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Abstract
In this work, we take a closer look at the Vogt-Bailey (VB) index, proposed in Bajada et al. (NeuroImage 221:117140, 2020) 
as a tool for studying local functional homogeneity in the human cortex. We interpret the VB index in terms of the minimum 
ratio cut, a scaled cut-set weight that indicates whether a network can easily be disconnected into two parts having a compa-
rable number of nodes. In our case, the nodes of the network consist of a brain vertex/voxel and its neighbours, and a given 
edge is weighted according to the affinity of the nodes it connects (as reflected by the modified Pearson correlation between 
their fMRI time series). Consequently, the minimum ratio cut quantifies the degree of small-scale similarity in brain activ-
ity: the greater the similarity, the ‘heavier’ the edges and the more difficult it is to disconnect the network, hence the higher 
the value of the minimum ratio cut. We compare the performance of the VB index with that of the Regional Homogeneity 
(ReHo) algorithm, commonly used to assess whether voxels in close proximity have synchronised fMRI signals, and find 
that the VB index is uniquely placed to detect sharp changes in the (local) functional organization of the human cortex.

Keywords Cortical organization · Functional connectivity · Vogt-Bailey index · Regional homogeneity

Introduction

Since the emergence of neuroscience as a distinct disci-
pline, there has been increasing interest in understanding the 
organizational principles of the cerebral cortex. The degree 
to which the cortex is parcellated into separate regions has 
been strongly debated over the years. Oskar and Cécile Vogt, 

well known for their myeloarchitectonic cortical maps, coun-
selled sharp, ‘hairline’ boundaries [(Nieuwenhuys 2013) 
and references therein]. The cytoarchitectonic parcellation 
described by Korbinian Brodmann (Brodmann 1909) also 
divides the cortex into different areas, although Brodmann 
himself pointed out that in some cases, the boundaries are 
not sharp and changes occur gradually (Brodmann 1909). 
On the other hand, Percival Bailey and Gerhardt von Bonin 
advocated that the isocortex is characterised by a high 
degree of homogeneity (Bailey and von Bonin 1951). This 
raises the question: is it really appropriate to parcellate the 
cortex into distinct regions?

The rapid advance of new technologies and introduction 
of techniques such as magnetic resonance imaging (MRI), 
coupled with developments in the fields of graph theory and 
network analysis, gave new impetus to the study of cortical 
organization. The aim of applying graph theory to neural 
data is to investigate the emerging connectivity patterns, 
which reveal how different brain areas are related to each 
other structurally or functionally (Farahani et al. 2019). 
The use of networks in neuroscience can provide important 
insight into human cognition and behaviour (Kriegeskorte 
and Douglas 2018; Sporns 2014), and further our under-
standing of how the brain changes with age (Betzel et al. 
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2014; Cao et al. 2014; Grayson and Fair 2017), how it adapts 
itself to various cognitive demands (Bassett et al. 2011), and 
how intelligence and intellectual abilities are related to func-
tional connectivity (van den Heuvel et al. 2009; Wu et al. 
2013). Functional networks have also been widely studied 
in the context of neurological and psychiatric disorders, such 
as the degenerative dementias (Pievani et al. 2011), epilepsy 
(Výtvarová et al. 2017), multiple sclerosis (Schoonheim 
et al. 2014), schizophrenia (Kambeitz et al. 2016), depres-
sion (Zhi et al. 2018), and autism spectrum disorder (Soma 
et al. 2021). In recent years, the concept of gradients (or spa-
tial transitions) in brain organization (Bernhardt et al. 2022) 
has become an especially popular topic. These gradients are 
usually used to infer how the ‘activation hubs’ for a certain 
class of functions are distributed within the brain.

In the majority of cases, neuroscientific works consider 
connections between different brain regions (or ‘parcels’). 
However, methods from graph theory can also quantify the 
affinity between two or more adjacent vertices/voxels. This 
property makes them a good tool to study the local disrup-
tions in brain function implicated in certain disorders/dis-
eases (Kozhemiako et al. 2020; Wei et al. 2018; Keown et al. 
2013). The searchlight Vogt-Bailey (VB) algorithm devel-
oped in Bajada et al. (2020) determines functional connec-
tivity on a per-vertex level by constructing, for each vertex 
on the surface of the brain, a graph consisting of the original 
vertex and its neighbours. The vertices are treated as the 
nodes of the graph, while the (modified) Pearson correlation 
between their functional MRI (fMRI) time series is used to 
assign weights to the connecting edges. The algebraic con-
nectivity, equivalent to the second smallest eigenvalue of 
the graph Laplacian, indicates how easy or difficult it is to 
disconnect the graph,1 and thus serves to gauge the degree 
of homogeneity around the original vertex. The VB index is 
defined as a scaled version of the algebraic connectivity. It 
can additionally be adapted to serve as a metric for full brain 
or region-of-interest analysis, depending on the size of the 
neighbourhood that is provided as input. The VB toolbox is 
available at https:// github. com/ VBInd ex.

The searchlight VB index has been used (albeit in voxel 
space) to explore the organization of axonal fibres by pro-
viding a measure of the correlation between the connection 
probabilities of neighbouring voxels (Lee and Park 2022). 
The authors modelled the connection probability of a given 
voxel as a data series consisting of 360 elements, with each 
element reflecting the probability of tract linkage between 
the voxel in question and one of 360 target cortical regions 
(Lee and Park 2022). In another study, the VB index was 
employed to probe the functional organization of the rodent 

hippocampus and indicated a sharp change in connectivity 
(Gunnarsdóttir et al. 2022).

The mathematical basis of the VB index is well estab-
lished. In fact, a number of research articles (such as Ben-
karim et al. 2021; Margulies et al. 2016; Jackson et al. 2018; 
Glomb et al. 2021) use the same framework to describe how 
neural gradients are mapped and how inter-areal boundaries 
can be identified. The searchlight2 VB index differs in that 
it shifts the focus from the global level to the local—it is 
calculated by constructing networks on a small scale (one 
per vertex), rather than across a region of interest or the 
entire brain.

One shortcoming of local analysis is the artificial 
enhancement of correlations that may result from volume-
to-surface mapping, especially in the vicinity of narrow sulci 
and gyri (Ciantar et al. 2022). This gets more pronounced 
when surface resolution is increased with respect to voxel 
data resolution, since more surface vertices sample the same 
voxels. To mitigate the issue, another VB index approach 
was developed—the hybrid searchlight algorithm. This esti-
mates the algebraic connectivity in volumetric space and 
maps the results to the original surface vertices (Ciantar 
et al. 2022). A modified version was used with diffusion 
data to study the impact of preterm birth on the homogene-
ity of tissue microstructure in the neonatal cortex (Galdi 
et al. 2022). Indeed, the methodology underlying the VB 
algorithm can be adapted to different modalities of data. In 
this article, we focus on its application to functional MRI 
data, as in its current form, the VB toolbox is intended for 
such a purpose.

The work presented here complements the original arti-
cle (Bajada et al. 2020) by unravelling the details of the 
mathematical framework of the VB index. In the “Methods” 
section, we first take a look at some principles from graph 
theory, then proceed to an interpretation of the VB index as 
a cut-set weight corresponding to a cut that partitions the 
graph into two while attempting to minimise any imbalance 
in cluster size. In this way, we lay the theoretical groundwork 
for the VB index, which motivates our investigation of the 
eigenvalue problem that is central to the algorithm (Bajada 
et al. 2020) and in particular, of the difference between the 
results obtained with the generalised and standard versions 
of said problem. We test the two on synthetic data and show 
that the latter is advantageous, and also derive a scaling fac-
tor that is in line with our adoption of the standard eigen-
value problem. This marks a significant deviation from the 

1 The larger the number of edges and the weights assigned to them, 
the more strongly connected the graph is, and the greater the chal-
lenge to break it up into separate parts.

2 As used in this article, ‘searchlight’ refers to the fact that the VB 
index is computed over a small neighbourhood surrounding each ver-
tex on the midthickness surface of the brain. The vertex is mapped to 
the voxel that contains it, and the neighbourhood is constructed as a 
27-voxel cube (provided all 27 voxels lie within the brain), with the 
original voxel at its centre. Importantly, however, the methodology 
can accommodate any definition of neighbourhood.

https://github.com/VBIndex
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approach taken by Bajada et al. (2020) and an improvement 
of the searchlight functionality of the VB index.

The “Results” section is dedicated to experimental valida-
tion, including comparison with the Regional Homogeneity 
(ReHo) metric, which measures the degree of synchronisa-
tion in the time series of neighbouring voxels (Zang et al. 
2004). ReHo is often used in combination with functional 
connectivity analysis to study whether certain disorders or 
diseases are associated with changes in local brain activ-
ity. Indeed, this strategy has been utilised in the case of 
hepatitis B virus-related cirrhosis patients with or without 
minimal hepatic encephalopathy (Sun et al. 2018), as well 
as for patients with bipolar II disorder (Xu et al. 2019) or 
attenuated psychosis syndrome (Long et al. 2018). Addi-
tionally, abnormal ReHo values have been detected in sub-
jects with early- or late-onset Parkinson’s disease (Yue et al. 
2020) and acute or remitting multiple sclerosis (Zhu et al. 
2020), among others. ReHo maps can potentially serve as 
a non-invasive prognostic tool for cirrhotic patients with 
overt hepatic encephalopathy (Lin et al. 2015), and have 
a high diagnostic accuracy for congenital blindness (Hu 
et al. 2022). Real-time fMRI neurofeedback and associ-
ated brain function self-regulation were found to impact the 
ReHo scores of brain regions involved in the processing of 
emotions (Yang et al. 2018). In another study investigat-
ing the test–retest reliability of ReHo (Zuo et al. 2013), the 
authors found that this could be improved by employing a 
fast imaging sequence, using nuisance correction but no spa-
tial smoothing in the preprocessing stage, and by carrying 
out the analysis on the surface of the brain (in a vertex-wise 
manner, rather than the voxel-wise implementation of Zang 
et al. 2004).

The VB index differs from ReHo in two significant ways: 
first, it takes into account the values of the data points in the 
fMRI time series, not just their rankings. Second, our frame-
work admits a degree of flexibility—in that the similarity 
metric, which in our case is a modified Pearson correlation 
coefficient, can be replaced without compromising the inher-
ent attributes of the VB index. Given the recent surge in the 
community’s interest in local functional connectivity, this 
paper undertakes to compare the performance of the ReHo 
and VB index algorithms, and to determine whether the lat-
ter can take us a step further in gauging the local homogene-
ity of brain activity and what it means.

Methods

Spectral graph theory: optimisation 
as an eigenvalue problem

Preliminaries

Let G = (V ,E) be an undirected, weighted graph with vertex 
set V of size n and edge set E = {(vi, vj) ∈ V × V , vi ≠ vj} . 
G has no loops (i.e., no edges starting and terminating at the 
same vertex), and direct connections between any two verti-
ces are limited to at most one edge. To simplify notation, we 
shall refer to the edge joining vertices vi and vj , (vi, vj) , as eij . 
The weight associated with eij will be denoted by wij and is 
a number in the interval [0, 1].

To determine the best way of partitioning V into two dis-
joint clusters, we introduce the cost function U:

The variables xi and xj are the positions of the vertices vi and 
vj , respectively; we emphasise, however, that they do not 
refer to the positions that the vertices have in 2D Euclidean 
space (such as in Fig. 2), but rather to coordinates in 1D 
space. In other words, we map the vertices to a line, much 
like the beads in one row of an abacus frame, and let the 
mathematics adjust the vertices (‘beads’) until the separa-
tions between them are optimal—in the sense that they make 
U as small as possible. The optimization algorithm looks for 
a trade-off between the weights of the edges and the separa-
tion of the respective vertices. Since we want to minimise 
U, an edge with substantial weight will tend to be shorter, 
so that the small value of (xi − xj)

2 compensates for the large 
wij ; consequently, in such cases, xi and xj are usually either 
both positive or both negative. On the other hand, edges with 
a relatively small weight can afford to be longer (one might 
argue that keeping them short would be even better, as it 
would decrease the cost function further; however, it must be 
remembered that moving one vertex with respect to another 
also moves it relative to the remaining vertices, so the ques-
tion is how to balance edge weights and vertex separations). 
The end result is that vertices which are strongly connected 
to each other will usually cluster on one side of the zero 
reference point when mapped to a line, while vertices shar-
ing a weak connection are further apart and often tend to 
be positioned on different sides of the zero reference point.

Next, we construct a vector � consisting of as many com-
ponents as there are vertices, with each component xi being 
the position of the corresponding vertex vi on the line. Since 
Eq. (1) only constrains the difference between the elements 
of � , and not the elements per se, it could trivially be satis-
fied by setting xi = xj for all vertices vi and vj . However, this 

(1)U =
∑

(i,j)|eij∈E
wij(xi − xj)

2.
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would hardly constitute a useful solution, as what we are 
looking for is a graph whose structure can give us informa-
tion about the way the distinct vertices are related. Collaps-
ing the graph to a single point would cause it to lose any 
structure and the distinctiveness of its vertices. We therefore 
build on the example of Von Luxburg (2007) and impose 
the condition

where 1 is the all-ones vector of size n and |xi| the absolute 
value of xi . Equation (2) implies that the components of � 
cannot be all positive or all negative, and is essentially an 
attempt to get well-balanced clusters distributed on each side 
of the zero reference point.

Let us now take a short detour to define some terminology 
related to graph theory, starting from the (weighted) affinity 
matrix A , whose elements are given by

Since the graph is assumed to be undirected, it follows that 
wij = wji , and hence A is symmetric. In our case, wij will be 
calculated as the quantity

corr(si, sj) being the sample Pearson correlation between the 
time series si and sj associated with the vertices vi and vj , 
respectively. The (sample) Pearson correlation is equivalent 
to the cosine similarity for the mean-centred versions of the 
time series: corr(si, sj) = cos (si − s̄i, sj − s̄j) . However, the 
sinusoidal nature of the cosine function means that it does 
not map the range of angles between 0◦ and 90◦ linearly to 
the interval [0, 1]. For instance, two vectors angled at 45◦ 
would have a cosine similarity of 0.7 rather than 0.5. To 
recover this linearity, we retrieve the angles by taking the 
inverse cosine and (after converting to degrees) divide by 
90◦ to rescale [0, 90] to [0, 1]. Finally, we subtract the result 
from unity, so that identical signals (which can be treated as 
parallel vectors, giving arccos [cos (0◦)] = 0 ) are assigned 
a weight of 1, not 0, whereas signals that are completely 
uncorrelated yield wij = 0 . We emphasise that the general 
principle behind the VB index is independent of the choice 
of similarity metric.

Another array we shall be using is the degree matrix D . 
This is a diagonal matrix which may be constructed from 
A by summing its entries either row-wise or column-wise. 
More specifically,

(2)x ⋅ 1 =

n∑
i=1

xi = 0 ;

n∑
i=1

|xi| ≠ 0,

(3)aij =

{
wij if i ≠ j;

0 if i = j.

(4)wij = 1 −
{
arccos [corr(si, sj)] ×

180

�
×

1

90

}
,

The equality in the last line follows from Eq. 3, and the 
quantity 

∑n

k=1
wik (k ≠ i) represents a sum over the weights 

of the edges joining vi to the remaining n − 1 vertices of the 
graph (this does not mean the graph is complete; we treat 
absent edges as edges having a weight of zero). The ith ele-
ment along the principal diagonal of D , dii , is known as the 
degree of the vertex vi.

The graph Laplacian L is defined as

and is a symmetric, positive semi-definite matrix. The spec-
trum of eigenvalues of the Laplacian can be determined by 
solving the eigenvalue equation

Vectors � (excluding � , which represents the trivial solution) 
and values of � that satisfy this equation are called eigenvec-
tors and eigenvalues, respectively; each eigenvalue is paired 
with at least one eigenvector. The graph Laplacian has the 
smallest eigenvalue equal to 0 and the all-ones vector � as the 
corresponding eigenvector. The second smallest eigenvalue 
is known as the algebraic connectivity (Fiedler 1973) and 
is the quantity we will be using to construct the VB Index.

Minimising the Rayleigh quotient

It can be shown that the quadratic cost function of Eq. (1) 
may be expressed in terms of the Laplacian via the relation3

Consequently, the problem of partitioning the graph in the 
manner outlined above can mathematically be formulated 
[using Eq. (1)] as the requisite to minimise the Rayleigh 
quotient

subject to the condition4 x ⋅ 1 = 0 [Eq. (2)]. We have intro-
duced the magnitude of � in the denominator to avoid getting 

(5)dij =

⎧
⎪⎨⎪⎩

0 if i ≠ j ;∑n

k=1
aik =

∑n

k = 1

k ≠ i

wik if i = j.

(6)L = D − A

(7)L� = ��.

(8)
1

2

n∑
i,j=1

wij(xi − xj)
2 = x

T
Lx.

(9)U(x) =
xTLx

xTx
; x ≠ 0,

3 The proof is provided with the supplementary data of the compan-
ion paper (Bajada et al. 2020). A superscript T indicates that a quan-
tity is transposed.
4 This constraint may be relaxed in the manner of Higham et  al. 
(2007).
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solutions which optimise the cost function by making the 
components of � arbitrarily small.

The vector � which minimises U(�) is none other than 
the Fiedler vector, the eigenvector associated with the sec-
ond smallest eigenvalue of the Laplacian matrix. This can 
be proved as follows (refer to Stanković et al. (2019) and 
to Introduction to spectral graph theory by A. J. Ganesh 
[https:// people. maths. bris. ac. uk/ ~maajg/ teach ing/ compl 
exnets/ lapla cians. pdf]):

Let L have eigenvalues 0 = 𝜆1 < 𝜆2 ≤ ⋯ ≤ 𝜆n with cor-
responding orthonormal eigenvectors5 �1, �2,…�n . As the 
eigenvectors provide an orthonormal basis, any vector � may 
be expressed in the form

where ci = � ⋅ �i = �T�i . Hence, we get that

since the eigenvectors are orthonormal (meaning that 
�
T
j
�
i
= 1 if i = j , and 0 otherwise). In similar fashion,

Suppose, now, that � is orthogonal to � , i.e., � ⋅ � = �T� = 0 . 
Given that �1 = �∕

√
n , and that the component of � along 

�1 , c1 , is obtained by taking the dot product of � with �1 , it 
follows that c1 = � ⋅ �1 = (� ⋅ �)∕

√
n = 0 . Consequently, we 

can drop c1 from the sums in Eqs. (11) and (12), and write

If � = �2,

In conclusion, then, any vector � orthogonal to � satisfies

(10)� =

n∑
i=1

ci�i,

(11)

�
T
L� =

( n∑
j=1

cj�j

)T
L

( n∑
i=1

ci�i

)

=

( n∑
j=1

cj�j

)T n∑
i=1

ci�i�i

=

n∑
j=1

n∑
i=1

c
j
c
i
�
i
�
T
j
�
i
=

n∑
i=1

c2
i
�
i
,

(12)�
T
� =

( n∑
j=1

cj�j

)T( n∑
i=1

ci�i

)
=

n∑
i=1

c2
i
.

(13)
�TL�

�T�
=

∑n

i=2
c2
i
�
i∑n

j=2
c2
j

≥

∑n

i=2
c2
i
�
2∑n

j=2
c2
j

= �2.

(14)
�TL�

�T�
=

�
T
2
L�

2

�
T
2
�
2

=
�
T
2
�
2
�
2

�
T
2
�2

= �2.

with equality attained when � is set to �2 , the Fiedler vector. 
To recap, we have thus far:

• Considered a general vector � whose elements corre-
spond to the positions of the vertices in 1D space;

• Shown that the partitioning of the graph is optimized 
[with respect to Eq. (1)] if � is the Fiedler vector.

In other words, if we would like to separate the graph into 
two balanced clusters in a way that minimises the cost func-
tion given by Eq. (9), the vertex vi should be mapped to the 
coordinate xi in 1D space given by the ith component of the 
Fiedler vector. Vertices that end up in close proximity in this 
1D setting can be grouped together when the original graph 
is partitioned.

The generalised vs standard eigenvalue problem

Let us go back to the equation whence the Fiedler vector 
originated; namely, the standard eigenvalue equation:

Outlying vertices are likely to have significant effect on the 
clustering, but we can reduce their influence using the gen-
eralised eigenvalue problem in place of the standard one:

D being the degree matrix introduced in Eq. (5). If we now 
multiply both sides of Eq. (17) by the inverse of the degree 
matrix, D−1 , we get the relation

Using the definitions of the degree matrix and the Laplacian 
from Eqs. (5) and (6), respectively, it is straightforward to 
show that the matrix product D−1

L (which is known as the 
random walk normalised Laplacian and will be denoted by 
LRW ) takes the form

with dii =
∑n

k=1
wik (k ≠ i) and wij = wji . Equation (17), then, 

becomes equivalent to LRW� = �� , the standard eigenvalue 
equation for the Laplacian LRW of a graph whose vertices all 
have degree 1. This new graph can be thought of as a deriva-
tive of the original, obtained by adjusting weights: if a vertex 
is connected to edges with large weights or if it has many 
neighbours—in other words, if it is strongly connected—the 

(15)�TL�

�T�
≥ �2,

(16)L� = ��.

(17)L� = �D�,

(18)D
−1
L� = ��.

(19)LRW =

⎛⎜⎜⎜⎝

1 − w12∕d11 … − w1n∕d11
−w21∕d22 1 … − w2n∕d22

⋮ ⋮ ⋱ ⋮

−wn1∕dnn − wn2∕dnn … 1

⎞⎟⎟⎟⎠
,

5 Since L is a symmetric matrix, it has a full set of linearly independ-
ent (mutually orthogonal) eigenvectors.

https://people.maths.bris.ac.uk/%7emaajg/teaching/complexnets/laplacians.pdf
https://people.maths.bris.ac.uk/%7emaajg/teaching/complexnets/laplacians.pdf
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weights of the incident edges are scaled down. The opposite 
happens for a weakly connected vertex. Note that the random 
walk normalised Laplacian is not symmetric—indicating 
that the new graph is directed, i.e., the weights depend on 
the direction in which the edges are traversed.6

The weight redistribution described above can be made 
more intuitive by analogy with people’s following on social 
media profiles, which may be regarded as a measure of their 
‘degree of friendship’. Someone mainly interested in hav-
ing a large following would likely accumulate a significant 
number of remote acquaintances among their connections. 
On the other hand, people who only connect with close 
friends would have a smaller following. In the former case, 
the ‘degree of friendship’ would have to be scaled down, 
because a good proportion of connections would not repre-
sent meaningful friendships, while for the latter the percent-
age of followers who are intimate friends would be larger, 
and hence the degree of friendship should be scaled up.

In Higham et al. (2007), the authors carry out tests on 
micro-array data and report that the generalised eigenvalue 
problem performs better at extracting information of bio-
logical interest. However, they focus on the extent to which 
the eigenvectors7 (i.e., the vectors { x } obtained by solving 
Lx = �Dx ) corresponding to the second and third smallest 
eigenvalues are able to reveal important features of the data 
by identifying relevant sub-clusters, whereas our interest lies 
in using the second smallest eigenvalue to infer how strongly 
connected a graph is. As will be shown in the “Comparison 
with ReHo” section, we have found that by upping the effect 
of weakly connected vertices, the generalised eigenvalue 
problem tends to be more sensitive to noise. With this in 
mind, we shall henceforth focus on the standard eigenvalue 
problem. This is also the default method employed in the 
latest version of the VB toolbox.

The VB index as a modified cut‑set weight

Relation of the algebraic connectivity to the ratio cut

A connected graph (so called because any two vertices are 
joined by a path consisting of one or more edges) may be 
disconnected by removing edges. Let us suppose that given 

a connected graph G, we do away with a collection of edges 
(called a cut or edge cut) and manage to divide G into two 
components, B and C. The corresponding cut-set weight can 
be obtained by summing the weights of the ‘cut’ edges:

The rationale behind any clustering scheme is to group 
together vertices with strong affinity while separating those 
with divergent properties. In our case, the degree of similar-
ity between any two vertices is reflected by the weight of the 
shared edge, and so we will attempt to partition the graph 
into two by removing the weakest edges. What we are inter-
ested in, therefore, is the cut that has the smallest weight.

To avoid instances when the cut-set weight is minimised 
by isolating a single vertex, we shall be using a modified 
cut-set weight (which we will henceforth refer to as the ratio 
cut)—one that takes into account the sizes of the resulting 
clusters (Von Luxburg 2007; Stanković et al. 2019; Wei and 
Cheng 1989):

Here, nB ( nC ) stands for the number of vertices in B (C).
The ratio cut can be expressed in terms of the graph 

Laplacian by means of Eq. (8). Let us consider a specific 
form for � (Stanković et al. 2019):

The magnitude (squared) of this vector is given by

Substituting for xi and xj in Eq. (8) yields (Stanković et al. 
2019)

(20)
cut-set weight(G) =

∑

vi ∈ B

vj ∈ C

wij (wij = 0 if eij ∉ E).

(21)
Ratio cut(B,C) =

(
1

nB
+

1

nC

) ∑

vi ∈ B

vj ∈ C

wij.

(22)xi =

{
1∕nB if vi ∈ B ;

−1∕nC if vi ∈ C.

(23)�
T
� =

(
1

nB

)2

× nB +

(
−

1

nC

)2

× nC =
1

nB
+

1

nC
.

(24)

�
T
L� =

1

2

∑

vi ∈ B

vj ∈ C

wij

[
1

nB
−

(
−

1

nC

)]2

+
1

2

∑

vi ∈ C

vj ∈ B

wij

(
−

1

nC
−

1

nB

)2

;

7 Strictly speaking, the authors work with the symmetric normalised 
Laplacian and adopt D−1∕2

y2 as the normalised Fiedler vector ( x and 
y have the same meaning as in Footnote 6, and y2 is the eigenvector 
corresponding to the second smallest eigenvalue of L

SYM
).

6 The equation Lx = �Dx may also be cast in the form L
SYM

� = �� , 
where L

SYM
 , the symmetric normalised Laplacian, is defined as 

D
−1∕2

LD
−1∕2 , and y = D

1∕2
x (Bajada et  al. 2020) (equivalently, 

x = D
−1∕2

y ). In this case, the edges would remain undirected. Note 
that D−1∕2 can be determined from D by finding the reciprocal of the 
elements along the main diagonal of D and computing their square 
root.
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[from Eq. (21)]

and hence

We note, however, that this holds provided � is as specified 
in Eq. (22), which in turn implies that � must be orthogonal 
to � , since (Stanković et al. 2019)

One common relaxation approach involves allowing the 
components of � to take arbitrary values in the set of real 
numbers. Therefore, we now endeavour to find a vector 
� ∈ ℝ

n that minimises the quantity �TL�∕�T� while still 
satisfying �T� = 0 . As shown in the section “Minimising 
the Rayleigh quotient”, this vector is none other than the 
Fiedler vector. We may consequently combine Eqs. (14) and 
(29) into one relation:

where the approximation sign reflects the fact that we have 
solved a relaxed version of Eq. (29).

In conclusion, we have shown that the second smallest 
eigenvalue of the graph Laplacian can be used to estimate 
a minimum value for the ratio cut, which is a sum of edge 
weights over all the edges removed to partition the graph 
into two clusters; this sum is weighted so that unbalanced 
clusters are penalized.

Scaling the algebraic connectivity

Our next goal is to define a scaled version of �2 that would 
be restricted to the range [0,  1]. It is well known that 

(25)=
1

2

�
1

nB
+

1

nC

�2

⎛
⎜⎜⎜⎜⎜⎜⎝

�

vi ∈ B

vj ∈ C

wij +
�

vi ∈ C

vj ∈ B

wij

⎞
⎟⎟⎟⎟⎟⎟⎠

;

(26)

=

(
1

nB
+

1

nC

)2 ∑

vi ∈ B

vj ∈ C

wij (since the graph is undirected) ;

(27)=

(
1

nB
+

1

nC

)
× Ratio cut(B,C)

(28)= �
T
� × Ratio cut(B,C),

(29)Min[Ratio cut(B,C)] = Min

(
�TL�

�T�

)
.

(30)�
T
� =

1

nB
nB +

(
−

1

nC

)
nC = 1 − 1 = 0.

(31)Min[Ratio cut(B,C)] ≈ �2,

disconnected graphs have an algebraic connectivity of 0. At 
the other extreme, complete graphs (i.e., graphs in which 
every pair of vertices is connected via an edge) with maxi-
mally weighted edges have the largest value of �2 , equal to 
the total number of vertices in the graph (so for a complete 
n-vertex graph whose edges all have a weight of 1, �2 = n ). 
We therefore scale the algebraic connectivity by the cardi-
nality n of the vertex set (n is also called the order of the 
graph), and define the Vogt-Bailey (VB) index as follows:

The difference between the scaling factor used here and the 
one in Bajada et al. (2020) stems from the fact that the origi-
nal paper focuses on the generalised eigenvalue problem, 
D

−1
L� = �� , which in the case of a complete graph with 

maximally weighted edges returns a value for �2 equal to the 
mean of all eigenvalues except the smallest.

Substituting for �2 using Eqs. (21) and (31) yields

where a subscript 0 indicates that B0 and C0 are not just any 
two clusters, but the particular clusters that minimise the 
ratio cut, and the last equality was obtained by setting 
nB0

+ nC0
= n . We shall henceforth refer to the cut-set weight 

∑
vi,vj

wij (vi ∈ B0, vj ∈ C0) as the VB cut.
As expressed in Eq. (33), the VB index is extremely intui-

tive: it is the summed weight of the edges removed, divided 
by the total number of these edges. We emphasise that the 
VB cut corresponds to a special cut—the one that minimises 
the ratio cut. Second, nB0

× nC0
 amounts to the number of 

edges dispensed with only if each vertex in cluster B0 is 
originally directly connected to every single vertex in C0 . 
This essentially means that graphs which are not complete to 
start with are reinterpreted as complete graphs having some 
edge weights equal to zero. In other words, the meaning of 
the VB index is best understood if we consider the number 
of edges detached from the graph to be fixed at nB0

× nC0
 , 

while the weights of those edges may vary—in the case of 
a complete graph with maximal weights, all edges have a 
weight of unity, and as a result, the VB index also equates to 
one, while a weakly connected graph has edges with smaller 
weights (and possibly some with a weight of zero, i.e., miss-
ing edges) and this lowers the VB index. It follows that a 
high VB index reflects the presence of ‘heavy’ edges and 
thus points to underlying voxels with strongly-correlated 
fMRI time series, while edges with small weights—due to 
weak correlations in said series—translate into a low VB 

(32)VB index =
�2

n
.

(33)

VB index ≈
1

n

(
1

nB0

+
1

nC0

) ∑

vi ∈ B0

vj ∈ C0

wij =

(
1

nB0
nC0

) ∑

vi ∈ B0

vj ∈ C0

wij,



504 Brain Structure and Function (2024) 229:497–512

value. Accordingly, a small VB index indicates a sharp 
change in local brain function.

Results

Testing the relation between the minimum ratio cut 
and the algebraic connectivity

To test how well the approximation of Eq.  (31) holds, 
we assembled the following three sets of 27 × 27 affinity 
matrices:

• Set 1: 1061 matrices constructed from the resting-state 
fMRI data for 2 participants [source: the Autism Brain 
Imaging Data Exchange (ABIDE I) Preprocessed data set 
(Craddock et al. 2013)].

• Set 2: 5074 matrices from the resting-state fMRI data 
for 10 participants [source: the minimally preprocessed 
Human Connectome Project (HCP) Young Adult data 
set (Van Essen et al. 2013; Glasser et al. 2013; Moeller 
et al. 2010; Feinberg et al. 2010; Setsompop et al. 2012; 
Xu et al. 2012; Jenkinson et al. 2002, 2012; Fischl 2012; 
Van Essen et al. 2011; Robinson et al. 2014, 2018)].

• Set 3: 118 matrices generated by sampling uniformly 
from the interval [0, 1].

Every matrix in Sets 1 and 2 corresponds to the graph of a 
randomly chosen vertex on the midthickness surface of the 
brain, and was calculated by applying Eqs. (3) and (4) to the 
fMRI data of a ‘neighbourhood’ consisting of the voxel con-
taining the vertex and nearby voxels. For all 6253 matrices, 

we worked out �2 in the manner outlined at the end of the 
“Preliminaries” section and in Bajada et al. (2020),8 and also 
determined the minimum ratio cut. The latter was computed 
by means of an exhaustive search over all possible 2-cluster 
partitions. The results are displayed in Fig. 1, from which it 
is immediately apparent that the relation given by Eq. (31) 
provides a good fit to the data, and compares well with 
the equation obtained via linear least-squares regression 
( y = 0.92x − 0.08 ). The plot also reveals that matrices in 
Set 1 have, in general, a higher degree of connectivity than 
those in Set 2. This may be explained by the lower spatial 
resolution of the ABIDE data (3 mm isotropic, versus 2 mm 
isotropic for the HCP data). The way in which the matrices 
in Set 3 were built makes it difficult to find a ‘fault line’ in 
the associated graphs, and consequently, these graphs are 
harder to disconnect.

Comparison with ReHo

ReHo is arguably the method most commonly used in the lit-
erature to study local homogeneities in brain function (Zang 
et al. 2004; Sun et al. 2018; Xu et al. 2019; Long et al. 2018; 
Yue et al. 2020; Zhu et al. 2020; Lin et al. 2015; Hu et al. 
2022; Yang et al. 2018; Zuo et al. 2013). In this section, we 
compare its performance with that of the VB index, the aim 
being to understand how these two measures differ in what 
they can tell us about activity in the brain.

The Regional Homogeneity approach (ReHo) (Zang et al. 
2004) employs Kendall’s coefficient of concordance (W) to 
gauge the degree of synchronisation among the time series 
of a general voxel and those of its nearest neighbours. W is 
given by (Zang et al. 2004)

where m is the number of voxels in the neighbourhood, 
each with an associated time series of length k, and 
R =

∑k

i=1
(Ri − R̄)2 . The quantity Ri is defined as the sum 

rank of the ith data point. It is calculated as follows: we rank 
the k data points making up the time series of a given voxel, 
and repeat for all voxels in the neighbourhood. Then, we 
sum the rankings of the ith data point across the m voxels. 
R̄ is simply the mean sum rank: R̄ = (

∑k

i=1
Ri)∕k . W takes a 

value in the range [0, 1], with 1 indicating perfect synchro-
nisation among the time series—i.e., a situation in which 
the value of the signal at a given time point gets the same 
ranking for all voxels—and 0 denoting that the time series 
are completely out of sync. That said, a null score becomes 

(34)W =
12R

m2(k3 − k)
,

Fig. 1  Algebraic connectivity vs minimum ratio cut for three sets of 
affinity matrices. The former is equivalent to �2 , the second smallest 
eigenvalue of the graph Laplacian. The plot indicates that the mini-
mum ratio cut is well approximated by the algebraic connectivity

8 Note, however, that the method of Bajada et al. (2020) is surface-
based, whereas we employ the hybrid algorithm mentioned in the 
Introduction.
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Fig. 2  Different ways of joining 
6 vertices into a graph. The 
examples shown are a sparsely 
connected, b fully connected 
(complete), and c disconnected
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highly improbable if k is not equal to m, whereas the VB 
index is always zero for a disconnected graph.

To compare the performance of the VB and ReHo homo-
geneity measures, we consider three examples: a sparsely 
connected graph (Fig. 2a), a complete graph (Fig. 2b), and 
a disconnected one (Fig. 2c). These graphs were constructed 
by assigning a time series9 of length 20 to each vertex and 
calculating the affinity matrix as detailed in the “Prelimi-
naries” section. The entry aij in the affinity matrix, derived 
from the correlation between the time series of vertices vi 
and vj , then serves as the weight of the edge joining the two 
vertices. We generated the data in such a way that if the 
time series of a vertex is thought of as a vector, two verti-
ces not directly linked by an edge would have orthogonal 
time series, which in turn would imply an edge with essen-
tially zero weight. In the three cases represented in Fig. 2, 
the ReHo value turns out to be higher than the VB index. 
It is especially interesting to note that while the latter is 
approximately zero for the disconnected graph, and varies 
by an order of magnitude between the sparsely connected 
and complete graphs, the values we get with ReHo are com-
parable across all three examples.

Next, we tested ReHo and the VB index using synthetic 
fMRI data produced with the R software package neuRo-
sim (Welvaert et al. 2011). The data had a signal-to-noise 
ratio of 3 and consisted of 5 spherical task activations with 
hard edges, superimposed on a mixture of the following 
noise components (Welvaert et al. 2011):

• white—a Rician distribution with non-centrality param-
eter of 0 (5%);

• temporal—an autoregressive model of order 3 (10%);
• low frequency drift—the frequency was set to 128 s (1%);
• physiological—noise due to heart beat and respiration 

(9%);
• task—noise due to spontaneous neural activity at the acti-

vation sites (5%);
• spatial—a Gaussian random field generated by a kernel 

having a full width at half maximum of 4 (70%).

The synthetic data were processed by a hybrid algorithm 
which maps a given vertex on the midthickness surface of 
the brain to the corresponding voxel. It then calculates the 
ReHo or VB index value for a 27-voxel neighbourhood cen-
tred around (and including) the principal voxel, and maps 
the result back to the original vertex. The algorithm proceeds 

this way in a vertex-wise manner and at the end returns a VB 
or ReHo map for the entire brain surface. The resting-state 
data used to generate a baseline image and volumetric mask 
for the construction of synthetic time series (the volumet-
ric mask is also required to run the version of the toolbox 
employed for this paper), as well as the midthickness surface 
and cortical mask provided as input to the hybrid algorithm, 
were obtained from the minimally preprocessed HCP Young 
Adult data set (Van Essen et al. 2013; Glasser et al. 2013; 
Moeller et al. 2010; Feinberg et al. 2010; Setsompop et al. 
2012; Xu et al. 2012; Jenkinson et al. 2002, 2012; Fischl 
2012; Van Essen et al. 2011; Robinson et al. 2014, 2018) by 
randomly selecting one participant.

The outputted VB and ReHo brain maps are presented 
in Figs. 3 and 4, respectively. It can be seen that both algo-
rithms easily identify the activations, and as anticipated, 
produce an adequate level of contrast between them and 
the underlying noise. However, the activated regions have 
sharper edges in the VB map, and the accompanying histo-
grams reflect this clearly. In the case of the VB index, the 
part of the histogram at the upper half of the range of VB 
values forms separate clusters that directly correspond to the 
areas of activation, but the histogram for the ReHo metric 
does not share this feature.

These results are corroborated when the VB and ReHo 
algorithms are tested on real data. The data in question con-
sist of the HCP Young Adult Motor Task fMRI Preprocessed 
set (tfMRI_MOTOR_RL) (Van Essen et al. 2013; Glasser 
et al. 2013; Moeller et al. 2010; Feinberg et al. 2010; Set-
sompop et al. 2012; Xu et al. 2012; Jenkinson et al. 2002, 
2012; Fischl 2012; Van Essen et al. 2011; Robinson et al. 
2014, 2018) for the same participant selected when con-
structing the synthetic data (with midthickness and highly 
inflated surfaces and cortical masks taken from the Struc-
tural Preprocessed data for the participant). The brain maps 
obtained in this case are presented in Fig. 5 and show the 
same patterns of activation for both methods, which con-
firms the validity of the VB index as a measure of the local 
homogeneity of functional data. We again notice that ReHo 
tends to output higher values and introduces a degree of 
smoothness at the edges of activated regions with respect to 
the VB approach. This relative smoothness can be deduced 
by comparing the activations in the parietal lobe, for 
instance, and from the spread of the respective histograms. 
VB and ReHo brain maps for the motor task fMRI data of 
two other HCP subjects, and the corresponding histograms, 
are provided as supplementary material (Online Resource 1).

The synthetic data used previously were also fed into the 
VB toolbox with the Laplacian normalisation set to geig, 
which instructs the algorithm to return the eigenvalues of 
the generalised eigenvalue problem (Eq. 17). Figure 6 shows 
the distribution of VB index values obtained, both as a brain 
map and as a histogram. It is immediately apparent that the 

9 The time series were  constructed by sampling at regular intervals 
from a sine wave with a noise component drawn randomly from a 
normal distribution. Distinct series differed in the initial phase of the 
sine function, as well as in the mean and variance of the normal dis-
tribution.
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geig method distinguishes much less sharply among the 
individual activated regions than the original approach 
(unnorm), which, we recall, is based on the standard eigen-
value problem ( Lx = �x ). Additionally, the VB indices that 
geig outputs for the noise component have higher values 
and greater variance than their unnorm counterparts, indi-
cating elevated  sensitivity to noise.

Discussion and conclusion

The VB index is an ‘edge-detection algorithm’ introduced 
in Bajada et al. (2020) to look for sharp changes (‘edges’) 
in the local functional organization of the human cortex. 
In this work, we expound on the details of the underlying 
mathematical framework. In particular, we re-interpret the 
VB index as a modified cut-set weight associated with a 

particular graph cut—one that finds a trade-off between 
eliminating as few edges as possible and having clusters with 
a comparable number of vertices. This makes the VB index 
extremely intuitive. We test the approximation on which our 
interpretation is based using matrices extracted from real 
data, and conclude that it holds very well. Additionally, we 
introduce the concept of a VB cut (which is simply the sum 
of edge weights associated with the cut mentioned above), 
and show that the VB index can be understood as the VB cut 
divided by the total number of edges removed to partition 
the graph into two (provided missing edges are treated as 
edges with null weight).

Next, we compare the performance of the VB index with 
that of ReHo, a metric commonly used to assess regional 
homogeneity in brain function. The two algorithms can be 
executed with a similar amount of computational effort. We 
apply them to synthetic functional MRI data generated with 

Fig. 3  Brain map of VB index 
values (top) and associated 
histogram (bottom). The greater 
majority of the synthetic data 
provided to the algorithm repre-
sent noise and have a VB index 
close to zero. The inset shows 
3 clusters at higher VB values. 
These clusters arise due to the 
task activations superimposed 
on the noise and have colour 
correspondence with the acti-
vated regions in the top panel
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Fig. 4  Brain map of ReHo 
values (top) and associated 
histogram (bottom; the inset 
displays data binned over a sub-
interval). Like the VB index, the 
ReHo metric clearly differen-
tiates between the activated 
regions and the background 
noise, but the distinction among 
the activations themselves is 
significantly sharper in the case 
of the VB index

Fig. 5  Local homogeneity of motor task data as estimated with the 
ReHo (left) and VB (right) algorithms. The histograms in the bottom 
panel show the distribution of values in the brain maps above. The 
reader is reminded, however, that local correlations of real data may 

contain artefacts arising from interpolation (Farrugia et  al. 2023); 
consequently, this figure is provided for demonstrative purposes and 
should not be used to draw any inferences on motor tasks
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the neuRosim package (Welvaert et al. 2011), and plot 
histograms for the output. While both ReHo and the VB 
index pick out the areas of activation from the background 
noise, the VB index traces sharper borders around these 
areas, localising the activations with greater precision. This 
might be due to an important distinction between the way 
ReHo and the VB index work—namely, while ReHo ranks 
data series, the VB index makes use of a modified version 
of the Pearson correlation coefficient. The ReHo metric 
is not dependent on the values of the data points per se, 
but rather on the way they are ordered (when ranked). So 
as an activation turns on and the signal starts to change, 
it is plausible that said change would not immediately be 
detectable in the ReHo output for the region. On the other 

hand, a variation in the values of the time series would still 
affect the VB index even if the ordering itself remains the 
same. Given the recent significant increase in the use of 
local homogeneity to probe functional anomalies associ-
ated with certain diseases and conditions—as elaborated 
on in the Introduction—we believe that the results outlined 
in this work are promising and the merits of the VB index 
warrant further investigation.

We also consider whether solving the generalised eigen-
value problem in place of the standard one to calculate the 
VB index has any benefits. Our results show that when deter-
mined this way, the VB index is more sensitive to noise and 
does not distinguish as well among the different regions of 
activation. Consequently, new versions of the VB toolbox 

Fig. 6  Brain map and histogram 
for the VB values obtained with 
the geig method. The inset 
presents the data binned over a 
sub-interval to the right of the 
principal peak
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will, by default, employ the regular Laplacian and the stand-
ard eigenvalue problem.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00429- 023- 02751-7.
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