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For example, cortical thickness tends to decrease with age 
(Fjell et al. 2009), and subcortical volumes can be affected 
by diseases such as Alzheimer’s (de Jong et al. 2008) and 
Parkinson’s (Tinaz et al. 2011). The examination of these 
structural covariances in the ageing brain will add to our 
understanding of brain structure and age-related diseases 
(Montembeault et al. 2016; Nestor et al. 2017).

It has been increasingly recognised that brain structural 
covariance reflects a synchronised maturational process dur-
ing early childhood and adolescence, as well as coordinated 
atrophy and decline in ageing brains (Alexander-Bloch et al. 
2013). To study age-related differences in structural covari-
ance, researchers have employed a range of methodologies. 
For instance, a previous study explored age-related differ-
ences in grey matter density structural covariance in the dif-
ferent developmental stages of childhood and adolescence 
by dividing their participants into four equally sized age 
groups (Zielinski et al. 2010). Structural covariances were 
also compared among four middle-aged groups (Hafkemei-
jer et al. 2014) as well as six age groups across the life span 
(DuPre and Spreng 2017), showing significant age-related 

Introduction

Morphological properties of brain regions co-vary with 
each other, which can be modelled by brain structural cova-
riance (Mechelli et al. 2005). The simplest way of defining 
structural covariance is to estimate the correlation between 
the morphological property of two brain regions at the 
group-level. The “structural covariance matrix” refers to 
the correlation matrix of every pair of brain regions under 
examination (Carmon et al. 2020). Cortical thickness and 
subcortical volumes are sensitive to certain types of changes 
in the brain, such as changes related to ageing, or disease. 
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Abstract
The morphologic properties of brain regions co-vary or correlate with each other. Here we investigated the structural 
covariances of cortical thickness and subcortical volumes in the ageing brain, along with their associations with age and 
cognition, using cross-sectional data from the UK Biobank (N = 42,075, aged 45–83 years, 53% female). As the structural 
covariance should be estimated in a group of participants, all participants were divided into 84 non-overlapping, equal-
sized age groups ranging from the youngest to the oldest. We examined 84 cortical thickness covariances and subcortical 
covariances. Our findings include: (1) there were significant differences in the variability of structural covariance in the 
ageing process, including an increased variance, and a decreased entropy. (2) significant enrichment in pairwise correla-
tions between brain regions within the occipital lobe was observed in all age groups; (3) structural covariance in older age, 
especially after the age of around 64, was significantly different from that in the youngest group (median age 48 years); (4) 
sixty-two of the total 528 pairs of cortical thickness correlations and 10 of the total 21 pairs of subcortical volume correla-
tions showed significant associations with age. These trends varied, with some correlations strengthening, some weaken-
ing, and some reversing in direction with advancing age. Additionally, as ageing was associated with cognitive decline, 
most of the correlations with cognition displayed an opposite trend compared to age associated patterns of correlations.
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differences. In addition, some studies applied sliding-win-
dow age configurations, indicating a mixture of linear and 
non-linear alterations in cortical thickness covariance dur-
ing maturation (Váša et al. 2018; Vijayakumar et al. 2021). 
However, much remains to be learned about the structural 
covariance in the ageing process, as the majority of studies 
have focused on brain development during childhood and 
adolescence (Sotiras et al. 2017) and have generally been 
limited by small sample sizes and low statistical power.

Structural covariance changes with age, while cogni-
tion usually declines during the ageing process (Bishop et 
al. 2010; Grady 2012). Compared with young adults, older 
adults showed reduced structural covariance in brain net-
works that sustain high-order cognitive function (Montem-
beault et al. 2012). Structural covariance was also correlated 
with general cognitive functions (Spreng and Gary 2013). 
However, the details of associations between structural 
covariance and cognition remains unclear.

In this study, we aimed to investigate the associations 
between brain structural covariances (cortical thickness and 
subcortical volumes), age, and cognition in a large popula-
tion sample of middle-aged and older adults from the UK 
Biobank. As structural covariances need to be estimated at 
the group level, we divided our sample into age-specific 
groups. Within each age group, we then estimated the 
covariances in cortical thickness and in subcortical volume 
separately. Here, we hypothesised that structural covariance 
would show age-related properties and would be also asso-
ciated with cognition.

Methods

Participants

All our data were drawn from the UK Biobank, which is 
a population-based study consisting of over 500,000 par-
ticipants aged between 40 and 70 years at study entry 
(Sudlow et al. 2015). Written consent was acquired from 
all participants and ethics approval was provided by the 
National Health Service National Research Ethics Service 
(11/NW/0382). Imaging data and cognition data in the cur-
rent study were acquired at the first imaging assessment 
visit (instance 2). Here we used the MRI data released in 
2021 under the UK Biobank application number 37,103. In 
the current study, 42,075 participants were included in the 
final analysis. The age range of the participants was 45 to 83 
years with the mean of 64.5 years.

Neuroimaging measures

Brain anatomical measures of cortical thickness and sub-
cortical volumes were derived from structural MRI scans 
(Siemens Skyra 3T with a standard Siemens 32-channel RF 
receive head coil). The sequence parameters of T1-weighted 
structural imaging were: spatial resolution 1 × 1 × 1 mm; field 
of view 208 × 256 × 256 matrix; TI (inversion time) 880 ms; 
TR (repetition time) 2000 ms. The full protocol is available 
at http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=2367. 
We used data that were preprocessed by UK Biobank. Brain 
cortical parcellation was based on Desikan-Killiany atlas 
(Desikan et al. 2006) and performed by FreeSurfer (Fischl 
2012). We used cortical thickness measures of 33 cortical 
regions, seven subcortical volumetric measures, intracranial 
volume (ICV), and global mean cortical thickness for each 
hemisphere generated by FreeSurfer. The whole brain mean 
thickness was calculated as the average between the left and 
right mean thickness. The outliers were defined as the MRI 
measures which were greater than five standard deviations 
from the mean. Individuals with any measure as an outlier 
were then removed from the study.

Cognition

Cognitive assessments were administered on a fully-auto-
mated touchscreen questionnaire (Sudlow et al. 2015). 
Seven tests from the UK Biobank battery of cognitive tests 
were selected for the current study to represent three cog-
nitive domains: processing speed, executive function, and 
memory. The details of cognitive tests can be found in (Du 
et al. 2021). Specifically, “Reaction Time”, “Trail Mak-
ing Test A”, and “Symbol Digit Substitution” formed the 
Processing Speed domain; “Numeric Memory” and “Pairs 
Matching” contributed to the Memory domain; and “Trail 
Making Test B” and “Fluid Intelligence” formed the Execu-
tive Function domain. Therefore, three cognitive domains 
(processing speed, memory, and executive function) were 
then used in our study.

All the raw test scores were first transformed to z-scores 
by using the mean and standard deviation of a healthy ref-
erence sample (Du et al. 2021). Global cognition scores 
were computed in a similar way by averaging these domain 
scores and then transforming to z-scores. There were 27,140 
participants with both MRI scans and full cognition data.
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Statistical analyses

Construction of structural covariance in each age-specific 
group

Regional cortical thickness (n = 33) and subcortical vol-
umes (n = 7) were defined as the average of the left and right 
hemispheres. Covariances are estimated by all pairwise cor-
relations, so these two terms are used interchangeably in the 
current study. The followings were the analysis of covari-
ance matrices across age groups:

(1) All 42,075 participants were sorted according to age 
from the youngest to the oldest, and were then split into 
nonoverlapping, equal-sized 84 groups with approxi-
mately 500 participants in each group (the last age 
group included 575 participants).

(2) We obtained residuals of regional cortical thickness 
estimates after regressing out sex, scanner, and global 
mean cortical thickness, and then calculated within 
each group pairwise Pearson correlations across all the 
33 regions of interest (ROIs), generating a 33 × 33 cor-
relation matrix map for each age group which contained 
(33 × 32)/2 = 528 pairwise correlations. Controlling 
for global mean cortical thickness helps to account for 
overall differences in cortical thickness between indi-
viduals, focusing specifically on the patterns of covari-
ance that are independent of these global differences.

(3) Similarly, residuals for the subcortical volume estimates 
were obtained after regressing out sex, scanner, and 
intracranial volume (ICV), and a 7 × 7 Pearson correla-
tion matrix in each group [(7 × 6)/2 = 21 pairwise cor-
relations] was then generated.

(4) To investigate if the structural covariance was different 
by sex, we also estimated cortical thickness and sub-
cortical volume covariances for the same 84 groups in 
males and females separately without regressing out sex 
when computing residuals.

All cortical and subcortical regions can be found in Table 
S1 and Table S2.

Whole brain variability properties of structural covariance 
across all age groups

To examine the age-related differences of the overall cor-
relation matrices, we have computed three whole brain vari-
ability measures: (i) variance; (ii) von Neumann entropy; 
and (iii) proportion of pairs of correlations that differ sig-
nificantly within the group. The sample variance of whole 
pairwise correlations captured the variability of the correla-
tion coefficients. Entropy, as a measure of brain complexity, 

plays an important role in quantifying brain’s capacity for 
adaptation and characterising the brain functions. Func-
tional MRI studies have shown that the entropy decreases 
during the ageing process (Cieri et al. 2021; Jia et al. 2017). 
We have applied von Neumann entropy measure to the 
structural brain covariances. We also have computed the 
proportion of significant pairwise differences within the cor-
relation matrix of each of the age groups. This proportion 
captures differences in regional correlation coefficients, and 
it may be different across the age groups. These three vari-
ability measures for each of age group correlation matrices 
were examined against median age.

Let R denote the Pearson correlation matrix of the corti-
cal thickness (33 × 33) or subcortical volumes (7 × 7). The 
three measures were calculated as follows:

Variance the sample variance of the lower diagonal ele-
ments of the R matrix.

Von Neumann entropy

S (ρ) = −Trace (ρ log (ρ)) = −
∑

λjlog(λj), ρ =
R

N

where N is the number of ROIs in the correlation matrix 
(N = 33 or 7) and λj  are the eigen values of the ρ  matrix 
(Felippe et al. 2021). The entropy takes minimum value 
when all the correlation coefficients are unity and reaches 
the maximum value (log N) if the all the correlations are 
zero.

Proportion To examine the pair-wise correlation differ-
ences with each group, a test for equality of pairs of cor-
relations was performed. The proportions of pairs that differ 
significantly out of the total number of comparisons (total 
number of tests = 528 × 527/2 = 139,128 for cortical regions 
and 21 × 20/2 = 210 for subcortical regions) were computed 
from the correlation matrix of each age group. Tests for 
equality of two dependent correlations measured on the 
same set of individuals were performed using the Steiger’s 
method (Steiger 1980) as implemented in the R package 
cocor (Diedenhofen and Musch 2015).

In order to investigate if there are sex differences in these 
3 measures (variance measure, von Neumann entropy and 
the proportion of pairs that differ significantly), the dif-
ferences between males and females on these 3 measures 
across 84 age groups were assessed using an independent 
samples t-test.
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Specifically, we firstly applied Fisher’s r-to-z transforma-
tion to all elements of the correlation matrix and then tested 
the association between each Fisher’s z-transformed cor-
relation and age across all 84 correlation matrices. There-
fore, (33 × 32)/2 = 528 associations of cortical thickness 
correlations and (7 × 6)/2 = 21 associations of subcortical 
volume correlations were estimated. Similarly, we tested 
the associations between Fisher’s z-transformed correla-
tion and median cognitive performance (processing speed, 
executive function, memory, and global cognition) across 
all 84 groups. As some participants did not have cognitive 
data, they were excluded from the analysis and the median 
cognition was estimated for each group using only the par-
ticipants with available data. Sex and scanner covariates for 
this analysis were not used because the correlation matrices 
were generated after removing the effects of these covari-
ates. For all analyses, a Bonferroni-corrected p-value < 0.05 
(for example, p-value threshold for cortical thickness cor-
relation is p < 0.05/528 = 9.47e-05; and for subcortical cor-
relation: p < 0.05/21 = 0.0024) was considered statistically 
significant. Statistical analyses were performed using R ver-
sion 4.1.0.

Additional analysis

In the current study, 33 cortical regions in each hemisphere 
are symmetric. Averaging brain ROIs from both hemispheres 
can simplify the analysis and interpretation. However, to 
provide comprehensive understanding of structural covari-
ance, we also estimated structural covariances from left and 
right hemispheres separately. Furthermore, as global mean 
cortical thickness has major effects on cortical thickness 
covariance, we also conducted covariance analysis without 
removing global mean cortical thickness in Supplementary.

We further examined the associations between structural 
covariance and age by dividing all participants into 140 
groups, with approximately 300 participants in each group, 
as well as 52 groups with approximately 800 participants in 
each group. This approach allowed for a robust validation of 
the grouping strategy.

Results

Sample characteristics and experimental design

Sample characteristics are shown in Table 1, and the con-
ceptual overview of the study is depicted in (Fig. 1). Firstly, 
the structural covariance (correlation) matrices were estab-
lished in each group. The cortical structural covariance of 
the first two youngest groups (group 1, 2) and last two oldest 
groups (group 83, 84) can be found in (Fig. S1). Then the 

Enrichment of correlation coefficients between and within 
lobar regions

To test for the enrichment of correlation coefficients 
between and within lobar regions, Over-representation of 
correlation analysis (ORCA) was performed (Pomyen et al. 
2015). ORCA is a method to test whether greater numbers 
of significant correlations exist between two brain regions 
than expected by chance. Here four lobes were included: 
frontal, temporal, parietal, and occipital (Table S1). Sig-
nificant enrichment of correlation coefficients above a 
threshold than by chance between/within lobe regions was 
assessed using the hypergeometric probability distribution. 
The correlation threshold was determined using the maxi-
mum Shannon entropy measure (Shannon 1948). ORCA 
was performed within each lobe and between all possible 
pairs of lobes (4 × 3/2 = 6) for the correlation matrix of 
each age group. Bonferroni correction was used to adjust 
for multiple hypotheses testing (n = 10; 4 within lobe + 6 all 
possible pairs of lobes).

Test for equality of correlation coefficients between the 
youngest age group versus each of the other groups

Global tests for equality of elements between two indepen-
dent correlation matrices [the youngest age group (group 1) 
and each of other groups (group 2-group 84)] were done 
using the “pattern hypothesis” approach (Steiger 1980) as 
implemented in the R application MML-WBCORR (Fou-
ladi 2018). The test of equality of elements of correlations 
in the first age group was compared with corresponding ele-
ments of the correlation matrices of the other age groups. 
Similarly, the elements of correlation matrices obtained 
from using male and female samples separately at each age 
group was compared.

Associations between structural covariance and age

To test the associations between pairwise correlations and 
age, we estimated the associations between each element 
of the correlation matrix and age (median age in each 
group) across all 84 groups by using Pearson’s correlation. 

Table 1 Sample characteristics in UK Biobank (instance 2)
Participants with MRI data

Size Mean age ± SD (age range)
All participants N = 42,075 64.5 ± 7.7 (44.6–82.8)
Male N = 19,752 (46.9%) 65.2 ± 7.8 (44.6–82.5)
Female N = 22,323 (53.1%) 63.8 ± 7.5 (45.2–82.8)
Participants with both MRI and cognition data
All participants N = 27,140 64.7 ± 7.6 (47.0-82.8)
Instance 2 means the first imaging assessment. SD: standard devia-
tion
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Test for equality of correlation coefficients between 
the youngest group versus other groups

By comparing the elements of the correlation matrices in 
the first age group with corresponding elements of the cor-
relation matrices of other age groups, we found that the 
correlation matrices of cortical thickness in older age were 
significantly different from that in the youngest group, espe-
cially after the age of around 64, with females showing more 
pronounced trends than males in both cortical thickness and 
subcortical volume matrices, which was indicated in Fig. 3, 
with a black horizontal line representing the statistically sig-
nificant level. Additionally, by comparing the elements of 
the correlation matrices of males and females in each age 
group, we did not find any significant trends across all 84 
age groups. More details can be found in Table S5.

Associations between structural covariance and age

With 500 participants (the oldest age group has 575 par-
ticipants) in each group, we calculated the median age 
and median cognition in each age group. The associations 
between structural covariance and these two measures 
(median age and median cognition) were estimated. The 
details of these median values in 84 groups can be found 
in Table S6.

Cortical thickness covariance

Each of the correlation coefficient across the age groups 
were tested for its association with median age. Sixty-two 
out of a total of 528 pairwise correlations were significantly 
associated with age across all 84 age groups after multiple 
test correction (Bonferroni correction, p < 0.05/528 = 9.47e-
5) (Fig. 4A). With increasing age, some strongly negative 
correlations were observed between frontal lobe regions and 
other regions. The first four most significant pairwise corre-
lations were between transverse temporal and pars triangu-
laris (r = 0.71, p = 3.92e-14), pars triangularis and superior 
frontal (r = -0.69, p = 2.31e-13), pericalcarine and superior 
frontal (r = -0.69, p = 3.06e-13), and between transverse 
temporal and superior frontal (r = 0.69, p = 6.13e-13). The 
pairwise correlations between the regions within the occipi-
tal lobe all increased with age. All 62 significant associa-
tions can be found in Supplementary Fig. S2 and Table S7.

Subcortical covariance

Ten out of a total of 21 pairwise correlations were signifi-
cantly associated with age across all 84 age groups after Bon-
ferroni correction (p < 0.05/21 = 0.0024) (Fig. 4B). Notably, 
the correlations between hippocampus and other subcortical 

analyses of whole covariance (correlation) matrix and each 
element of covariance (correlation) matrix were performed. 
Details can be found in Fig. 1.

Whole brain variability properties of structural 
covariance across age groups

For the cortical thickness covariance, the variance of whole 
brain pair-wise correlations increased significantly with 
age (r = 0.56, p = 2.17e-10), and the proportion of pairs 
that differed significantly also increased with age (r = 0.40, 
p = 1.65e-04). Entropy decreased significantly with age (r 
= -0.67, p = 2.86e-12), implying an overall reduction in 
the correlation between ROIs. The subcortical covariance 
showed similar trends in comparison with those in cortical 
thickness (Fig. 2, Table S3).

We applied independent samples t-tests to estimate the 
sex differences in brain variability properties. Male and 
female participants showed significant differences after 
Bonferroni correction (p < 0.05/6 = 0.008) in cortical vari-
ance (p = 0.005, 95% confidence intervals (CI) [-0.059, 
-0.011]), cortical entropy (p = 9.82e-06, 95% CI [0.002, 
0.005]), and subcortical variance (p = 0.003, 95% CI 
[-0.003, -0.001]), but not in the cortical proportion of pairs 
that differ significantly (p = 0.031, 95% CI [-0.036, -0.002]), 
subcortical entropy (p = 0.021, 95% CI [0.002, 0.030]), or 
the subcortical proportion of pairs that differ significantly 
(p = 0.001, 95% CI [-0.063, -0.015]). Cortical variances 
among females initially began lower than those among 
males in the younger age groups. However, with age, these 
variances increased gradually and eventually surpassed 
those of males around the age of 70. Similarly, a decrease in 
entropy and an increase in the proportion of pairs that differ 
significantly with increasing age were also observed among 
females (Fig. 2).

Enrichment of correlation coefficients between and 
within lobar regions

In general, ROIs within the occipital lobe showed higher 
correlations across the all the age groups (for example, Fig. 
S1). This is also statistically significant as confirmed by 
the ORCA. The occipital lobe had significant enrichment 
of correlation coefficients above a threshold than by chance 
throughout all the ages (p < 0.05). Also, there were a greater 
number of significant negative correlations between the 
frontal and occipital lobes than expected (Fig. S1). ORCA 
showed that significant enrichment for higher correlations 
between occipital and frontal lobes was also quite stable 
across the age (Fig. 2B). More details can be found in Table 
S4.
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suggesting a reduction in the complexity and diversity of 
these structural covariance patterns in older individuals. 
Secondly, there was significant and stable enrichment of 
pairwise correlations within the regions of the occipital lobe 
in the ageing process. Thirdly, both cortical thickness and 
subcortical volume covariances in the older groups were sig-
nificantly different from those in the youngest group. This 
discrepancy was particularly pronounced among females. 
Fourthly, brain structural covariances were not stable 
though the ageing process, with the pairwise correlations 
between some brain regions strengthening and some weak-
ening. Lastly, the significant pairwise correlations between 
brain regions were also associated with cognitive abilities.

Cortical integration means that different brain regions 
co-vary in pace or were shaped with similar biological pro-
cesses (Nadig et al. 2021). Our findings suggest that brain 
structural covariance matrices have greater variability in 
older age, which may be speculated as cortical integration 
loosening in the older brain. Given the changes of struc-
tural covariance observed in the developmental stages dur-
ing childhood and adolescence (Vijayakumar et al. 2021; 
Váša et al. 2018), we hypothesised that the structural covari-
ance in the ageing brain would also be ‘dynamic’ rather than 
‘static’; and our results confirmed this premise. One find-
ing was that the variance of correlations within the matrix 
increased across 84 age groups, but the entropy decreased in 
the ageing brain. Similar phenomenon was found for Shan-
non entropy which is known to be negatively correlated 
with the variance (Wang et al. 2015). In the ageing brain, 
brain entropy quantifies brain’s capacity for adaptation, 
and smaller entropy corresponds to less complexity of the 
brain (Cieri et al. 2021). The decreased entropy in the age-
ing brain means the loss of complexity in brain connectivity 
networks, which may contribute to cognitive declines (Kes-
hmiri 2020). Additionally, with ageing, females showed 
higher variance and lower entropy than males, suggesting 
potential differences in brain networks between genders. 
The observed sex differences on the whole brain variability 
properties may be attributed to known differences in brain 
structure and function between males and females (Canli 
et al. 2002; Cosgrove et al. 2007). However, our analysis 
did not specifically investigate their causal relationships, 
emphasizing the need for future studies designed to address 
this issue. Overall, our findings suggest that cortical integra-
tion appears to weaken in the ageing process.

By comparing covariance matrices of the youngest ver-
sus the older groups, we found that the older the age group 
was, the more significant the difference it had in comparison 
with the youngest group. There was a noticeable accelera-
tion of the differences at ~ 64 years of age (age group #40), 
which suggests that age-related differences of human brain 
covariance begin at this age. This finding is in line with the 

regions such as thalamus (r = 0.64, p = 3.57e-11), putamen 
(r = 0.49, p = 2.53e-06), and accumbens (r = 0.52, p = 4.43e-
07) were significantly higher with increasing age. On the 
contrary, the correlation between caudate and accumbens 
was significantly decreased with increasing age (r = -0.62, 
p = 4.72e-10). Details of all 10 significant associations can 
be found in Supplementary Fig. S2 and Table S7.

Additional analysis

Structural covariances in left and right hemispheres showed 
similar patterns to the covariance based on the average of 
the left and right hemispheres (Supplementary Fig. S3 and 
Fig. S4). Additionally, the analysis without removing global 
mean cortical thickness revealed predominantly positive 
pairwise correlations, particularly prominent in regions of 
the occipital lobe (Supplementary Fig. S5).

Through the application of different grouping methods, 
we discovered that the findings obtained from groups con-
sisting of approximately 300 and 800 participants were 
similar to the results obtained from groups consisting of 
approximately 500 participants (Fig. S6 and Fig. S7).

The associations between pairwise correlations and 
global cognition were found to be largely opposite to their 
associations with age. This can be explained by the fact that 
cognition usually declines in the ageing process as shown in 
our data (Fig. S8). Associations between structural covari-
ance and cognition can be found in Supplementary (Fig. S9 
to Fig. S12).

Discussion

We investigated age-related structural covariance properties 
and their associations with age and cognition using a large 
sample of 42,075 participants drawn from the UK Biobank. 
Firstly, with advancing age, there was a significant increase 
in the variance of whole brain structural covariance, indicat-
ing a greater variability in the relationships between brain 
regions. Additionally, we observed a decrease in entropy, 

Fig. 1 Conceptual overview of the study. Firstly, all 42,075 partici-
pants were ordered from the youngest to the oldest. They were then 
divided into equally sized 84 groups with 500 participants in each 
group. Structural covariance was estimated in each group. Secondly, 
we explored these structural covariances from the whole covariance 
(correlation) matrix level and each element of covariance (correlation) 
matrix level. For the whole matrix level, whole brain variability prop-
erties were estimated across all age groups. We also performed over-
representation of correlation analysis (ORCA) to test the enrichment 
of correlation coefficients between and within brain lobar regions. 
Additionally, we compared the covariance of the first group with those 
in other groups. For the matrix element level, we calculated the asso-
ciations between structural covariance, age, and cognition, obtaining 
two association matrices
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Fig. 2 (A) Whole brain variability properties of structural covariance 
in 84 age groups. Three global measures: variance, entropy, and pro-
portions of pairs that differ significantly were estimated both in cortical 
thickness covariance and subcortical volume covariance. The points 
represent the corresponding measure in each age-group. Here, male, 
female, and the combined participants were investigated separately. 
(B) Over-representation of correlation analysis (ORCA). The x-axis 

represents 84 age groups, and the dots located in different positions 
indicate that significant enrichment of correlation coefficients between 
or within lobes were found in the specific age groups (Bonferroni 
correction). Note that more correlations existed within occipital lobe 
than expected by chance, and this phenomenon was stable across all 
age groups. Significant enrichment of pairwise correlations was also 
observed between brain regions in frontal and occipital lobe
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either weakening or strengthening, depending on the direc-
tion and strength of the correlation. Associations between 
the anterior cingulate and transverse temporal regions are 
good examples to demonstrate this (Fig. S2, pair index 305 
and 325). The existence of both positive and negative corre-
lations in relation to older age between certain brain regions 
suggests that the interaction between these brain regions 
was variable: some correlations were strengthening, some 
weakening, and some were reversed in direction over time. 
Given that brain structures generally decline in the ageing 
brain, such as cortical thinning and subcortical atrophy, our 
finding demonstrates that there are diverse ageing-related 
differences occurring in different brain structures. We found 
that the regions in the occipital lobe were highly correlated 
with each other, and it has been reported that they share 
similar genetic underpinnings (Grasby et al. 2020; Hofer 
et al. 2020). This could also perhaps explain our observed 
enrichment of correlation coefficients within the occipital 
lobe. Our findings indicate that the enrichment in occipital 

findings of degenerative dementias, such as Alzheimer’s 
disease, whose rate of onset increases exponentially after 
the age of 65 (Fox and Schott 2004). It is worth noting that 
the structural covariances for females in older age diverged 
more from the youngest group than for males. This sex-
related divergence was also evident in the differential rate 
of age-related increase of variance of whole brain covari-
ances between males and females: females started lower 
than the males; they then surpassed the males at the age of 
70 (Fig. 2).

The cortical thickness correlations between frontal 
lobe with other brain regions such as temporal, parietal, 
and occipital lobes were significantly different with age-
ing. For example, the correlations in superior and middle 
frontal-parietal, superior and middle frontal-occipital lobe 
were significantly decreased with advancing age. Notably, a 
positive correlation with age could signify either a strength-
ening of a pairwise correlation or a weakening of an anti-
correlation. Similarly, a negative age correlation can imply 

Fig. 3 Test for equality of correlation coefficients between group 1 
and each of other groups. The x-axis indicates group index (from 1 
to 84) and corresponding median age of each group. The y-axis indi-
cates − log10(p) for the test for equality of group 1 matrix and each of 
other matrices. The black horizontal line represents significant level 
(-log10[0.05]) and Bonferroni corrected p value (-log10[0.05/8]). The 
cortical_all represents the comparison of all participants’ correlation 
matrices between the first age group and each of other age groups 
(comparing group 1 with other groups). The cortical_female repre-

sents the comparison of only females’ correlation matrices between 
the first age group and each of other age groups (comparing group 1 
with other groups). The cortical_M_vs_F represents the comparison of 
correlation matrices between males and females of the same age group 
(comparing males with females in each group). The cortical_male rep-
resents the comparison of only males’ correlation matrices between the 
first age group and each of other age groups (comparing group 1 with 
other groups). Other subcortical labels are similar to cortical labels
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Fig. 4 Associations between structural covariance and age in cortical 
thickness (A) and (B) subcortical volume. Every element in the matrix 
indicates the association between the pairwise correlation of brain 
structures and median age of each group. The single asterisk (*) rep-

resents the level of statistical significance p < 0.05. Double asterisks 
(**) represent the associations that remain statistically significant after 
Bonferroni correction
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Our study has some limitations. First, our data were 
cross-sectional in nature, which would not allow causal 
interpretation for the relationships of structural covariances 
and their relationships with cognition. Our study design 
which divided participants into 84 age groups allowed us to 
explore age related differences in structural covariance, but 
these differences should not be interpreted as real changes. 
Second, in order to explore the associations between struc-
tural covariance and age, we computed brain structural 
covariance in the group with 500 participants. This group-
ing was empirically explored and decided, and there may be 
biases associated with such grouping. We, therefore, also 
tested grouping of 300 and 800 participants. Robustness 
for each group increased with the increase of group size, 
but increasing group size would result in smaller number of 
groups. While there is no fixed rule for this, we did consider 
several factors, such as statistical power, stability and reli-
ability of the correlations, the study design, and our research 
question. Third, we acknowledge the potential impact of 
noise on our findings, which may stem from FreeSurfer 
estimation error. Additionally, due to ageing, older popula-
tions may have greater variances in cortical thickness/volu-
metric data compared to younger (middle-aged) individuals. 
Finally, the generalisability of our results may not extend to 
other racial/ethnic groups, as we restricted our analyses to 
individuals of British ancestry.

In conclusion, we utilized a large cross-sectional dataset 
to provide an overview of associations between structural 
covariance and age, revealing varying regional interactions 
related to brain morphology in ageing. These findings could 
help better understand how brain regions interplay with 
each other during the ageing process.

Supplementary Information The online version contains 
supplementary material available at https://doi.org/10.1007/s00429-
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correlations was significant though the ageing process, and 
these correlations were significantly associated with age as 
well. Additionally, our findings indicated that when mean 
cortical thickness was not controlled for, most pairwise cor-
relations were positive and showed an increase across age 
groups, unlike the results when controlling for mean cortical 
thickness. This suggests that mean cortical thickness influ-
ences pairwise correlations, particularly in older age groups, 
where regions tend to be more closely associated.

Like cortical thickness, subcortical volumetric covari-
ances were also associated with the ageing process. As one 
of the important subcortical regions, the hippocampus plays 
a critical role in memory and learning, as well as spatial 
navigation (Burgess et al. 2002). It is vulnerable to neuro-
degenerative diseases, especially Alzheimer’s disease (Mu 
and Gage 2011). In our analysis, the correlations between 
hippocampal volume with thalamus, putamen, and accum-
bens, were all significantly increased with increasing age, 
suggesting synchronised patterns in their volumes during 
the ageing process. The significantly decreased correlations 
between accumbens and caudate, putamen and pallidum, 
caudate and pallidum may indicate that these pairs of sub-
cortical structures have independent trajectories during the 
ageing process. The amygdala and hippocampus are key 
components of the medial temporal lobe and are involved 
in emotional perception and regulation (Groen et al. 2010). 
Our study showed that the covariance between these two 
regions remained relatively stable during ageing.

We found significant associations between structural 
covariance and global cognition, processing speed, execu-
tive function, as well as memory. Previous work has shown 
that structural covariance of the default network was associ-
ated with cognitive ability (Spreng and Turner 2013), and 
that the synergy in the human brain may have evolved to 
support higher cognitive function (Luppi et al. 2022). Addi-
tionally, our finding of a high correlation between cognition 
and age (Fig. S8) was not on the individual level. Instead, 
the correlations were calculated by using the median age 
and median cognition of each group across all 84 age 
groups, thus the individual variance of each group for these 
measures was effectively smoothed out. Given the highly 
negative correlation between the age and cognition, as well 
as the associations between the structural covariance and 
age found in our study, it is not surprising that there were 
also associations between structural covariance and cogni-
tion, and their association direction was opposite to that of 
between structural covariance and age. In contrast to the 
positive associations between subcortical covariances and 
age, many subcortical covariances were found to be neg-
atively associated with global cognition across all 84 age 
groups, especially the correlations between hippocampus 
and thalamus and those between caudate and thalamus.
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