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Abstract
Impulsive traits (i.e., the tendency to act without forethought regardless of negative outcomes) are frequently found in healthy 
populations. When exposed to risk factors, individuals may develop debilitating disorders of impulse control (addiction, 
substance abuse, gambling) characterized by behavioral and cognitive deficits, eventually leading to huge socioeconomic 
costs. With the far-reaching aim of preventing the onset of impulsive disorders, it is relevant to investigate the topological 
organization of functional brain networks associated with impulsivity in sub-clinical populations. Taking advantage of the 
open-source LEMON dataset, we investigated the topological features of resting-state functional brain networks associated 
with impulsivity in younger (n = 146, age: 20–35) and older (n = 61, age: 59–77) individuals, using a graph-theoretical 
approach. Specifically, we computed indices of segregation and integration at the level of specific circuits and nodes known 
to be involved in impulsivity (frontal, limbic, and striatal networks). In younger individuals, results revealed that impulsivity 
was associated with a more widespread, less clustered and less efficient functional organization, at all levels of analyses and 
in all selected networks. Conversely, impulsivity in older individuals was associated with reduced integration and increased 
segregation of striatal regions. Speculatively, such alterations of functional brain networks might underlie behavioral and 
cognitive abnormalities associated with impulsivity, a working hypothesis worth being tested in future research. Lastly, dif-
ferences between younger and older individuals might reflect the implementation of age-specific adaptive strategies, possibly 
accounting for observed differences in behavioral manifestations. Potential interpretations, limitations and implications are 
discussed.
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Introduction

Impulsivity is a multidimensional construct describing a ten-
dency to act without forethought in response to internal or 
external stimuli, regardless of potential negative outcomes 
(Moeller et al. 2001; Dalley and Robbins 2017). Impulsive 
traits, when combined with environmental predisposing fac-
tors (e.g., Albertella et al. 2021), might lead to the imple-
mentation of risky behavioral strategies and, eventually, to 
the development of severe and debilitating addictive disor-
ders characterized by a plethora of cognitive and behavioral 
abnormalities (Lee et al. 2019; Maxwell et al. 2020). If over-
looked and untreated, impulsive traits and related disorders 
can deeply jeopardize the functioning of affected individu-
als and their significant others, with huge costs and conse-
quences at the socio-economic and personal level (Birnbaum 
et al. 2011; Latvala et al. 2019; Manthey et al. 2021).
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Interestingly, clinical populations characterized by impul-
sivity exhibit considerable differences in terms of typical 
age of onset and clinical presentations. These populations 
span from children and adolescents diagnosed with neurode-
velopmental disorders (Ahmadi et al. 2021; Kumar et al. 
2022; Zhang et al. 2020), to substance users (Motzkin et al. 
2014; Wilcox et al. 2019), to older adults diagnosed with 
neurodegenerative disorders (Esteban-Penalba et al. 2021; 
Koh et al. 2020; Zhao et al. 2019). These groups have been 
found to share cognitive control impairments, frequently 
linked to specific functional brain abnormalities. Nonethe-
less, the heterogeneity of the aforementioned disorders—in 
terms of developmental trajectories, clinical manifestations, 
underlying pathogenetic mechanisms and pharmacological 
interventions—hinders the identification of transdiagnostic 
neural endophenotypes uniquely associated with impulsive 
traits and behaviors, either in the premorbid or in the chronic 
phases. Importantly, age might represent a confounding fac-
tor in the study of impulsivity, eventually jeopardizing the 
identification of its unique endophenotypes. Indeed, age 
can affect both functional connectivity and the topological 
organization of functional brain networks, cognitive control 
functions and behavior. Nonetheless, evidence concerning 
age-related differences in decision-making, impulsivity and 
risk-taking is mixed and often leading to inconsistent conclu-
sions (e.g., Burnett et al. 2010; Kray et al. 2021; Leijenhorst 
et al. 2008; Paulsen et al. 2012). Moreover, age-dependent 
differences and changes in functional connectivity and in 
the topology of brain networks across lifespan have been 
extensively reported (Chong et al. 2019; Geerligs et al. 
2015; Meunier et al. 2009; Puxeddu et al. 2020; Song et al. 
2014). Therefore, age might represent a massive source of 
systematic (and co-variating) noise when trying to disentan-
gle impulsivity-related from age-related brain changes and 
endophenotypes.

Concerning age-related differences in topological organi-
zation of brain networks associated with impulsivity, previ-
ous studies mainly focused on abnormalities in whole-brain 
functional connectivity and/or in canonical brain networks, 
predominantly in pathological populations (e.g., Chen et al. 
2021; Hege et al. 2015; Tessitore et al. 2017; Whelan et al. 
2012). Notably, very few studies tried to characterize topo-
logical features and organizational properties of functional 
brain networks related to impulsivity (e.g., Davis et al. 2013; 
Gell et al. 2023) and age was rarely included as a potential 
confounding factor.

Recently, significant advancements in recognizing dis-
tinct neural networks responsible for several behavioural 
and cognitive manifestations related to impulsivity—span-
ning from impaired response inhibition and risky decision-
making to the intolerance of delayed rewards—have been 
made. Specifically, reciprocal interactions between frontal 
circuits, striatal and limbic regions were proposed to account 

for clinical manifestations and executive dysfunction related 
to impulsivity (Coccaro et al. 2011; Dalley et al. 2011; Dal-
ley and Robbins 2017; Xu et al. 2021).

Nevertheless, to date, trait impulsivity in healthy indi-
viduals (Reynolds et al. 2019) and its relationship with top-
ological abnormalities of functional networks, especially 
from a graph-theoretical perspective (Davis et al. 2013), 
has been poorly investigated. Indeed, singling out specific 
transdiagnostic functional endophenotypes of impulsivity 
from a topological viewpoint is fundamental for an early 
identification of at-risk populations and for developing 
effective prevention strategies. Henceforth, investigating 
the association between trait impulsivity and topological 
features of functional networks classically associated with 
impulsivity traits in healthy individuals might shed light on 
the neural mechanisms subtending impulsive disorders and 
related cognitive deficits, usually identified and diagnosed 
when chronicization has already occurred.

In the present study, we hypothesized that trait impulsiv-
ity might be associated with topological alterations of func-
tional networks, visible even at rest, that is, when the indi-
vidual is not engaging in any active task execution. Given 
the limited empirical evidence, we adopted an exploratory 
approach aimed at thoroughly describing the relationships 
between behavioral measures of impulsivity (i.e., UPPS 
Impulsive Behavior scale, Whiteside and Lynam 2001) and 
graph-theoretical indices of segregation, integration and 
efficiency. Graph measures were derived in consideration 
of an a priori selected network that is classically associated 
with impulsivity (Coccaro et al. 2011; Dalley et al. 2011; 
Dalley and Robbins 2017; Xu et al. 2021), along with its 
constituting sub-networks (i.e., frontal, limbic and striatal 
modules), and its subcomponents taken individually (i.e., 
14 frontal, 16 limbic, and 8 striatal nodes). We also hypoth-
esized that—due to adaptation mechanisms and/or the chro-
nicization of impulsive traits—age might play a role in the 
reconfiguration of the topology of functional networks asso-
ciated with impulsivity. We analyzed two samples of healthy 
younger and older individuals, whose resting state functional 
magnetic resonance imaging (fMRI) data are made openly 
available from the LEMON dataset (http://fcon_1000.pro-
jects.nitrc.org/indi/retro/MPI_LEMON.html, Babayan et al. 
2019). Therefore, we expected resting-state functional topo-
logical features to differ between healthy younger and older 
populations.

Materials and methods

Participants

Participants were selected from the “Max Planck Institute 
Leipzig Mind-Brain-Body Dataset LEMON” (Babayan et al. 
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2019), an open-source dataset including subjects recruited 
between 2013 and 2015 at the University of Leipzig (Ger-
many). Data were collected in accordance with the Declara-
tion of Helsinki and the protocol of the original study was 
approved by the ethical committee of the medical faculty of 
the University of Leipzig.

The final sample included 207 subjects, divided into two 
distinct age groups of n = 146 (age range 20–35) and n = 61 
(age range 59–77), respectively. Demographic data of both 
samples are reported in Table 1.

Behavioral measures

The UPPS Impulsive Behaviour scale (Whiteside and Lynam 
2001) was administered to measure impulsive tendencies and 
behaviors. A validated version of the 45-item scale, based 
on a four-factor model of impulsivity (Whiteside and Lynam 
2001; Kämpfe and Mitte 2009), was administered in German 
(Schmidt et al. 2008). The scale includes four subscales: 
(1) urgency: tendency to experience strong impulses, often 
accompanied by negative affect (e.g., “In the heat of an argu-
ment, I will often say things that I later regret.”; α = 0.82); 
(2) lack of premeditation: difficulty to understand and think 
about the consequences of an act before doing so (e.g., 
“I usually make up my mind through careful reasoning.”; 
α = 0.80); (3) lack of perseverance: inability to focus on dif-
ficult tasks (e.g., “Once I start a project, I almost always 
finish it.”; α = 0.85); and (4) sensation-seeking: tendency to 
engage in exciting activities and being open to trying new 
experiences that can be dangerous (e.g., “I welcome new 
and exciting experiences and sensations, even if they are a 
little frightening and unconventional.”; α = 0.83). Scores on 
a 4-point Likert scale ranged from 1 (strongly agree) to 4 
(strongly disagree).

Descriptive statistics of UPPS subscales for both younger 
and older participants are reported in Table  2. Higher 

values of UPPS scores represent greater impulsivity traits/
behaviors.

MRI data acquisition

Structural and functional MRI data were acquired with a 
3 Tesla MRI scanner (Verio, Siemens Healthcare GmbH). 
During the acquisition, subjects were asked to remain awake 
with their eyes open and to fixate on a low-contrast fixation 
cross. For our analyses, we considered BOLD resting state 
fMRI scans, using T2-weighted multiband EPI* sequence 
(TR = 1400 ms, TE = 30 ms, flip angle = 69°, echo spac-
ing = 0.67 ms, number of volumes = 657, voxel size (iso-
tropic) = 2.3 mm, slices per volume = 64, total acquisition 
time = 15 min 30 s) and T1-weighted structural volumes 
acquired using MP2RAGE sequence (TR = 5000  ms, 
TE = 2.92 ms, TI1 = 700 ms, TI2 = 2500 ms, FOV = 256 mm, 
isotropic voxel size = 1  mm3). The structural volumes were 
acquired with 176 slices interspersed during 8 min and 22 s 
of scanning.

Neuroimaging analyses

Preprocessing

All processing steps were performed in FSL (Jenkinson et al. 
2012). The following pre-statistics processing was applied: 
motion correction using MCFLIRT (Jenkinson et al. 2002); 
non-brain removal using BET (Smith 2002); spatial smooth-
ing using a Gaussian kernel of FWHM 6.0 mm; grand-
mean intensity normalization of the entire 4D dataset by 
a single multiplicative factor; high-pass temporal filtering 
(Gaussian-weighted least-squares straight line fitting, with 
sigma = 50.0 s). Distortion correction was performed using 
TOPUP (Smith et al. 2004). FLIRT was used to coregister 
each participant’s functional and anatomical volume using 

Table 1  Demographic data of 
younger and older individuals

R right-handed, L left-handed, AMB ambidextrous, S smokers, NS non-smokers

Age Sex Years of education Handedness Smoking habits
M (SD) F (M) M (SD) R (L, AMB) S (NS)

Younger 25.51 (3.40) 45 (101) 12.66 (1.35) 127 (17, 2) 29 (117)
Older 67.75 (5.12) 34 (27) 10.23 (2.42) 57 (2, 2) 5 (56)

Table 2  Descriptive statistics 
of UPPS scores for younger and 
older individuals

T-tests were performed to compare UPPS scores between the two samples
*p < 0.05; **p < 0.0001

Urgency Lack of premeditation Lack of perseverance Sensation-seeking
M (SD) M (SD) M (SD) M (SD)

Younger 26.39 (4.98)* 22.82 (4.08)* 20.06 (4.92)** 34.65 (6.44)**
Older 24.52 (4.32) 21.55 (3.67) 17.15 (3.47) 27.21 (6.09)
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the normalized mutual information as a cost function and 
6-degree-of-freedom. Finally, the brain was parcelled into 
200 cortical regions of interest (ROIs) according to the 
Schaefer Atlas (Schaefer et al. 2018) and an additional 16 
ROIs were included according to the Melbourne Subcortex 
Atlas (Tian et al. 2020), making a total of 216 ROIs. In 
particular, we decided to employ the Schaefer atlas as it was 
conceived based on a gradient-weighted Markov Random 
Field (gwMRF) model, integrating both local gradient and 
global similarity approaches, thus generating parcels that are 
both neurobiological meaningful as well as useful for appli-
cations requiring dimensionality reduction (Schaefer et al. 
2018). As a result, Schaefer’s parcellation has been proven to 
be more homogeneous than other parcellations, and it agrees 
with boundaries of certain cortical areas defined using his-
tology and visuotopic fMRI (Schaefer et al. 2018). Another 
advantage of the Schaefer atlas is that it also divides parcels 
according to the canonical 7-networks classification (Yeo 
et al. 2011). To test the consistency of our findings, analyses 
were re-run using a different parcellation scheme, according 
to the Yeo 7-networks atlas (Yeo et al. 2011), consisting of 
51 ROIs. Results obtained with this alternative parcellation 
scheme are reported in the Supplementary Materials.

Finally, functional connectivity matrices were computed 
from Pearson's correlation between all pairs of ROIs’ func-
tional time-series. A Fisher’s z transformation was then 
applied to normalize the data and ease the interpretation of 
correlation strengths.

Graph‑theory measures

Several graph-theoretical measures were computed within 
the a priori selected regions associated with impulsivity 
(38 nodes) considered altogether, as well as separately (14 
frontal nodes, 16 limbic nodes, 8 striatal nodes; see Supple-
mentary materials Table S1 for a complete list). Finally, we 
averaged together nodal measures belonging to each cluster 
(frontal, limbic and striatal) to characterize each sub-net-
work in terms of its specific topological functional organiza-
tion. To decrease the risk of false positives in identifying sig-
nificant connections, graph theory measures were extracted 
from the individual adjacency matrices obtained by applying 
a stringent 80% threshold (i.e., only the strongest 20% of 
connections within the connectivity matrix were retained. 
For a description of the robustness across different thresh-
olding procedures, see Supplementary Materials). Meas-
ures were computed using the Brain Connectivity Toolbox 
(Whitfield-Gabrieli and Nieto-Castanon 2012) implemented 
in MATLAB (2023a). To better characterize the mechanisms 
of information flow in the brain, we extracted both indices 
of integration and segregation, as follows.

Integration indices:

(1) characteristic path length: average minimum number of 
steps needed to reach all pairs of nodes in the network;

(2) global efficiency: average inverse shortest path length in 
the network, which quantifies the easiness of informa-
tion sharing at the global network level;

(3) eccentricity: maximal shortest path length between any 
pair of nodes in a network;

(4) diameter: maximum distance in the network.
(5) radius: minimum distance in the network.

Higher values at these metrics indicate greater integration 
of the information at the network level. The only exception is 
represented by the measure of characteristic path length, for 
which lower indices are indicative of shorter communication 
distance between nodes, hence higher integration.

Segregation indices:

(6) modularity: statistics quantifying the degree to which 
the network may be subdivided into clearly defined 
modules, based on a greater distribution of within-
module, rather than between-modules, connections;

(7) clustering coefficient: fraction of nodes’ neighbours that 
are neighbours to each other, reflecting how densely 
connected is the network;

(8) local efficiency: equal to the global efficiency computed 
on node neighbourhoods; For all these measures, higher 
values are indicative of greater segregation within the 
system.

Furthermore, a small-worldness index was ultimately 
extracted as a general measure of efficiency in the graph, 
describing the extent to which the network is characterized 
by concomitant high clustering and low path length.

Finally, specific graph-theoretical measures were 
extracted at the node-level for all the selected ROIs, specifi-
cally: (9) degree (i.e., number of a node’s connections); (10) 
clustering coefficient; (11) eccentricity; (12) local efficiency; 
and (13) participation coefficient (i.e., measure of diversity 
of intermodular connections of individual nodes).

Statistical analyses

Statistical analyses were performed with MATLAB software 
(R2023a), for both samples of younger and older partici-
pants. Analyses were performed hierarchically, starting at 
the network-level (i.e., 38-nodes impulsivity network), then 
considering its sub-networks separately (i.e., frontal, limbic 
and striatal modules), and finally considering nodal metrics 
computed separately for each selected ROI. Non-parametric 
Spearman correlations between graph theoretical measures 
computed for the network (and its components) classically 
associated with impulsivity (Coccaro et al. 2011; Dalley 
et al. 2011; Dalley and Robbins 2017; Xu et al. 2021) and 
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UPPS scores were performed, as the assumption of normal-
ity was not always fulfilled. Correction for multiple compari-
sons was applied to decrease the risk of false positives using 
the False Discovery Rate (FDR). To reach a deeper level 
of understanding, the relationship between UPPS scores 
and the topological properties of single nodes forming the 
selected network (38 ROIs) was assessed. Bonferroni-Hol-
mes correction was applied considering the increased risk 
of false positives, given the higher number of statistical tests 
performed. Furthermore, linear mixed-effects models were 
performed to investigate if impulsivity scores could be pre-
dicted by nodal measures considered together and averaged 
between nodes belonging to the same network. To account 
for potential confounding effects, age, sex, education and 
smoking habits were included in the models as random fac-
tors. Nonetheless, none of the latter showed a significant 
effect, therefore these were not included in the final models. 
Outliers in the models were identified as those with more 
than three scaled median absolute deviations (MAD) from 
the median (n = 11 and n = 9 individuals for the younger 

and the older cohorts, respectively) and removed from the 
analyses. Finally, to test for significant differences in net-
work-level brain-behavior relationships between younger 
and older individuals, we performed a series of Fisher's Z 
tests to compare correlations between independent samples 
(Diedenhofen and Musch 2015; for more details see the 
dedicated paragraph in the “Results” section).

Results

Younger adults

Network‑level analyses

Spearman correlations revealed that lack of premeditation 
scores positively correlated with integration indices such as 
characteristic path length (r = 0.248, p = 0.0029), diameter 
(r = 0.274, p < 0.001) and eccentricity (r = 0.272, p = 0.001) 
at the network-level (Fig. 1).

Fig. 1  Significant associations (FDR-corrected) between graph-theoretical measures computed at the network level (all selected nodes consid-
ered altogether) and UPPS scores for younger individuals
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Moreover, we observed a significant positive correla-
tion between lack of premeditation scores and eccentricity 
of nodes belonging to the frontal (r = 0.270, p = 0.0011), 
limbic (r = 0.272, p = 0.0011) and striatal (r = 0.203, 
p = 0.0153) networks, while striatal clustering coefficient 
negatively correlated with lack of premeditation scores 
(r = – 0.215, p = 0.0104). All results were corrected for 
multiple comparisons (FDR-corrected p < 0.05; Fig. 2).

Node‑level analyses

A consistent positive association between eccentricity of 
frontal (mainly right-sided), limbic (bilateral) and striatal 
(right-sided) nodes and lack of premeditation emerged. 
Moreover, lack of premeditation was negatively associated 
with both nodal clustering coefficient and local efficiency 
of right-sided striatal nodes (Fig. 3). Considering the higher 
number of correlations performed for the nodal analyses, 
a more stringent correction for multiple comparisons was 

Fig. 2  Significant associations between graph-theoretical measures 
computed at the network level (nodal measures mediated for nodes 
belonging to the three selected networks, separately) and UPPS sub-
scales for younger individuals. A Correlations for mean frontal net-
work measures. B Correlations for mean limbic network measures. C 

Correlations for mean striatal network measures. ClusCoef clustering 
coefficient, Deg degree, Ecc eccentricity, Eloc local efficiency, Lack-
Prem lack of premeditation, LackPers lack of perseverance, PartCoef 
participation coefficient, SenSeek sensation-seeking

Fig. 3  Significant associations between nodal measures of selected 
nodes and lack of premeditation scale in younger individuals (Bonfer-
roni-corrected). A Associations between lack of premeditation scores 
and eccentricity of cortical nodes. B Associations between lack of 
premeditation scores and eccentricity of subcortical nodes. C Associ-
ations between lack of premeditation scores and clustering coefficient 

of subcortical nodes. D Associations between lack of premeditation 
scores and local efficiency of subcortical nodes. In the upper right 
corner, a depiction of selected subcortical ROIs and related labels. 
Amy amygdala, Cau caudate, GP globus pallidus, Hip hippocampus, 
NAc nucleus accumbens, Put putamen
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applied (Bonferroni-Holmes). Coordinates of nodes surviv-
ing correction for multiple comparisons and related statistics 
are reported in Table 3.

Linear mixed‑effect models

LMMs were performed to test if UPPS subscales scores 
could be predicted from mean nodal network measures. 
Separate models were run for each UPPS subscale (urgency, 
lack of premeditation, lack of perseverance, sensation seek-
ing) and network (frontal, limbic, striatal). Results revealed 
that lack of premeditation scores were significantly predicted 
by frontal (t = 2.2062, p < 0.05), limbic (t = 2.7062, p < 0.01) 
and striatal (t = 2.5141, p < 0.05) eccentricity, and by frontal 
participation coefficient (t = 2.0316, p < 0.05). Finally, sen-
sation-seeking scores were significantly predicted by limbic 
eccentricity (t = 2.1531, p < 0.05).

Older adults

Network and node level analyses

Notably, none of the Spearman brain-behavior correlations 
performed for older individuals survived to correction for 
multiple comparisons, at any level of analysis. For this rea-
son, the latter results are not presented.

Linear mixed‑effects models

LMMs revealed that lack of perseverance scores were 
significantly predicted by mean frontal clustering coeffi-
cient (t = – 2.117, p < 0.05), degree (t = – 2.687, p < 0.01), 

eccentricity (t = – 2.373, p < 0.05) and local efficiency 
(t = 2.903, p < 0.01), as well as by mean limbic participa-
tion coefficient (t = 2.249, p < 0.05), mean striatal eccen-
tricity (t = – 2.239, p < 0.05) and local efficiency (t = 2.630, 
p < 0.05). Finally, lack of premeditation scores were signifi-
cantly predicted by mean striatal eccentricity (t = – 2.089, 
p < 0.005).

Comparison of brain‑behavior associations 
between younger and older adults

Finally, to directly test the differences of investigated brain-
behavior associations between younger and older individu-
als, we performed a series of Fisher's Z tests to compare 
correlations between independent samples (Diedenhofen 
and Musch 2015). Specifically, we compared associations 
tested at the network-level. Significant differences in the 
strength and directionality of brain-behavior relationships 
between younger and older individuals were observed. Sig-
nificant results were found for the associations between lack 
of premeditation and frontal (z = 2.503, p < 0.05), limbic 
(z = 2.619, p < 0.01), striatal (z = 2.882, p < 0.005) eccentric-
ity, and striatal clustering coefficient (z = – 2.523, p < 0.05). 
Lastly, a significant difference emerged for the association 
between sensation-seeking and frontal participation coeffi-
cient (z = – 1.987, p < 0.05, see Fig. 4). Overall, associations 
characterized by significant differences showed an opposite 
pattern for younger versus older individuals. (Fig. 4 about 
here). Additionally, a sensitivity power analysis was per-
formed in G*Power for testing the effect sizes of the Fisher's 
z tests performed to compare brain-behavior correlations 
between younger and older adults. Specifically, we tested the 

Table 3  Significant Spearman 
correlations surviving 
Bonferroni-correction 
for multiple comparisons 
(p < 0.0013) between 
nodal measures and the 
UPPS subscale “lack of 
premeditation” 

antPFC anterior prefrontal cortex, dlPFC dorsolateral prefrontal cortex, FEF frontal eye field, GP globus 
pallidus, Hip Hippocampus, OFC_orb orbitofrontal cortex pars orbitalis, ParaHip parahippocampal gyrus, 
PUT putamen, Tpole temporal pole

MNI Region rho p (corrected)

x y z

Clustering coefficient 20.12 – 3.82 – 1.70 GP_right – 0.30461539 0.008
26.79 0.44 0.83 PUT_right – 0.32159511 0.004

Local efficiency 26.79 0.44 0.83 PUT_right – 0.26910249 0.046
Eccentricity – 32 42 – 14 OFC_orb_left 0.27280513 0.032

30 58 4 antPFC_right 0.29847158 0.011
30 48 28 dlPFC_right 0.27273717 0.032
40 34 38 dlPFC_right 0.28743414 0.018
42 14 48 FEF_right 0.26570837 0.04
– 28 10 – 34 Tpole_left 0.29025068 0.016
30 8 – 38 Tpole_right 0.30203075 0.01
– 25.19 – 22.18 – 14.14 Hip_left 0.28405224 0.02
27.19 – 22.18 – 14.14 Hip_right 0.2957648 0.013
26 – 10 – 32 ParaHip_right 0.27870387 0.025
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correlations between two independent Spearman's rho (i.e., 
younger adults, n = 146; older adults, n = 61) and we set the 
power at 0.80. Our analyses revealed a critical z of 1.96 and 
an effect size q of 0.44.

Discussion

The aim of the present study was to investigate the relation-
ship between impulsive traits and the topological organi-
zation of functional networks in healthy individuals using 
an exploratory approach, at the level of specific networks 
and nodes known to be involved in impulsive behaviors 
and found to be altered in clinical populations character-
ized by impulsivity. We also hypothesized that age might 
play a role in the modulation of the aforementioned relation-
ships. Therefore, we tested these relationships separately for 
younger and older individuals. Results showed distinct pat-
terns of such relationships for younger and older individuals, 
respectively, either at the network level or at the node level.

Specifically, impulsivity in younger individuals was found 
to be associated with a more widespread, less segregated and 
less efficient functional organization, either at the level of 
specific networks or at the level of specific nodes. Inter-
estingly, lack of premeditation was the most characterizing 
dimension, as it was consistently found to be positively asso-
ciated with integration measures and negatively associated 
with segregation/efficiency measures at all levels of analysis.

Moreover, for younger individuals at the single-node 
level, a specific integration index (i.e., eccentricity) 

characterizing several prefrontal nodes—mainly located in 
the right hemisphere—and bilateral temporal poles were 
found to be positively associated with lack of premedita-
tion. On the other hand, segregation (i.e., clustering coeffi-
cient) and efficiency measures of striatal (right-sided) nodes 
negatively correlated with lack of premeditation. Such asso-
ciations might speculatively reflect a major involvement of 
several right prefrontal subdivisions (for a complete list of 
prefrontal nodes involved, see Table 3) in widespread infor-
mation processing and long-range communication between 
distant modules. Interestingly, lateral prefrontal cortices 
are thought to subserve different high-level cognitive func-
tions (Goel 2019; Ravaja et al. 2013; Vallesi 2021). Indeed, 
the right prefrontal cortex is thought to play a key role in 
planning when dealing with dynamic events, as it integrates 
information in temporally-ordered sequences (Grafman et al. 
2005; Kaller et al. 2011). Therefore, an increased involve-
ment of right prefrontal nodes in widespread and long-range 
information processing might, in turn, hinder local informa-
tion processing at the level of prefrontal modules and local 
circuits. This might lead to defective sequencing of informa-
tion and, eventually, to the impossibility of precisely repre-
senting the dynamics regulating temporally-ordered events 
and how such events would evolve and could be influenced 
by one’s own actions.

Secondly, concerning findings about limbic nodes, struc-
tural alterations of the bilateral temporal pole was found to 
be positively associated with trait impulsivity (Fineberg et al. 
2014; Liu and Feng 2017; Schilling et al. 2013; Pan et al. 
2021). The temporal pole plays a crucial role in processing 
sensory inputs and emotional stimuli, alongside other limbic 
regions. Notably, the ability to manage negative emotions 
can deeply influence how action goals and outcomes are 
represented (Olson et al. 2007; Van Overwalle and Baetens 
2009). Evidence about the functions of the temporal pole 
suggests that it plays a fundamental role in restraining social 
behaviors and in dealing with negative emotions contribut-
ing to impulsive decision-making (Bornovalova, et al. 2005; 
Garon and Moore 2006). Therefore, increased eccentricity 
of the temporal poles within the cortico-striatal-limbic cir-
cuit might, speculatively, reflect an increased involvement 
of emotional processing in implementing decision-making. 
Alternatively, it might underlie a compensatory mechanism 
aimed at dealing with and regulating overwhelming nega-
tive emotions, possibly reflecting—at a behavioral level—an 
attempt to limit impulsive responses and actions.

Lastly, concerning findings about striatal nodes (i.e., 
decreased efficiency and clustering associated with lack of 
premeditation), integrity of striatal and fronto-striatal cir-
cuits is thought to play a crucial role in cognitive flexibility 
and goal-directed behavior, either in preclinical or in clinical 
conditions (Middleton and Strick 2000; Vaghi et al. 2017). 
Interestingly, there is evidence that the striatum (i.e., caudate 

Fig. 4  Significant differences in strength and direction of brain-
behavior associations for mean network measures between younger 
and older individuals. ClusCoef clustering coefficient, Eccen eccen-
tricity, PartCoef participation coefficient, F frontal, L limbic, S stri-
atal
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and dorsomedial striatum) plays a role in integrating reward-
related information needed to implement action control (Bal-
leine et al 2007a) and, thus, decision-making (Balleine et al 
2007b), along with prefrontal circuits. According to the Dual 
Systems Theory, action control is implemented by balancing 
habitual and goal-directed systems (Doñamayor et al. 2022), 
both subserved by cortico-striatal networks. Evidence sug-
gests that populations characterized by impulsivity, such as 
substance users, show a shift towards habitual relative to 
goal-directed strategies when implementing specific behav-
iors (Ersche et al. 2021). Therefore, a decreased functional 
segregation and efficiency of striatal nodes might reflect a 
defective balance in information processing within striatal 
modules, with a deficit in implementing goal-directed strat-
egies and an increased reliance on long-established stimu-
lus–response associations (i.e., habits).

To sum up, a more widespread and less efficient func-
tional organization of brain networks at rest in younger 
individuals is characterized by difficulties in foreseeing the 
consequences of one’s own actions (i.e., lack of premedi-
tation) and might reflect a shift towards global informa-
tion processing, possibly associated with an impairment in 
local information processing. In other words, information 
might be projected to distant modules before being effi-
ciently processed at the local level, possibly leading to a 
loss of functional specialization and precision (i.e., increased 
uncertainty of predictions and associated representations; 
Soltani and Koechlin 2022). This might lead to an inability 
to correctly predict the consequences of one’s own actions 
(i.e., impaired learning of action-outcome associations) and, 
eventually, might favour the implementation of habitual over 
goal-directed behavioral strategies (Lee et al. 2014; Soltani 
and Koechlin 2022). The observed association between more 
widespread and less clusterized organization and the lack 
of premeditation interested nodes belonging to frontal, lim-
bic and striatal networks. These circuits are known to be 
involved in the implementation of impulsive behaviors (Coc-
caro et al. 2011; Hobkirk et al. 2019; Quaglieri et al. 2020; 
Xu et al. 2021). As a result, they have also been consistently 
found to be functionally and structurally altered in clinical 
populations characterized by impulsivity (Inuggi et al. 2014; 
Koh et al. 2020; Oliva et al. 2020; Quaglieri et al. 2020; 
Reynolds et al. 2019; Wang et al. 2016), and are marked by 
specific neurotransmitter profiles possibly underlying impul-
sive behaviors (Dalley and Robbins 2017; Hammes et al. 
2019; Gell et al. 2023). Therefore, we speculate that our 
findings about reduced efficiency paralleled by a more global 
pattern of information processing in such networks might 
reflect the implementation of impulsive behaviors as a result 
of an inability to form accurate and precise representations 
of the consequences of one’s own actions. Indeed, healthy 
functional brain networks were found to be characterized 
by a rather modular and reduced widespread organization 

(Meunier et al. 2009; Ferrarini et al. 2009). Nevertheless, 
some evidence showed that impulsivity was associated with 
increased intra-modular connections and a decreased inter-
modular connections at rest (Devis et al. 2013), suggesting 
that impulsivity might be subtended by a predominantly seg-
regated organization of brain networks. Hence, further stud-
ies are needed to better characterize the topological features 
of functional brain networks underlying impulsivity.

Concerning the topological organization of functional 
networks in impulsive older individuals, correlational 
analyses did not survive correction for multiple compari-
sons, possibly owing to the relatively smaller sample size 
(n = 61) which might have decreased the statistical power 
and/or to the increased inter-individual variability of BOLD 
signal for older compared to younger individuals (D'Esposito 
et al. 2003; Grady and Garrett 2014). Nonetheless, LMMs 
revealed that impulsivity scores were significantly predicted 
by (1) increased segregation and local efficiency of the 
frontal and striatal networks, and by (2) increased partici-
pation of the limbic nodes. Speculatively, this might reflect 
a deficit in correctly processing and integrating emotional 
stimuli within circuits subserving emotion regulation. Nota-
bly, these circuits are known to be responsible for reward, 
emotional processing and regulation (Harada et al. 2021; 
Kebets et al. 2021; Molina-Ruiz et al. 2020, Morein-Zamir 
and Robbins 2015). Indeed, the effective processing and 
regulation of emotional stimuli is fundamental to properly 
implement goal-directed behaviors and to prevent negative 
consequences (Miller and Racine 2022; Pruessner et al. 
2020). Therefore, older impulsive individuals might be 
characterized by deficits in emotional processing and regu-
lation, eventually leading to deficits in implementing goal-
directed behavioral strategies aimed at preventing negative 
outcomes. Nonetheless, the latter interpretations are specula-
tive in nature, given the lack of robustness for correlational 
evidence and given the reduced sample size for the group 
including older individuals.

Interestingly, when the directions of relationships 
between impulsivity and graph-theory measures were 
explicitly compared between younger and older individuals, 
consistent opposite patterns emerged at the network level for 
all the tested associations, indeed supporting the hypothesis 
about the role of age in modulating the associations between 
topological functional abnormalities and impulsivity.

In other words, specular patterns for younger and older 
individuals emerged: positive associations between graph-
theory indices and impulsivity in younger individuals were 
paralleled by negative associations in older individuals 
(frontal, limbic and striatal eccentricity), and vice versa 
(striatal clustering coefficient). This finding might indi-
cate a key role of age in the topological reconfiguration 
of functional brain networks of impulsive individuals. In 
other words, mechanisms of functional adaptation might 
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occur across the lifespan to account for topological func-
tional alterations underlying impulsivity, thus allowing the 
development of alternative behavioral strategies to cope with 
daily challenges. Alternatively, such a pattern might reflect 
a progressive deterioration of functional brain networks 
associated with age. Nonetheless, given the age gap in the 
full sample, we were not able to perform more sophisticated 
statistical analyses with age as a continuous predictor. More-
over, our study was cross-sectional, which entails all the 
known limitations for this kind of experimental design (e.g., 
Levin 2006). Therefore, other studies need to be carried out 
(see limitations paragraph below) to deeply investigate the 
relationship between the topological functional reorganiza-
tion of brain networks and impulsivity across the lifespan, if 
possible longitudinally, and to corroborate the role of age in 
mediating or moderating such relationships and in explain-
ing their changes across the lifespan.

Our study—aimed at exploring the functional organiza-
tion of brain networks associated with trait impulsivity—
indeed entails some limitations that must be addressed in 
future studies. Firstly, our sample included only healthy 
individuals, and impulsivity values considered pathological 
were excluded from the analyses. Therefore, the general-
izability of our findings from sub-clinical tracts to patho-
logical populations characterized by impulsivity awaits 
further experimental confirmation. Secondly, the age gap 
in the full dataset between younger and older individuals 
prevented us from including age as a continuous covari-
ate in our statistical models and, therefore, from carefully 
accounting for its effects, as it would be advisable given the 
above-discussed inconsistencies and gaps in the literature 
regarding age-related changes associated with impulsivity. 
Thirdly, the two tested populations largely differ in terms of 
sample size. Moreover, variance in BOLD signal is known to 
be intrinsically higher in older compared to younger adults 
(D'Esposito et al. 2003; Grady and Garrett 2014), which 
might have affected the results in unpredictable ways. More-
over, the arbitrariness of some methodological choices (e.g., 
statistical thresholding of adjacency matrices, parcellation 
procedure, a priori selection of nodes and networks) might 
have also affected the final results. Furthermore, from the 
methodological viewpoint, we ran our analyses consider-
ing 20% of the strongest connections. Nonetheless, the arbi-
trariness of such an approach entails that different results 
may emerge when different thresholds are considered (for 
results obtained with other thresholding methods, see Sup-
plementary Materials). Indeed, our methodological choice 
may have affected our results in unpredictable ways. For 
instance, it might have left out relevant information (van 
Wijk et al. 2010), and/or it might have affected the compu-
tation of specific graph-theoretical metrics or group com-
parisons (van den Heuvel et al. 2017). An additional issue 
that needs to be considered is the risk of alterations in the 

functional connectome induced by residual motion artefacts 
despite the fact that data were carefully checked, which is an 
intrinsic limit of fMRI (Ciric et al. 2017; Lydon-Staley et al. 
2019; Parkes et al. 2018). Lastly, the correlational and cross-
sectional nature of our study prevents us from proposing 
any causal hypotheses or conclusions regarding either the 
relationships between impulsivity and the topological func-
tional organization of brain networks or the role of age in 
mediating such relationships, above and beyond generation 
of new working hypotheses for further investigation. Future 
studies are indeed needed to clarify the directionality of the 
tested associations, as well as to longitudinally investigate 
and interpret changes of such associations across lifespan.

In conclusion, alterations in the topology of functional 
brain networks at rest might underlie specific behavioral 
and cognitive alterations associated with impulsive traits 
at the premorbid level. Moreover, differences in the topo-
logical features of functional brain networks associated 
with impulsivity between younger and older individuals 
might reflect adaptation mechanisms, possibly occurring 
across lifespan to cope with deficits in impulse control. 
Lastly, typical age-related changes in the topology of 
functional brain networks might account for differences in 
behavioral manifestations of impulsivity between younger 
and older individuals.
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