Skip to main content

Advertisement

Log in

The role of evolutionarily conserved signalling systems in Echinococcus multilocularis development and host–parasite interaction

  • Review
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Alveolar echinococcosis, one of the most serious and life-threatening zoonoses in the world, is caused by the metacestode larval stage of the fox-tapeworm Echinococcus multilocularis. Mostly due to its accessibility to in vitro cultivation, this parasite has recently evolved into an experimental model system to study larval cestode development and associated host–parasite interaction mechanisms. Respective advances include the establishment of axenic in vitro cultivation systems for parasite larvae as well as culture systems by which the early development of metacestode vesicles from totipotent parasite stem cells can be reconstituted under controlled laboratory conditions. A series of evolutionarily conserved signalling molecules of the insulin, epidermal growth factor and transforming growth factor-β pathways that are able to functionally interact with corresponding host cytokines have been described in E. multilocularis and most likely play a crucial role in parasite development within the liver of the intermediate host. Furthermore, a whole genome sequencing project has been initiated by which a comprehensive picture on E. multilocularis cell–cell communication systems will be available in due time, including information on parasite cytokines that are secreted towards host tissue and thus might affect the immune response. In this article, an overview of our current picture on Echinococcus signalling systems will be given, and the potential to exploit these pathways as targets for anti-parasitic chemotherapy will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Brehm K, Spiliotis M, Zavala-Gongora R, Konrad C, Frosch M (2006) The molecular mechanisms of larval cestode development: first steps into an unknown world. Parasitol Int 55(Suppl):S15–S21

    Article  PubMed  CAS  Google Scholar 

  2. Eckert J, Deplazes P (2004) Biological, epidemiological, and clinical aspects of echinococcosis, a zoonosis of increasing concern. Clin Microbiol Rev 17(1):107–135

    Article  PubMed  Google Scholar 

  3. Garcia HH, Gonzalez AE, Evans CA, Gilman RH (2003) Taenia solium cysticercosis. Lancet 362(9383):547–556

    Article  PubMed  Google Scholar 

  4. Brehm K (2010) Echinococcus multilocularis as an experimental model in stem cell research and molecular host–parasite interaction. Parasitology 137(3):537–555

    Article  PubMed  CAS  Google Scholar 

  5. Reuter M, Kreshchenko N (2004) Flatworm asexual multiplication implicates stem cells and regeneration. Can J Zool 82(2):334–356

    Article  Google Scholar 

  6. Rossi L, Salvetti A, Batistoni R, Deri P, Gremigni V (2008) Planarians, a tale of stem cells. Cell Mol Life Sci 65(1):16–23

    Article  PubMed  CAS  Google Scholar 

  7. Sanchez Alvarado A (2006) Planarian regeneration: its end is its beginning. Cell 124(2):241–245

    Article  PubMed  CAS  Google Scholar 

  8. Brehm K, Spiliotis M (2008) Recent advances in the in vitro cultivation and genetic manipulation of Echinococcus multilocularis metacestodes and germinal cells. Exp Parasitol 119(4):506–515

    Article  PubMed  CAS  Google Scholar 

  9. Hemphill A, Gottstein B (1995) Immunology and morphology studies on the proliferation of in vitro cultivated Echinococcus multilocularis metacestodes. Parasitol Res 81(7):605–614

    Article  PubMed  CAS  Google Scholar 

  10. Jura H, Bader A, Hartmann M, Maschek H, Frosch M (1996) Hepatic tissue culture model for study of host–parasite interactions in alveolar echinococcosis. Infect Immun 64(9):3484–3490

    PubMed  CAS  Google Scholar 

  11. Hemphill A, Spicher M, Stadelmann B, Mueller J, Naguleswaran A, Gottstein B, Walker M (2007) Innovative chemotherapeutical treatment options for alveolar and cystic echinococcosis. Parasitology 134(Pt 12):1657–1670

    PubMed  CAS  Google Scholar 

  12. Brehm K, Wolf M, Beland H, Kroner A, Frosch M (2003) Analysis of differential gene expression in Echinococcus multilocularis larval stages by means of spliced leader differential display. Int J Parasitol 33(11):1145–1159

    Article  PubMed  CAS  Google Scholar 

  13. Brehm K, Jensen K, Frosch M (2000) mRNA trans-splicing in the human parasitic cestode Echinococcus multilocularis. J Biol Chem 275(49):38311–38318

    Article  PubMed  CAS  Google Scholar 

  14. Spiliotis M, Tappe D, Sesterhenn L, Brehm K (2004) Long-term in vitro cultivation of Echinococcus multilocularis metacestodes under axenic conditions. Parasitol Res 92(5):430–432

    Article  PubMed  Google Scholar 

  15. Di Marco E, Pierce JH, Aaronson SA, Di Fiore PP (1990) Mechanisms by which EGF receptor and TGF α contribute to malignant transformation. Nat Immun Cell Growth Regul 9(3):209–221

    PubMed  CAS  Google Scholar 

  16. Kobayashi M, Hirako M, Minato Y, Sasaki K, Horiuchi R, Domeki I (1997) Rat hepatoma Reuber H-35 cells produce factors that promote the hatching of mouse embryos cultured in vitro. Biol Reprod 56(4):1041–1049

    Article  PubMed  CAS  Google Scholar 

  17. Johnson GR, Saeki T, Gordon AW, Shoyab M, Salomon DS, Stromberg K (1992) Autocrine action of amphiregulin in a colon carcinoma cell line and immunocytochemical localization of amphiregulin in human colon. J Cell Biol 118(3):741–751

    Article  PubMed  CAS  Google Scholar 

  18. Spiliotis M, Brehm K (2009) Axenic in vitro cultivation of Echinococcus multilocularis metacestode vesicles and the generation of primary cell cultures. Methods Mol Biol 470:245–262

    Article  PubMed  CAS  Google Scholar 

  19. Spiliotis M, Lechner S, Tappe D, Scheller C, Krohne G, Brehm K (2008) Transient transfection of Echinococcus multilocularis primary cells and complete in vitro regeneration of metacestode vesicles. Int J Parasitol 38(8–9):1025–1039

    Article  PubMed  CAS  Google Scholar 

  20. Mehlhorn H, Eckert J, Thompson RC (1983) Proliferation and metastases formation of larval Echinococcus multilocularis. II. Ultrastructural investigations. Z Parasitenkd 69(6):749–763

    Article  PubMed  CAS  Google Scholar 

  21. Gauci C, Merli M, Muller V, Chow C, Yagi K, Mackenstedt U, Lightowlers MW (2002) Molecular cloning of a vaccine antigen against infection with the larval stage of Echinococcus multilocularis. Infect Immun 70(7):3969–3972

    Article  PubMed  CAS  Google Scholar 

  22. Gottstein B, Hemphill A (2008) Echinococcus multilocularis: the parasite-host interplay. Exp Parasitol 119(4):447–452

    Article  PubMed  CAS  Google Scholar 

  23. Brehm K, Spiliotis M (2008) The influence of host hormones and cytokines on Echinococcus multilocularis signalling and development. Parasite 15(3):286–290

    PubMed  CAS  Google Scholar 

  24. Kingsley DM (1994) The TGF-β superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 8(2):133–146

    Article  PubMed  CAS  Google Scholar 

  25. Fernandez R, Tabarini D, Azpiazu N, Frasch M, Schlessinger J (1995) The Drosophila insulin receptor homolog: a gene essential for embryonic development encodes two receptor isoforms with different signaling potential. EMBO J 14(14):3373–3384

    PubMed  CAS  Google Scholar 

  26. Beall MJ, Pearce EJ (2002) Transforming growth factor-β and insulin-like signalling pathways in parasitic helminths. Int J Parasitol 32(4):399–404

    Article  PubMed  CAS  Google Scholar 

  27. Loverde PT, Osman A, Hinck A (2007) Schistosoma mansoni: TGF-β signaling pathways. Exp Parasitol 117(3):304–317

    Article  PubMed  CAS  Google Scholar 

  28. Hewitson JP, Grainger JR, Maizels RM (2009) Helminth immunoregulation: the role of parasite secreted proteins in modulating host immunity. Mol Biochem Parasitol 167(1):1–11

    Article  PubMed  CAS  Google Scholar 

  29. Fausto N (2000) Liver regeneration. J Hepatol 32(1 Suppl):19–31

    Article  PubMed  CAS  Google Scholar 

  30. Harraga S, Godot V, Bresson-Hadni S, Mantion G, Vuitton DA (2003) Profile of cytokine production within the periparasitic granuloma in human alveolar echinococcosis. Acta Trop 85(2):231–236

    Article  PubMed  CAS  Google Scholar 

  31. Xu CP, Ji WM, van den Brink GR, Peppelenbosch MP (2006) Bone morphogenetic protein-2 is a negative regulator of hepatocyte proliferation downregulated in the regenerating liver. World J Gastroenterol 12(47):7621–7625

    PubMed  CAS  Google Scholar 

  32. Babitt JL, Huang FW, Xia Y, Sidis Y, Andrews NC, Lin HY (2007) Modulation of bone morphogenetic protein signaling in vivo regulates systemic iron balance. J Clin Invest 117(7):1933–1939

    Article  PubMed  CAS  Google Scholar 

  33. Kinoshita K, Iimuro Y, Otogawa K, Saika S, Inagaki Y, Nakajima Y, Kawada N, Fujimoto J, Friedman SL, Ikeda K (2007) Adenovirus-mediated expression of BMP-7 suppresses the development of liver fibrosis in rats. Gut 56(5):706–714

    Article  PubMed  CAS  Google Scholar 

  34. Sugimoto H, Yang C, LeBleu VS, Soubasakos MA, Giraldo M, Zeisberg M, Kalluri R (2007) BMP-7 functions as a novel hormone to facilitate liver regeneration. FASEB J 21(1):256–264

    Article  PubMed  CAS  Google Scholar 

  35. Shojaee-Moradie F, Powrie JK, Sundermann E, Spring MW, Schuttler A, Sonksen PH, Brandenburg D, Jones RH (2000) Novel hepatoselective insulin analog: studies with a covalently linked thyroxyl-insulin complex in humans. Diabetes Care 23(8):1124–1129

    Article  PubMed  CAS  Google Scholar 

  36. Hubbard SR, Till JH (2000) Protein tyrosine kinase structure and function. Annu Rev Biochem 69:373–398

    Article  PubMed  CAS  Google Scholar 

  37. Dissous C, Ahier A, Khayath N (2007) Protein tyrosine kinases as new potential targets against human schistosomiasis. Bioessays 29(12):1281–1288

    Article  PubMed  CAS  Google Scholar 

  38. Konrad C, Kroner A, Spiliotis M, Zavala-Gongora R, Brehm K (2003) Identification and molecular characterisation of a gene encoding a member of the insulin receptor family in Echinococcus multilocularis. Int J Parasitol 33(3):301–312

    Article  PubMed  CAS  Google Scholar 

  39. Spiliotis M, Kroner A, Brehm K (2003) Identification, molecular characterization and expression of the gene encoding the epidermal growth factor receptor orthologue from the fox-tapeworm Echinococcus multilocularis. Gene 323:57–65

    Article  PubMed  CAS  Google Scholar 

  40. Khayath N, Vicogne J, Ahier A, BenYounes A, Konrad C, Trolet J, Viscogliosi E, Brehm K, Dissous C (2007) Diversification of the insulin receptor family in the helminth parasite Schistosoma mansoni. FEBS J 274(3):659–676

    Article  PubMed  CAS  Google Scholar 

  41. Vicogne J, Cailliau K, Tulasne D, Browaeys E, Yan YT, Fafeur V, Vilain JP, Legrand D, Trolet J, Dissous C (2004) Conservation of epidermal growth factor receptor function in the human parasitic helminth Schistosoma mansoni. J Biol Chem 279(36):37407–37414

    Article  PubMed  CAS  Google Scholar 

  42. Zhang W, Liu HT (2002) MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 12(1):9–18

    Article  PubMed  CAS  Google Scholar 

  43. Spiliotis M, Tappe D, Bruckner S, Mosch HU, Brehm K (2005) Molecular cloning and characterization of Ras- and Raf-homologues from the fox-tapeworm Echinococcus multilocularis. Mol Biochem Parasitol 139(2):225–237

    Article  PubMed  CAS  Google Scholar 

  44. Spiliotis M, Konrad C, Gelmedin V, Tappe D, Bruckner S, Mosch HU, Brehm K (2006) Characterisation of EmMPK1, an ERK-like MAP kinase from Echinococcus multilocularis which is activated in response to human epidermal growth factor. Int J Parasitol 36(10–11):1097–1112

    Article  PubMed  CAS  Google Scholar 

  45. Gelmedin V, Spiliotis M, Brehm K (2009) Molecular characterisation of MEK1/2- and MKK3/6-like mitogen-activated protein kinase kinases (MAPKK) from the fox tapeworm Echinococcus multilocularis. Int J Parasitol doi:10.1016/j.ijpara.2009.10.009 (in press)

  46. Spiliotis M, Brehm K (2004) Echinococcus multilocularis: identification and molecular characterization of a Ral-like small GTP-binding protein. Exp Parasitol 107(3–4):163–172

    Article  PubMed  CAS  Google Scholar 

  47. Gelmedin V, Caballero-Gamiz R, Brehm K (2008) Characterization and inhibition of a p38-like mitogen-activated protein kinase (MAPK) from Echinococcus multilocularis: antiparasitic activities of p38 MAPK inhibitors. Biochem Pharmacol 76(9):1068–1081

    Article  PubMed  CAS  Google Scholar 

  48. Siles-Lucas M, Felleisen RS, Hemphill A, Wilson W, Gottstein B (1998) Stage-specific expression of the 14-3-3 gene in Echinococcus multilocularis. Mol Biochem Parasitol 91(2):281–293

    Article  PubMed  CAS  Google Scholar 

  49. Hubert K, Zavala-Gongora R, Frosch M, Brehm K (2004) Identification and characterization of PDZ-1, a N-ERMAD specific interaction partner of the Echinococcus multilocularis ERM protein Elp. Mol Biochem Parasitol 134(1):149–154

    Article  PubMed  CAS  Google Scholar 

  50. Siles-Lucas Mdel M, Gottstein B (2003) The 14-3-3 protein: a key molecule in parasites as in other organisms. Trends Parasitol 19(12):575–581

    Article  PubMed  Google Scholar 

  51. Stetak A, Hoier EF, Croce A, Cassata G, Di Fiore PP, Hajnal A (2006) Cell fate-specific regulation of EGF receptor trafficking during Caenorhabditis elegans vulval development. EMBO J 25(11):2347–2357

    Article  PubMed  CAS  Google Scholar 

  52. Nohe A, Keating E, Knaus P, Petersen NO (2004) Signal transduction of bone morphogenetic protein receptors. Cell Signal 16(3):291–299

    Article  PubMed  CAS  Google Scholar 

  53. ten Dijke P, Hill CS (2004) New insights into TGF-β-Smad signalling. Trends Biochem Sci 29(5):265–273

    Article  PubMed  CAS  Google Scholar 

  54. Massague J, Seoane J, Wotton D (2005) Smad transcription factors. Genes Dev 19(23):2783–2810

    Article  PubMed  CAS  Google Scholar 

  55. Zavala-Gongora R, Kroner A, Bernthaler P, Knaus P, Brehm K (2006) A member of the transforming growth factor-β receptor family from Echinococcus multilocularis is activated by human bone morphogenetic protein 2. Mol Biochem Parasitol 146(2):265–271

    Article  PubMed  CAS  Google Scholar 

  56. Zavala-Gongora R, Kroner A, Wittek B, Knaus P, Brehm K (2003) Identification and characterisation of two distinct Smad proteins from the fox-tapeworm Echinococcus multilocularis. Int J Parasitol 33(14):1665–1677

    Article  PubMed  CAS  Google Scholar 

  57. Zavala-Gongora R, Derrer B, Gelmedin V, Knaus P, Brehm K (2008) Molecular characterisation of a second structurally unusual AR-Smad without an MH1 domain and a Smad4 orthologue from Echinococcus multilocularis. Int J Parasitol 38(2):161–176

    Article  PubMed  CAS  Google Scholar 

  58. Gelmedin V, Zavala-Gongora R, Fernandez C, Brehm K (2005) Echinococcus multilocularis: cloning and characterization of a member of the SNW/SKIP family of transcriptional coregulators. Exp Parasitol 111(2):115–120

    Article  PubMed  CAS  Google Scholar 

  59. Folk P, Puta F, Skruzny M (2004) Transcriptional coregulator SNW/SKIP: the concealed tie of dissimilar pathways. Cell Mol Life Sci 61(6):629–640

    Article  PubMed  CAS  Google Scholar 

  60. Osman A, Niles EG, Verjovski-Almeida S, LoVerde PT (2006) Schistosoma mansoni TGF-β receptor II: role in host ligand-induced regulation of a schistosome target gene. PLoS Pathog 2(6):e54

    Article  PubMed  Google Scholar 

  61. Beall MJ, Pearce EJ (2001) Human transforming growth factor-β activates a receptor serine/threonine kinase from the intravascular parasite Schistosoma mansoni. J Biol Chem 276(34):31613–31619

    Article  PubMed  CAS  Google Scholar 

  62. Gomez-Escobar N, Gregory WF, Maizels RM (2000) Identification of tgh-2, a filarial nematode homolog of Caenorhabditis elegans daf-7 and human transforming growth factor β, expressed in microfilarial and adult stages of Brugia malayi. Infect Immun 68(11):6402–6410

    Article  PubMed  CAS  Google Scholar 

  63. Berriman M, Haas BJ, LoVerde PT, Wilson RA, Dillon GP, Cerqueira GC, Mashiyama ST, Al-Lazikani B, Andrade LF, Ashton PD, Aslett MA, Bartholomeu DC, Blandin G, Caffrey CR, Coghlan A, Coulson R, Day TA, Delcher A, DeMarco R, Djikeng A, Eyre T, Gamble JA, Ghedin E, Gu Y, Hertz-Fowler C, Hirai H, Hirai Y, Houston R, Ivens A, Johnston DA, Lacerda D, Macedo CD, McVeigh P, Ning Z, Oliveira G, Overington JP, Parkhill J, Pertea M, Pierce RJ, Protasio AV, Quail MA, Rajandream MA, Rogers J, Sajid M, Salzberg SL, Stanke M, Tivey AR, White O, Williams DL, Wortman J, Wu W, Zamanian M, Zerlotini A, Fraser-Liggett CM, Barrell BG, El-Sayed NM (2009) The genome of the blood fluke Schistosoma mansoni. Nature 460(7253):352–358

    Article  PubMed  CAS  Google Scholar 

  64. Freitas TC, Jung E, Pearce EJ (2009) A bone morphogenetic protein homologue in the parasitic flatworm, Schistosoma mansoni. Int J Parasitol 39(3):281–287

    Article  PubMed  CAS  Google Scholar 

  65. Freitas TC, Jung E, Pearce EJ (2007) TGF-β signaling controls embryo development in the parasitic flatworm Schistosoma mansoni. PLoS Pathog 3(4):e52

    Article  PubMed  Google Scholar 

  66. Bernthaler P, Epping K, Schmitz G, Deplazes P, Brehm K (2009) Molecular characterization of EmABP, an apolipoprotein A-I binding protein secreted by the Echinococcus multilocularis metacestode. Infect Immun 77(12):5564–5571

    Article  PubMed  CAS  Google Scholar 

  67. Aguilar-Diaz H, Bobes RJ, Carrero JC, Camacho-Carranza R, Cervantes C, Cevallos MA, Davila G, Rodriguez-Dorantes M, Escobedo G, Fernandez JL, Fragoso G, Gaytan P, Garciarubio A, Gonzalez VM, Gonzalez L, Jose MV, Jimenez L, Laclette JP, Landa A, Larralde C, Morales-Montor J, Morett E, Ostoa-Saloma P, Sciutto E, Santamaria RI, Soberon X, de la Torre P, Valdes V, Yanez J (2006) The genome project of Taenia solium. Parasitol Int 55:S127–S130

    Article  PubMed  CAS  Google Scholar 

  68. Fernandez C, Gregory WF, Loke P, Maizels RM (2002) Full-length-enriched cDNA libraries from Echinococcus granulosus contain separate populations of oligo-capped and trans-spliced transcripts and a high level of predicted signal peptide sequences. Mol Biochem Parasitol 122(2):171–180

    Article  PubMed  CAS  Google Scholar 

  69. Guo X, Wang XF (2009) Signaling cross-talk between TGF-β/BMP and other pathways. Cell Res 19(1):71–88

    Article  PubMed  CAS  Google Scholar 

  70. Reuter S, Jensen B, Buttenschoen K, Kratzer W, Kern P (2000) Benzimidazoles in the treatment of alveolar echinococcosis: a comparative study and review of the literature. J Antimicrob Chemother 46(3):451–456

    Article  PubMed  CAS  Google Scholar 

  71. Brehm K, Kronthaler K, Jura H, Frosch M (2000) Cloning and characterization of β-tubulin genes from Echinococcus multilocularis. Mol Biochem Parasitol 107(2):297–302

    Article  PubMed  CAS  Google Scholar 

  72. Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, Chen C, Zhang X, Vincent P, McHugh M, Cao Y, Shujath J, Gawlak S, Eveleigh D, Rowley B, Liu L, Adnane L, Lynch M, Auclair D, Taylor I, Gedrich R, Voznesensky A, Riedl B, Post LE, Bollag G, Trail PA (2004) BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64(19):7099–7109

    Article  PubMed  CAS  Google Scholar 

  73. Delaney AM, Printen JA, Chen H, Fauman EB, Dudley DT (2002) Identification of a novel mitogen-activated protein kinase kinase activation domain recognized by the inhibitor PD 184352. Mol Cell Biol 22(21):7593–7602

    Article  PubMed  CAS  Google Scholar 

  74. Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A (2008) The ground state of embryonic stem cell self-renewal. Nature 453(7194):519–523

    Article  PubMed  CAS  Google Scholar 

  75. Wagner G, Laufer S (2006) Small molecular anti-cytokine agents. Med Res Rev 26(1):1–62

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I wish to thank all those colleagues and students working on their theses in my laboratory at the Institute of Hygiene and Microbiology (University of Würzburg) who, over the last 7 years, have contributed to the results mentioned in this review. Katja Klöpper, Dirk Radloff and Monika Bergmann are thanked for excellent technical assistance during this time. Work of the authors was supported by the Deutsche Forschungsgemeinschaft through Sonderforschungsbereich 479.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Brehm.

Additional information

This article is published as part of a Special Issue on Pathogen Variability and Host Response in Infectious Disease.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brehm, K. The role of evolutionarily conserved signalling systems in Echinococcus multilocularis development and host–parasite interaction. Med Microbiol Immunol 199, 247–259 (2010). https://doi.org/10.1007/s00430-010-0154-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-010-0154-1

Keywords

Navigation