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Abstract
Interactions between different cortical rhythms, such as slow and fast oscillations, have been hypothesized to underlie many 
cognitive functions. In patients diagnosed with schizophrenia, there is some evidence indicating that the interplay between 
slow and fast oscillations might be impaired or disrupted. In this study, we investigated multiple oscillatory interactions in 
schizophrenia using a novel approach based on information theory. This method allowed us to investigate interactions from 
a new perspective, where two or more rhythm interactions could be analyzed at the same time. We calculated the mutual 
information of multiple rhythms (MIMR) for EEG segments registered in resting state. Following previous studies, we 
focused on rhythm interactions between theta, alpha, and gamma. The results showed that, in general, MIMR was higher 
in patients than in controls for alpha–gamma and theta–gamma couplings. This finding of an increased coupling between 
slow and fast rhythms in schizophrenia may indicate complex interactions in the Default Mode Network (DMN) related to 
hyperactivation of internally guided cognition.
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Introduction

Schizophrenia is a severe disorder characterized by cogni-
tive and social dysfunction. Patients exhibit positive symp-
toms like hallucinations and delusions, as well as negative 
symptoms like anhedonia, poor social interactions, and cog-
nitive impairment (Andreasen et al. 1994). Despite ongo-
ing research, the etiology of the disorder remains unclear. 
However, from the neurophysiological point of view, schizo-
phrenia appears to be a complex disorder involving poor 
interconnections of large scale neural networks (Dong et al. 
2018; Northoff and Duncan 2016). Consequently, the spon-
taneous activity of the brain could mirror these abnormali-
ties in network function. One of the most widely used meth-
ods to investigate the neurophysiology of schizophrenia has 
been the analysis of the electroencephalograms (EEGs). The 

majority of studies directed to understanding EEG patterns 
have used frequency decomposition to obtain measures of 
power at specific frequency bands. Using this approach, it 
has been found that schizophrenic patients exhibit a decrease 
in power within alpha band (8–12 Hz) (Fenton et al. 1980; 
Kim et al. 2015), and an increase in delta (0–3 Hz) and theta 
(4–7 Hz) rhythms (Kim et al. 2015). Evidence about faster 
frequencies is less clear, since some research has found 
increased power in beta (12–30 Hz) and gamma (> 30 Hz) 
bands in schizophrenia, while others have found opposite 
results (for a systematic review, see Maran et al. 2016).

Other approaches to the understanding of schizophrenia 
through EEGs are designed to detect and analyze connec-
tivity between signals registered from different locations 
on the scalp of patients. Classically, the main finding has 
been an increase in coherence widely distributed across 
the scalp of patients, where coherence can be described 
as a mathematical method to determine whether two or 
more sensors, or brain regions, exhibit a similar oscilla-
tory activity. Merrin et al. (1989) extended this finding to 
unmedicated patients, showing that, at least in theta, there 
was a high intra- and interhemispheric coherence in this 
population, compared to controls. Although these find-
ings have been largely replicated (e.g., Kam et al. 2013), 
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reduced coherence has also been described in schizophre-
nia (Tauscher et al. 1998; Winterer et al. 2001).

More sophisticated methods to obtain measures of 
synchrony have been proposed to explore connectivity 
dysfunctions in schizophrenia. For example, Berger et al. 
(2016), calculated the phase locking value of partici-
pants during a working memory task, to assess synchrony 
between EEG signals in the theta band. They found lower 
values in frontoparietal connectivity in patients, compared 
with healthy participants. Similarly, Andreou et al. (2015) 
reported increased theta imaginary coherence in schizo-
phrenia during resting state. In short, imaginary coherence 
might be conceived as an update of coherence in which 
spurious connectivity between signals is prevented (Nolte 
et al. 2004). In a recent study, Steinman et al. (2020) con-
ducted a review of the most commonly used methods for 
exploring EEG connectivity in schizophrenia. Although 
these methods, as we explained above, explore the coher-
ence or synchrony between signals from different record-
ing sources, there are other connectivity measures based 
on the capacity of one signal to predict the state of a dif-
ferent signal, for example Granger causality (also reviewed 
in Steinman et al. 2020). Results obtained with these last 
measures indicated impaired temporoparietal connectiv-
ity in the theta frequency band (Kusterman et al. 2018). 
Considering these findings, it could be posited that there is 
not a definitive electrophysiological pattern characterizing 
schizophrenia. The most consistent observation may be an 
abnormal connectivity within the theta frequency range, 
both in resting-state and during tasks.

Another approach to understanding the neurophysiologi-
cal interplay in schizophrenia involves studying cross- fre-
quency coupling between different oscillatory rhythms in 
the brain. This measure assesses not the interaction among 
signals at different locations, but the coupling of different 
frequencies at the same location or cortical source. The 
coupling of two neural rhythms can be explored using the 
amplitudes (the magnitude or power) or the phases (the 
timing) of the signals (Jirsa and Müller 2013). However, 
one particularly insightful approach has been the study of 
phase-amplitude coupling (PAC), where the phase of a slow 
rhythm modulates the amplitude of faster rhythms. This has 
been demonstrated by Kirihara et al. (2012) and suggests 
that PAC may reflect a functional mechanism to coordi-
nate activity across distant areas of the cortex (Canolty and 
Knight 2010). According to this perspective, slow oscilla-
tory activity would coordinate faster oscillations in dispa-
rate brain regions. Notably, theta-phase gamma–amplitude 
coupling has been extensively researched. This specific PAC, 
where the amplitude of the gamma band is modulated by the 
phase of the theta band, has been implicated in vital cogni-
tive functions like working memory and long-term memory 
formation.

In the schizophrenia research, studies have consistently 
reported reduced theta–gamma coupling during working 
memory or executive tasks (Barr et al. 2017; Linn and Spon-
heim 2016; Popov et al. 2015). Furthermore, theta–gamma 
coupling has been shown to correlate significantly with 
working memory performance in controls subjects, but not 
in patients with schizophrenia (Barr et al. 2017). This has 
led to the hypothesis that dysfunctional theta–gamma cou-
pling may contribute to working memory impairments in 
schizophrenia. Conversely, theta–gamma coupling appears 
to be intact or enhanced in patients during resting state (Lee 
et al. 2020; Won et al. 2018), particularly in prefrontal areas. 
Hirano et al. (2017) observed increased theta–alpha cou-
pling in patients subjected to passive auditory stimulation. 
The impaired theta–gamma coupling during cognitive tasks 
may reflect deficits in higher order cognitive functions in 
schizophrenia, leading some researchers to propose that the 
increased resting-state theta–gamma coupling represents a 
compensatory mechanism for cognitive deficits (Lee et al. 
2020; Won et al. 2018). Supporting this hypothesis, Lee 
et al. (2020) found that increased coupling in patients at rest 
correlated with better performance in executive tests, pro-
viding more evidence to support the idea of a compensatory 
mechanism that prepares cognitive resources to be available 
when needed. It is noteworthy that theta–alpha couplings 
have been also related with cognitive effort and working 
memory functions (e.g., Rodriguez-Larios et al. 2020). For 
example, Dimitriadis et al. (2016) found causal couplings 
between frontal theta and parietal alpha rhythms during 
mental arithmetic calculations. If both theta–gamma and 
theta–alpha are involved in effortful cognitive processing 
at task, they might be part of the same function or closely 
related functions (for a systematic review on cross-frequency 
coupling and schizophrenia, see Yakuvov et al. 2022). More-
over, this increased coupling at rest could also be related to 
recent findings showing a predominance of internally guided 
cognition in schizophrenia (see Prieto-Alcántara et al. 2020).

A second approach to the study of coupling between 
different frequency bands in EEG signals draws from 
Information Theory. This perspective assesses the infor-
mational structure of signals to determine levels of ran-
domness within individual signals or to examine informa-
tion sharing between different signals. Sample Entropy, a 
common measure of randomness that reflects the unpre-
dictability in a signal's temporal structure, was intro-
duced by Richman and Moorman (2000). This measure 
was extended to be sensitive to different time scales as 
a multiscale sample entropy (MSE) (Costa et al. 2002). 
Although patients with schizophrenia tend to exhibit 
higher levels of entropy in the EEGs than healthy par-
ticipants, other studies have shown the opposite pattern of 
results (for a review, see Fernández et al. 2013). In addi-
tion to indicators of single signals, Mutual Information 
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(MI) is one of the preferred measures to explore infor-
mation sharing between EEG signals. High MI between 
signals indicates strong linear and nonlinear statistical 
dependence between signals (high connectivity). Na 
et al. (2002) explored MI of EEG channels and found 
an increase in MI for patients with schizophrenia. Car-
lino et al. (2015) also found a general increase in MI in 
schizophrenia at temporal, parietal, and occipital regions; 
moreover, when they compared the increase in MI from 
eyes-closed to eyes open-conditions, they found that only 
healthy controls flexibly changed their MI connectivity in 
their EEGs. In another study, Yin et al. (2017) analyzed 
the topographical properties of networks constructed with 
measures of MI between EEG channels and concluded 
that there is less information sharing in networks from 
patients than healthy controls. Overall, findings from 
different authors do not converge into the same pattern 
of results when information measures are applied, and 
thus, further experiments are needed to shed more light 
on the relationship between schizophrenia and coupling 
of EEG signals. One promising methodological candidate 
to explore informational aspects of EEGs in schizophrenia 
would be an exploration of interaction of its informa-
tional content at different scales. In the same manner as 
the above-mentioned PAC measures explore interactions 
between phase and amplitude of two different frequen-
cies, it would be possible to investigate cross-frequency 
interactions using mutual information of multiple rhythms 
(MIMR). This measure was recently developed by Ibáñez-
Molina et al. (2020) to explore MI between two or more 
frequencies in a given signal.

In the present work, we have evaluated MIMR with a 
particular focus on theta–gamma interactions in patients 
with schizophrenia and controls at rest. As we mentioned 
before, previous findings seem to suggest an increased 
theta–gamma coupling in patients at rest, and we aimed 
to explore these cross-frequency interactions from the 
perspective of Information Theory. Since theta–gamma 
enhancements at rest can be explained with cognitive 
compensation in patients, in this study, we also investi-
gated if theta–alpha couplings, which are related to cogni-
tive effort, were also increased in patients.

A key advantage of MIMR over other information-
theoretic measures is its capacity to elucidate multi-
variate interactions (as detailed in the methods section). 
Therefore, our objective was to probe the mutual infor-
mation across different rhythms in both patients with 
schizophrenia and healthy controls. We hypothesize that 
if theta–gamma and theta–alpha couplings are function-
ally interrelated, as suggested, we would also observe an 
increase in the theta–alpha–gamma interaction within the 
patient group.

Materials and methods

Participants

The sample of this study was composed of two groups of 
participants, a group of patients and a group of healthy 
controls.

The patient group (hereafter SCZ group) was composed 
of 11 participants recruited at the Mental Health Day Cen-
tre at St. Agustín University Hospital (Linares, Jaén). The 
inclusion criteria were an ICD-10 diagnosis of schizophre-
nia (F20), psychotic disorder (F23), or schizoaffective dis-
order (F25). The participants were diagnosed by the clini-
cian in charge of the patient. The mean age in this group 
was 36.23 years (SD = 10.28 years; min = 23, max = 53). 
Out of the total participants, 2 (18%) were women. All 
participants were right-handed. Regarding educational 
level, 2 (18%) had primary education, 8 (72%) had sec-
ondary education, and 1 (10%) had higher education. The 
mean duration of the disorder (defined as the number of 
years since diagnosis) was 15.72 years (SD = 10.19 years; 
min = 3, max = 35). All participants were receiving atypi-
cal antipsychotics. Out of the total number of participants, 
2 were receiving oral medication and 9 were receiving 
it in injectable form. In addition, one participant was 
receiving antidepressants. Due to the disparity of active 
principle, doses and administration formats, we converted 
all antipsychotic doses to chlorpromazine equivalents 
(M = 818.18 mg, SD = 407.75 mg).

The 20 participants in the control group (hereafter 
referred to as the Ctrl group) were recruited from among 
the students of the University of Jaen, from an adult school 
in Jaen and from the staff of St. Agustín University Hos-
pital (Linares, Jaén). The mean age of this group was 
40.72 years (SD = 11.96 years; min = 23, max = 57). Of the 
total number of participants, 7 (35%) were women; and 18 
(90%) were right-handed. Regarding educational level, 1 
(5%) had primary education, 12 (60%) had secondary edu-
cation, and 7 (35%) had higher education. No significant 
differences were found between groups in terms of educa-
tional level (χ2(2) = 3.29; p = 0.19), or gender (χ2(2) = 0.97; 
p = 0.32). Since age in the Control group did not follow 
a normal distribution (Shapiro–Wilk = 0.89; p < 0.05), 
we used the Mann–Whitney test to compare groups. The 
results indicated that there were no significant differences 
in age between the groups (U = 85; p = 0.31).

For both groups, the exclusion criteria were: a concur-
rent diagnosis of a neurological disorder, a concurrent 
diagnosis of a substance abuse disorder, a history of devel-
opmental disability, and an inability to sign informed con-
sent. Additionally, a criterion for exclusion in the control 
group was a diagnosis of a mental disorder (as reported 



288	 Brain Structure and Function (2024) 229:285–295

1 3

verbally by the participants). All participants provided 
written informed consent in accordance with the Declara-
tion of Helsinki, and the Jaén Research Ethics Committee 
approved the study.

Procedure and data recording

The study was conducted in a hospital laboratory room, 
enabled for EEG recording. This room had an approxi-
mate size of 15 m2 and was located in a quiet place with 
few potentially interfering electrical fields in the band of 
50 Hz. Since patients came to the Mental Health Unit in 
the morning, the EEG recordings of all study participants 
were made only during that period of time. Participants who 
agreed to participate were scheduled in the EEG record-
ing lab individually, where the objective of the study was 
explained to them, the experimental protocol was described 
and, if they chose to participate, they were requested to sign 
the informed consent form. The experimenter proceeded to 
place the 31 active electrode assembly on the 10–20 system 
with positions FP1, FP2, F7, F3, Fz, F4, F8, FT9, FC5, FC1, 
FC2, FC6, FT10, T7, C3, C4, T8, TP9, CP5, CP1, CP2, CP6, 
TP10, P7, P3, Pz, P4, P8, O1, Oz, and O2. We used Cz as the 
physical reference electrode. Impedances were kept below 5 
kOhm. Measurements were carried out using a 62-channel 
BrainAmp system. Signals were recorded at a frequency of 
500 Hz.

Participants were situated in a comfortable chair with a 
laptop positioned on a desk directly before them, the screen 
being approximately 70 cm from their eyes. During the 
resting-state task, they were directed to fixate on a light 
grey cross at the center of a black background on the laptop 
screen for a duration of 5 min. Participants were instructed 
to remain still, refrain from speaking, and were permitted 
to let their thoughts wander freely. The experimenter moni-
tored the session from behind the participants, ensuring that 
they remained out of the participants' sight, within the same 
room.

EEG processing

Data processing was performed with EEGLAB (Delorme 
and Makeig 2004) and custom MATLAB functions. For 
each participant, we selected 5 min continuous data. Blinks 
and other artifacts were extracted using infomax ICA (Bell 
and Sejnowski 1995). ICA components with artifacts were 
selected by visual inspection of the scalp topography, power 
spectra, and raw activity from all components. The result-
ing EEGs after denoising were used as inputs for a custom 
MATLAB script developed to obtain MIMR at the chosen 
frequencies.

Mutual information of multiscale rhythms (MIMR)

To obtain the MIMR, we computed binary sequences 
corresponding to the desired timescales from the origi-
nal signal. To calculate these binary sequences, we used 
smoothed versions of the original signal as thresholds. 
These smoothed versions were obtained by applying 
median moving windows of different length to the origi-
nal signal.

Specifically, we initially filtered the original signal using 
different moving window sizes, where wider windows 
produced lower frequency signals, while shorter windows 
resulted in higher frequency signals. Next, to obtain a binary 
sequence at a given scale, we subtracted the data points of 
two smoothed versions using successive window sizes, 
assigning a 1 if the difference of the subtraction was positive 
and 0 otherwise. Hence, the resulting binary sequence would 
reflect the rapid activity that is not present in the smoother 
version obtained with a shorter window. To relate window 
size to a specific frequency, it is sufficient to know the sam-
pling frequency of the signal. For instance, for a sampling 
frequency of 1000 Hz, a window size of 201 points would 
correspond to a frequency of 1000/201 ~ 5 Hz and a win-
dow size of 101 points would correspond to a frequency of 
1000/101 ~ 10 Hz. Note that this rule provides an approxi-
mate window size that captures the maximum wavelength 
present in the signal (low-pass filter). It is the comparison of 
this signal with another one, smoothed with a shorter win-
dow, which gives the binary sequence at a particular rhythm 
or frequency band.

For example, if the original series is smoothed using a 
201-point window, and these values are compared to another 
smoothed version with a 101-point window, the binary 
sequence obtained using the difference would reflect the dif-
ferential activity between the two scales. In this particular 
example, the binary sequence obtained with the subtraction 
of both smoothed signals would contain the activity in the 
5 and 10 Hz range.

After calculating all the binary frequencies of interest, 
they were transformed into a single signal. This new signal 
was a sequence composed, at each time step, of integers, 
each of which symbolically represented the binary values 
at each scale as a single integer in base 2. Finally, for sim-
plicity, these binary numbers were converted into base-
10 integers (see Fig. 1 for a graphical description of the 
whole procedure). For example, if we obtained three binary 
sequences, and at time step t, the values of each were 1, 0, 
and 1, then we took the number 101 as a base 2 number, 
and transformed it to 5 in base 10. Note that in this case, 5 
represents a state with specific information about the three 
rhythms obtained with each binary sequence.

From the integers in this symbolic series {Y(n)}, we 
obtained the MIMR as the delayed mutual information
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where the parameter τ can be estimated from the autocorre-
lation function of Y(n), and it was set to τ = 10. This measure 
provides the average number of predicted bits in Y(n) given 
the state Y(n − τ). It is a way to calculate to what extend a 
given state Y(n) of the signal would be predicted by the past 
state Y(n − τ). It evaluates, therefore, the linear and nonlinear 
temporal dependencies within a time series, and it has been 
used to quantify the linear and nonlinear statistical coupling 
between biomedical signals (Escudero et al. 2009). For a 
more detailed and formal description of the measure, see 
Ibáñez-Molina et al. (2020).

In the process of MIMR calculation for this study, we 
used different window sizes (WS: 14, 50, 100) to obtain the 
binary sequences necessary for Y(n). These window sizes 
were selected to approximately capture classical rhythms 
of θ (~ 5 Hz), α (~ 10 Hz), γ (~ 35 Hz), respectively. Given 
that the sampling rate of the EEG signal was 500 Hz, 500/14 
would give an approximation of the 35 Hz wavelength. The 
same rationale could be applied to 50 and 100 window sizes.

Comparison metrics

With the aim to better interpret or validate the results 
obtained with MIMR, we included Sample Entropy and PAC 
analyses in theta–gamma and theta–alpha couplings.

Sample Entropy assesses the EEG signals from an infor-
mational perspective without considering explicit rhythmic 
interactions. Given that MIMR is also information-based, 
comparing it with Sample Entropy—a measure that captures 
statistical dependencies across all scales—provides insight 
into potential cross-frequency interactions at various scales.

PAC examines cross-frequency interactions through the 
lens of phase–amplitude interactions. A correspondence 
in the pattern of results between MIMR and PAC might 
indicate that MIMR captures similar physiological mecha-
nisms as those involved in PAC. We conducted analyses on 

(1)MIMR = I(Y(n − �), Y(n)),

both control participants and patients across all electrode 
sites, applying the Modulation Index method as outlined 
by Tort et al. (2010). We generated three band-passed sig-
nal versions for each relevant frequency band using a zero-
phase Finite Impulse Response (FIR) filter in EEGLAB: 
33–37 Hz for the gamma band, 8–12 Hz for the alpha 
band, and 3–6 Hz for the theta band. The gamma band's 
amplitude and the phases of the alpha and theta bands 
were extracted using the Hilbert transform. Subsequently, 
to examine the influence of slower frequencies on the 
power of the gamma band, we computed the Modulation 
Index for both theta–gamma and alpha–gamma couplings.

Data analysis and results

To investigate the coupling between different frequency 
bands in patients and controls, we calculated MIMR 
for different combinations of window sizes (WS:14–50, 
WS:50–100, WS:14–100 and WS:14–50-100), assuming 
that we were mapping different combinations of frequen-
cies (α-γ, θ-α, γ-θ, and α-θ-γ, respectively).

To examine the distribution of these differences 
between patients and controls in the cortical topology, we 
performed comparisons at the sensor level. Since, in most 
of the sensors the MIMR distribution was not normal, we 
conducted group comparisons using the Wilcoxon signed 
rank test. Due to the issue of multiple testing errors, p 
values of comparisons were corrected by calculating the 
false discovery rate using the Benjamini and Hochberg’s 
(1995) method. The analyses were performed with R ver-
sion 4.0.3 (2020). All figures shown in this study were 
constructed with violin box-plots. These plots consisted 
of boxes delineating quartile information, with Q1 being 
the lower side, Q2 as the median represented as the central 
line, and Q3 the upper side. The length of the line repre-
sent the range of the data, and the colored curves illustrate 
the probability distributions.

WS:14–50 (alpha–gamma coupling)

First, we examined the coupling between a fast and a slow 
rhythm across the topological map in patients and healthy 
controls. The results of the comparisons between SCZ and 
Ctrl groups in each of the channels are represented graphi-
cally in Fig. 2. Quantitative information on the value of 
the U statistic and the p value associated can be found in 
Supplementary Material.

As can be seen, there were hardly any differ-
ences between groups in MIMR, except in P8, where 
alpha–gamma coupling was significantly higher in controls 
than in patients.

Fig. 1   Graphical representation showing the steps to obtain the sym-
bolic series Y(n) necessary for MIMR calculation. The first step is 
to obtain smoothed versions of the original signal and use them as 
thresholds to produce binary series H[Xk(n)]. Each column of this 
resulting binary matrix is considered a state of the system. In the 
example of the figure, the first column would be [1 1 1] which in a 
base 10 would be 7
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WS: 50–100 (theta–alpha coupling)

Second, we analyzed the coupling between two slow fre-
quencies, alpha and theta (see Fig. 3). Detailed results of 
these comparisons can be found in the Supplementary 
Material.

As can be seen, we found significant differences 
between groups; theta–alpha coupling was greater in 
patients than in controls, in the right frontal–central 
region. Although not significant, this same trend was 
observed in many sensors, as well as the reversed effect 
at P8 that had been previously observed for alpha–gamma 
coupling.

WS: 14–100 (theta–gamma coupling)

Third, we compared the coupling between two extreme 
frequencies, one slow (theta) and one fast (gamma). The 
results are summarized graphically in Fig. 4 (for more 
detailed information see Supplementary Material).

As can be seen in Fig. 4, the differences now appear 
bilateralized and with a frontal–central location. In addi-
tion, it is worth mentioning the high values but with 
reduced variability of MIMR in patients in the prefrontal 
region.

WS:14–50‑100 (theta–alpha–gamma coupling)

So far, we have studied how the coupling between pairs 
of frequency bands differed between patients and controls 
along the scalp topology. In this section, we analyzed the 
coupling among three frequency bands (θ, α, and γ). Simi-
lar to the previous sections, additional detailed information 
can be found in the Supplementary Materials. A graphical 
summary of these comparisons is presented in Fig. 5.

In this case, we found significant differences between 
groups only in the right hemisphere.

Comparison metrics

To further explore the informational and coupling char-
acteristics of the signals, we also conducted the Sam-
ple Entropy and theta–gamma and alpha–gamma PAC 
measures.

Sample entropy

As stated in the previous section, Sample Entropy was calcu-
lated to discriminate between patients and controls through 
scalp topology. None of the differences were significant. 

Fig. 2   Box-plot of MIMR obtained for 14–50 windows’ size (α − γ 
interaction) in each sensor for SCZ and Ctrl groups. Only significant 
differences are highlighted. For each test, a false discovery rate (FDR) 

correction was applied to correct for multiple comparisons and mini-
mize false positives
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Fig. 3   Box-plot of MIMR obtained for 50–100 windows size (θ − α 
interaction) in each of the sensors for SCZ and Ctrl groups. Only sig-
nificant differences are highlighted. For each test, a false discovery 

rate (FDR) correction was applied to correct for multiple compari-
sons and minimize false positives; * represents p < 0.05

Fig. 4   Box-plot of MIMR obtained for 14–100 windows size (θ − γ 
interaction) in each of the sensors for SCZ and Ctrl groups. Only sig-
nificant differences are highlighted. For each test, a false discovery 

rate (FDR) correction was applied to correct for multiple compari-
sons and minimize false positives; * represents p < 0.05, ** represents 
p < 0.01
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Detailed results of the comparisons can be found in Sup-
plementary Material.

PAC measures

As indicated above, we calculated the Modulation Index 
as a PAC measure for theta–gamma and alpha–gamma. 
We applied the same statistical analysis to those in MIMR 
showing that there were no significant differences between 
control and patients at any electrode site (See Supplementary 
Material for details).

General discussion

In this study, we investigated couplings between different 
frequency rhythms at various electrode sites in patients with 
schizophrenia and healthy controls using MIMR. We specifi-
cally examined theta–gamma, theta–alpha, alpha–gamma, 
and, uniquely, theta–alpha–gamma couplings—the latter of 
which has not been previously studied, as past research has 
focused solely on cross-frequency coupling between two 
rhythms. MIMR analysis discerns discrete states by convert-
ing the amplitude of filtered signals at specific frequencies 
into binary form, defining a state at any given moment. It 

captures the statistical dependence in these binary series, 
thus being sensitive to the recurrence of state patterns.

Our findings revealed an increased bilateral theta–gamma 
coupling in patients, particularly in frontal and central 
regions, aligning with prior research that indicates height-
ened theta–gamma coupling in resting patients. Studies by 
Lee et al. (2020) and Won et al. (2018) have observed that 
theta–gamma coupling remains preserved or increased in 
resting patients, notably in prefrontal areas. Conversely, a 
reduction in theta–gamma coupling has been noted dur-
ing cognitive tasks. Barr et al. (2017) reported impaired 
theta–gamma coupling during an N-Back task that adjusted 
working memory load. Similarly, Grove et al. (2021) iden-
tified decreased theta–gamma coupling between posterior 
and anterior sites in schizophrenia patients during a gaze 
detection task. Collectively, these findings suggest a pattern 
of compromised theta–gamma coupling during tasks, yet 
an elevated coupling at rest. This increased resting coupling 
may serve to make cognitive resources readily available to 
patients, possibly as a preparatory mechanism for upcoming 
cognitive demands (Lee et al. 2020).

At right frontal and central sites, theta–alpha coupling 
was also higher in patients than in healthy participants. In 
the case of theta–alpha coupling, it has been also associ-
ated with cognitive effort and working memory function 
(Dimitriadis et al. 2016; Kawasaki et al. 2010). Recently, in 

Fig. 5   Box-plot of MIMR obtained for 14–50-100 windows size 
(θ–α–γ interaction) in each of the sensors for SCZ and Ctrl groups. 
Only significant differences are highlighted. For each test, a false dis-

covery rate (FDR) correction was applied to correct for multiple com-
parisons and minimize false positives; * represents p < 0.05
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a study by Rodriguez-Larios et al. (2020), it was reported a 
monotonically increasing theta–alpha coupling during medi-
tation, rest, and an arithmetic operation task, suggesting a 
reinforcement of the interaction between memory and execu-
tive functions as the level of cognitive demands increases. 
Our finding of increased theta–alpha coupling at rest could 
be interpreted in the same line as theta–gamma coupling, 
as reflecting a compensatory mechanism triggered during 
rest to prepare the cognitive system for an eventual effort. 
Another possibility would be that this increased coupling is 
reflecting a hyperactivation of the DMN in patients at rest. 
Consistent with this idea, Guo et al. (2017), in an fMRI 
experiment, found that drug-naive patients showed more 
activation in prefrontal regions of the DMN than patients’ 
relatives and healthy controls. In addition, medial pari-
etal regions were more activated in patients and relatives 
when compared with healthy controls. Similar results were 
reported by Whitfield-Gabriely et al. (2009), who found 
that participants and first-degree relatives exhibited less 
DMN deactivation than healthy participants in the tran-
sition between resting state and a working memory task. 
Therefore, our results, which show an increase in MIMR 
for theta–gamma and theta–alpha rhythms, are consistent 
with the hypothesis that, during rest, the DMN or specific 
subsystems of the DMN are activated to a greater degree. 
Moreover, in an interesting review paper, Hu et al. (2017) 
reported that the majority of studies about DMN in schizo-
phrenia have shown an increase in functional connectivity 
when compared with healthy controls, and reinforces the 
claiming that DMN hyperactivity is an important character-
istic of schizophrenia that could be related with measures 
of EEG coupling.

It is noteworthy that, when we calculated the coupling 
across theta–alpha–gamma, an increase of MIMR was found 
at right frontal–central electrodes. This three-way interac-
tion reinforces the hypothesis that the previously described 
results come from the same neural mechanism. It would be 
possible that the increased theta–gamma, theta–alpha, and 
theta–alpha–gamma couplings reflected the activity of com-
plex interactions between DMN regions. This interaction 
could be, as we mentioned before, compensatory; that is, an 
effort to anticipate a task demand (in fact, both theta–gamma 
and theta–alpha are mostly related with processes of working 
memory). However, another possibility is that increased cou-
pling at rest is reflecting hyperactivation of networks related 
to internally guided cognition, such as autobiographical 
memory or mind wandering. This hypothesis is supported 
by recent findings of a greater frequency of mind wandering 
in patients with schizophrenia (Iglesias-Parro et al. 2020).

Finally, we have also analyzed alpha–gamma coupling, 
where we found increased alpha–gamma coupling in con-
trols only at the P8 electrode. Although we cannot give a 
particular meaning to the spatial location of this effect, it 

is consistent with previous research showing that patients 
diagnosed with schizophrenia exhibited low alpha–gamma 
interaction during a task of sensory information processing 
(White et al. 2010). In addition, there are specific studies 
that showed a reduced alpha–gamma coupling in prefrontal 
areas in patients (Davoudi et al. 2021; Murphy et al. 2020; 
Yakubov et al. 2022). In general, this coupling deficit in 
patients with schizophrenia has been related to the interrup-
tion of the prioritization of visual representations in working 
memory (Davoudi et al. 2021).

In the study, we present here we use a measure based 
on information theory. The motivation for the use of this 
approach was to gain new insight in coupling across fre-
quency bands through a measure with no a priori assump-
tions. Previous measures of cross-frequency coupling can-
not capture all coupling manifestations (Cohen 2008). For 
example, the oscillation components need to be prominent 
or well defined to capture interactions between rhythms. In 
addition, these measures are sensitive to a specific interac-
tion between frequencies. The PAC measure, for example, 
is only sensitive to phase–amplitude interactions from slow 
and fast frequencies. In fact, the analyses on our data did not 
find any effect of gamma–amplitude modulation by slower 
rhythms, suggesting that the nature of coupling interactions 
were not only restricted to amplitude–phase modulations. 
On the contrary, MIMR can be sensitive to many types of 
interactions, including n-rhythm coupling. In this study, we 
show that there is a three-way interaction between rhythms 
resembling theta–alpha–gamma, which is congruent with the 
existence of a single mechanism underlying increased cou-
pling in schizophrenia during resting state. In addition, the 
fact that sample entropy failed to show differences between 
patients and controls indicates that the locus of the diver-
gence between those groups was the coordination between 
cortical activities at different scales. However, the sample 
size for the patients was relatively small compared to healthy 
participants, and that could be the reason for the lack of 
statistical power in PAC and Sample Entropy.
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