
pared to vaccination alone, combination treatment induced 
a more robust anti-WHs response [82, 83].

The results of these studies clearly showed that combi-
nation of antiviral treatment and vaccination is more effec-
tive in inducing virus-specific T cell responses than thera-
peutic vaccination alone. Nevertheless, the efficacy of these 
approaches was still too limited when applied for treatment 
of CHB. The vaccination strategies used in some of these 

studies were even not able to boost a functional antiviral T 
cell response. A significantly better induction of WHcAg-
specific T cells using more potent vaccines, such as recom-
binant viral vectors, may be required to achieve sustained 
antiviral response and viral clearance.

Recombinant adenoviral vectors (AdV) proved to elicit 
a vigorous and sustained humoral and T cell responses to 
the transduced antigen [84, 85]. Adenoviral vectors also act 
as a natural adjuvants causing DC maturation, enhanced 
antigen presentation and secretion of antiviral cytokines, 
such as IFN-α, TNF-α and IL-6 [86]. However, even single 
immunization with recombinant adenoviruses may induce 
immunity, predominantly neutralizing antibodies, against 
the vector itself. This negative effect of the adenovirus-
induced immunity against the vaccine may be overcome 
by heterologous prime-boost regimen. In particular, subse-
quent priming immunizations with plasmid DNA vaccine 
followed by a booster vaccination with AdV seem to be a 
very promising strategy. DNA prime–adenovirus boost 
regimen proved to induce more robust and potent immune 
response in comparison with plasmid DNA alone and pro-
vided protection against the pathogen challenge in several 
animal models of infectious diseases [87–89] (see also arti-
cle from E. Barnes in this issue).

Recently, our group has investigated whether the heter-
ologous prime-boost immunization strategy using plasmid 
DNA and recombinant adenoviral vectors may improve 
the efficacy of the therapeutic vaccination in CHB in the 
woodchuck model. A new DNA plasmid (pCGWHc) and 
an adenoviral serotype 5 vector (Ad5WHc) and a chimeric 
Ad5 displaying Ad35 fibre (Ad35WHc) showing high 
expression levels of WHcAg were constructed [90]. The 
increased antigen expression was achieved by insertion of 
an intron sequence in the expression cassette of the vac-
cines. Preliminary results showed that the new vaccines 
are able to induce strong and sustained WHcAg-specific T 
cell response in mice and naïve woodchucks. Interestingly, 
immunization with AdVs led to rapid and massive produc-
tion of anti-WHs antibodies and as a result resolution of 
infection after the WHV challenge [90].

The DNA prime–AdV boost immunization strategy was 
further used as a therapeutic vaccine against chronic WHV 
infection in combination with antiviral treatment with ETV. 
Six chronically WHV-infected woodchucks were treated 
for 23 weeks with ETV. Starting from week eight, four of 
the six ETV-treated animals received subsequently nine 
intramuscular immunizations with: DNA plasmids express-
ing WHcAg (pCGWHc) and WHsAg (pWHsIm), Ad5WHc 
and Ad35WHc. WHsAg- and WHcAg-specific T-helper 
and cytotoxic T cell responses were detected in all chronic 
carriers that received immunizations, but not in ETV only 
treated animals. In addition, woodchucks receiving the 
combination therapy showed a prolonged suppression 
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of WHV replication and lower WHsAg levels compared 
to controls. Excitingly, two of four immunized carriers 
remained WHV DNA negative after the end of ETV treat-
ment and developed anti-WHs antibodies [91]. These data 
are encouraging and demonstrate that the combined antivi-
ral and vaccination approach efficiently elicited sustained 
immunological control of chronic hepadnaviral infection in 
woodchucks.

Combining therapeutic vaccination and modulation 
of T cell function

Persistent HBV infection is associated with functional 
exhaustion of virus-specific CD8 T cells [92]. This defect 
in virus-specific T cells is one of the primary reasons for 
the inability of the host to eliminate the persisting patho-
gen. Although it has been shown that nucleoside analogues 
treatment can induce the recovery of HBV-specific CTL 
activity in patients [76], this effect is only transient [77]. 
Those findings are consistent with our data obtained from 
the woodchuck model, in which ETV treatment alone only 
induced either only transient CTL responses [91] or no 
responses at all [93]. Therefore, additional strategies that 
can potently enhance T cell response need to be enroled for 
the treatment of CHB infection.

Recent studies in chronic virus infection models indicate 
that the interaction between the inhibitory receptor pro-
grammed death-1 (PD-1) and its ligands plays a critical role 
in T cell exhaustion [94–97]. In chronic HBV infections, 
upregulation of PD-1 on virus-specific T cells was observed, 
and restoration of the T cell function has been achieved by 
blocking the PD-1/PD-ligand 1 (PD-L1) interaction in vitro 
[98]. Recently, the therapeutic effect of PD-1/PD-L1 block-
ade has also been investigated for chronic HCV infection in 
chimpanzees [99] and in patients [100]. However, limited 
effect on restoring T cell function was observed in these 
studies which used only PD-1/PD-L1 blockade. It has been 
recently clarified that the proportion of CD8 T cells express-
ing PD-1 and the levels of PD-1 on virus-specific T cells are 
strongly correlated with viral load in the plasma [101–103]. 
Antiretroviral treatment resulted in the dramatic decline of 
plasma viral load, coincident with a decrease in the PD-1 
expression level on virus-specific CD8 T cells [101, 103]. 
In line with this, a better restoration of T cell functions upon 
in vitro anti-PD-L1 treatment was observed in chronic HBV 
patients with lower viremia [104]. Therefore, a combination 
therapy that includes direct antiviral drug and PD-L1 block-
ade is a reasonable strategy for the treatment of chronic 
HBV infection.

In line with these findings, Zhang et  al. [105] and Liu 
et al. [93] successfully cloned and characterized the wood-
chuck PD-1/PD-L system in the WHV infection woodchuck 

model. A significant positive correlation between the viral 
load and the PD-1 expression on total CD8 T cells in 
chronic WHV infection was observed. Both the proportion 
of PD-1+ CD8 T cells and the levels of PD-1 expression on 
CD8 T cells were significantly higher in the woodchucks 
with chronic WHV infection compared to naïve animals 
and resolvers. More importantly, during ETV treatment of 
those chronic carriers, a reduction of serum viral load was 
correlated with a dramatic decrease in the level of PD-1 
expression on CD8 T cells [93]. In vitro blockade of wood-
chuck PD-1/PD-L1 pathway by using a rabbit polyclonal 
PD-L1 blocking antibody could partially restore the T cell 
function in WHV-infected woodchucks [105]. Moreover, in 
vivo blockade of the PD-1/PD-L1 pathway on CD8 T cells, 
in combination with nucleoside analogue treatment and 
DNA vaccination, synergistically enhanced the function 
of virus-specific T cells. The combination therapy potently 
suppressed WHV replication, leading to sustained immuno-
logical control of viral infection, anti-WHs antibody devel-
opment and complete viral clearance in some woodchucks 
[93]. Although similar approaches have been tried in other 
viruses in the past, such as LCMV, the data presented here 
may be an advance for the HBV field to new approaches 
for eliminating the virus itself rather than only suppressing 
its replication.

Summary and conclusion

The woodchuck is a valuable preclinical model for develop-
ing new therapeutic approaches in chronic hepadnaviral infec-
tions. Even though several innovative approaches combining 
antiviral treatment with nucleoside analogues, DNA vaccines 
and protein vaccines were tested in chronically infected wood-
chucks, the effectiveness of those strategies was very limited. 
Strategies investigated so far were often hampered by weak 
T cell responses observed after immunization, suggesting a 
strong need for alternative strategies to enhance T cell func-
tions during chronic HBV infection. Recently, our group pub-
lished two independent proof-of-concept studies, showing 
that using a very potent T cell vaccine and blockade of nega-
tive signalling in T cells may lead to the resolution of chronic 
hepatitis B in some woodchucks (Table  3). These data are 
encouraging and implicate the feasibility and usefulness of 
the immunotherapeutic strategies for the treatment of chroni-
cally HBV-infected patients. Nevertheless, which factors influ-
ence the effect of therapeutic vaccination remains to be further 
investigated. It has been noticed that satisfactory therapeutic 
effects could not be documented in the studies using HBsAg-
based prophylactic vaccines. In the mean time, evidence has 
supported that HBcAg-specific immunity is endowed with 
antiviral and liver-protecting capacities in CHB patients 
and animal models. With the increasing number of available 
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vaccine formulation, a more crucial question raised recently: 
what is the optimal combination of these vaccines. Obviously, 
it is necessary to test the mutual influences of different types 
of vaccines to maximize their effects and avoid the negative 
interference between the vaccines. Also, the question how 
HBV infection leads to defective immune responses to HBV 
proteins remains to be investigated. This issue is the key to a 
more rational design of new therapeutic approaches. Figure 2 
summarizes the ideas of a potential combination treatment for 
patients with chronic hepatitis B.

Unresolved problems

The presence of viral components may be a main reason 
for T cell tolerance in chronic HBV infection. Antiviral 

treatment with nucleoside analogues efficiently reduce 
HBV replication and release of new virions and may partly 
restore HBV-specific CD8 and CD4 T cell responses, 
thereby allowing successful therapeutic vaccination. How-
ever, HBV proteins are still produced as the transcrip-
tion of mRNAs for the S protein and the core protein on 
HBV cccDNA is not affected by antiviral treatment. Even 
when HBV DNA disappears during antiviral treatment, 
HBsAg and HBcAg/HBeAg are present in the liver or in 
blood at high levels. It is proposed to reduce HBV protein 
load by small interfering RNAs (siRNAs), which lead to 
the sequence-specific degradation of homologous mRNA. 
Using this RNA interference (RNAi) with chemically 
synthesized or vector-expressed siRNAs, many clinically 
relevant viruses including the human immunodeficiency 
virus, HBV and HCV could be inhibited. In in vitro experi-
ments showed that WHV transcripts could be degraded by 
siRNAs [106]. At the same time, the degradation of viral 
RNAs resulted in the activation of multiple pathways of 
host innate immune responses [107]. However, future in 
vivo studies are required to demonstrate the usefulness of 
this technology. Combining gene-silencing approach with 
nucleoside analogues may further facilitate the stimulation 
of the immune system by therapeutic vaccines.

The epigenetic regulation provides an alternative to 
interfere with HBV gene expression. HBV minichromo-
some in hepatocytes is under the complex control of epi-
genetic mechanisms, and its transcriptional activity could 
be influenced by methylation, histone acetylation and 
other mechanisms [108]. Therefore, exploring epigenetic 
drugs to modify, these regulatory processes may achieve an 
effective suppression of HBV gene expression and thereby 
replace antiviral treatment with nucleoside analogues.

Table 3   Summary of four preclinical studies of combination therapy with entecavir and T cell vaccine performed in woodchucks

Study no.  
[reference]

Number of  
treated animals

Antiviral  
treatment

Duration  
months

Vaccines Number of  
shots

Outcome

Delayed  
rebound

WHV DNA neg. 
in follow-up

1. Lu et al. 
(unpublished)

9 ETV 0.5 mg/kg 6 DNA vaccine 
WHsAg, 
WHcAg

6 9/9 1/7 (14.3 %)

2. Lu et al. 
(unpublished)

6 ETV 0.2 mg 12 DNA vaccine 
WHsAg, 
WHcAg

12 6/6 2/6 (33.3 %)

3. [91] 4 ETV 0.2 mg/kg 6 DNA and  
AdV vaccine 
WHcAg

9 4/4 2/4 (50.0 %)

4. [93] 3 ETV 0.2 mg/kg 6 DNA vaccine 
WHsAg, 
WHcAg

Anti-PDL1

12 3/3 2/3 (66.7 %)

Total 22 vaccinated animals
Ten control animals in four studies

22/22
0/10

7/20 (35.0 %)
0/10

DNA
Prime

MVA or Ad 5
Boost

months
0 6     12

antiviral treatment 

Decreased 
viral load

PD-L1 
blockade

Fig. 2   Potential schemes for immunotherapy of patients with chronic 
hepatitis B. Ideally, patients should be already HBV DNA negative 
under antiviral treatment, have seroconverted to anti-HBe, have low 
or moderate HBsAg concentrations and normal or only slightly ele-
vated ALT at beginning of vaccination or/and PDL-1 antibody treat-
ment. Three options for combination with nucleot(s)ide analogues 
therapy are suggested: (1) PDL-1 blockade; (2) prime-boost vaccina-
tion; (3) prime-boost vaccination and subsequent PDL-1 blockade
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The stimulation of innate immune responses may con-
tribute to the control of HBV infection. In this special 
issue, Zhang and Lu provided a review dedicating to the 
role of TLR system. Interferons and interferon-stimulated 
genes (ISGs) represent still an important part for anti-HBV 
treatment. A recent review about this aspect described the 
current progress (Pei et  al., in press). Recently, the anti-
viral functions of ISGs are under studies. For example, 
interferon-induced protein with tetratricopeptide repeats 1 
and 2 is a cellular factor that was shown to limit hepatitis 
B virus replication in hepatoma cells [109]. Another recent 
report by Lucifora et al. [70] about the role of APOBECs 
in the degradation of cccDNA was highly interesting, but 
remained to be controversial [110, 111]. Future investiga-
tion is required to elucidate the functions of ISGs and their 
relative contribution for control of HBV infection, before 
exploring these genes for antiviral treatment.
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