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Abstract
Physical exercise can evoke changes in the brain structure. Consequently, these can lead to positive impacts on brain health. 
However, physical exercise studies including coordinative exercises are rare. Therefore, in this study, we investigated how 
12 weeks of physical exercise breaks (PEBs) with coordinative exercises, focusing mainly on juggling tasks, affected the brain 
structure. The participants were randomly allocated to an intervention group (IG, n = 16; 42.8 ± 10.2 years) and a control 
group (CG, n = 9; 44.2 ± 12.3 years). The IG performed the PEBs with coordinative exercises twice per week for 15–20 min 
per session. Before the intervention, after 6 weeks of the intervention, and after 12 weeks of the intervention, participants 
underwent a high-resolution 3T T1-weighted magnetic resonance imagining scan. Juggling performance was assessed by 
measuring the time taken to perform a three-ball cascade. A surface-based analysis revealed an increase in vertex-wise corti-
cal depth in a cluster including the inferior parietal lobe after 6 and 12 weeks of training in the IG. After 12 weeks, the IG 
showed a decrease in gray matter (GM) volume in a cluster primarily involving the right insula and the right operculum. The 
changes in the GM volume were related to improvements in juggling performance. No significant changes were found for 
the CG. To conclude, the present study showed that regular engagement in PEBs with coordinative exercises led to changes 
in brain structures strongly implicated in visuomotor processes involving hand and arm movements.
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Introduction

Throughout the lifespan, physical exercise, which is a 
planned, structured, and repetitive form of physical activity 
(= all muscle induced bodily movements, which leads to an 
increased energy expenditure) (Herold et al. 2022), is posi-
tively linked with physical health, mental health (Hillman 
et al. 2008), and maintenance of brain health (Cabral et al. 
2019). Physical exercise can also prevent the development of 
neurodegenerative diseases (Kramer and Erickson 2007) and 
cognitive decline (Ma et al. 2017). Consequently, physical 

activity has become an important lifestyle factor to prevent 
cognitive health.

The volume of the gray matter (GM) of the brain changes 
with age (Fjell and Walhovd 2010), but regular physical 
activity can prevent those age-related changes. For exam-
ple, Wittfeld et al. (2020) conducted a cross-sectional study 
involving adults aged between 21 and 84 years. They found 
that cardiorespiratory fitness, developed from a regular 
level of physical activity, is strongly positively related to 
the gray matter (GM) volume of the frontal lobe, temporal 
lobe, the hippocampal gyrus, and the cingulate cortex. In 
older adults, cardiorespiratory fitness and a regular level of 
physical activity were positively linked to the GM volume 
of the prefrontal cortex and the hippocampus (Erickson 
et al. 2014). Furthermore, in older adults, regular level of 
physical activity correlates positively with the GM volume 
of the frontal lobe, temporal lobe of the brain, and the hip-
pocampus (Domingos et al. 2021; Erickson et al. 2014). A 
positive relationship between the GM volume of the hip-
pocampus and a regular level of physical activity was also 
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found for young to middle-aged adults (Killgore et al. 2013). 
In addition, in a recent cohort study by Fox et al. (2022), an 
association between a regular level of physical activity with 
larger total GM volume was found in adults aged between 
30 and 94 years.

However, most studies which have investigated the impact 
of a regular level of physical activity or physical exercise on 
brain structure and/or function have focused mostly on aero-
bic, anaerobic, and resistance training (Ai et al. 2021; Alka-
dhi 2018; Erickson et al. 2014; Gaertner et al. 2018; Herold 
et al. 2019; Hillman et al. 2008; Sexton et al. 2016; Smith 
et al. 2010; Voelcker-Rehage and Niemann 2013; Voss et al. 
2011; Wilke et al. 2019; Wittfeld et al. 2020). Although the 
first study that showed structural brain changes due to exer-
cise in young healthy participants was based on juggling 
(Draganski et al. 2004), there are fewer studies investigating 
the effects of coordinative training on brain structure (see 
Voelcker-Rehage and Niemann 2013). For example, Nie-
mann et al. (2014a) examined how coordinative training, 
which included exercises to improve eye–hand and leg–arm 
coordination, balance, and spatial orientation and reaction, 
affects the brain structure in older adults. They found an 
increase in the GM volume of the hippocampus (Niemann 
et al. 2014a) and the basal ganglia (Niemann et al. 2014b). 
Increases in the GM volume of the hippocampus (Rehfeld 
et al. 2017), and the parahippocampal region (Müller et al. 
2017) were found after dancing training in elderly adults. 
Furthermore, increases after dancing training were found 
in the right subiculum, the left dentate gyrus (Rehfeld et al. 
2017), left precentral gyrus (Müller et al. 2017; Rehfeld 
et al. 2018), postcentral gyrus, left supplementary motor 
area, left superior temporal gyrus, medial frontal gyrus, left 
insula, the anterior, and medial cingulate cortex (Rehfeld 
et al. 2018). After balance training, increases in GM volume 
were found in the left supplementary motor area (SMA), 
superior frontal gyrus, and medial orbitofrontal cortex 
(Taubert et al. 2010), but decreases in GM volume were 
found in the putamen (Rogge et al., 2018; Taubert et al., 
2010), inferior orbitofrontal cortex, middle temporal gyrus, 
left inferior occipital gyrus, cerebellum bilaterally (Taubert 
et al. 2010), right superior temporal gyrus, and left parahip-
pocampus (Weber et al. 2019). Juggling interventions led to 
increases in the GM volume of the hMT + /V5 (Boyke et al. 
2008; Driemeyer et al. 2008), which is an area located at 
the occipito-temporo-parietal pit (Sousa et al. 2016), with 
relevance for hand movements (Oreja-Guevara et al. 2004) 
and processing tactile and visual motion direction informa-
tion (van Kemenade et al. 2014). Further increases were 
found in the frontal, temporal (Driemeyer et al. 2008), pari-
etal lobes (Draganski et al. 2004; Driemeyer et al. 2008), 
the hippocampus, and the nucleus accumbens (Boyke et al. 
2008). Although Sampaio-Baptista et al. (2014) found no 
main effect of time after 6 weeks of juggling training on the 

GM volume, increases in GM volume in the occipital lobe 
and parietal lobe, and decreases in the superior temporal 
gyrus, the insula, and the operculum were found during a 
follow-up period 4 weeks after the training.

Besides the assessment of volumetric measures, the 
measurement of sulcal measures can be useful. Lamont 
et al. (2014) indicated that changes in brain structure due 
to regular physical activity can be detected earlier in sulcal 
measures compared to volumetric measures. Of the previ-
ous published studies on coordinative exercise, three stud-
ies included measures on cortical thickness (Rogge et al. 
2018; Taubert et al. 2016; Weber et al. 2019) but, to our 
knowledge, no one included the variables sulcal width or 
depth. Especially the intraparietal sulcus has been found as 
being strongly implicated in visuomotor and cognitive func-
tions (e.g., Capizzi et al. 2023; Davare et al. 2012; Grefkes 
and Fink 2005; Richter et al. 2019). Therefore, it would be 
important including these measures to assess the effects of 
coordinative exercise, which strongly draws on visuomotor 
task demands.

Nevertheless, the current state of research does not pro-
vide a sufficient amount of evidence to assess the influence 
of physical exercise including coordinative exercises on 
brain outcomes in young and middle-aged adults (Erickson 
et al. 2019). Another challenge is to reach this age group 
since the largest group of adults typically spend about half of 
their waking hours during weekdays at the workplace (Conn 
et al. 2009). Therefore, implementing a physical exercise 
intervention in their spare time might reduce the adherence, 
due to multiple other distractions and time restrictions. In 
contrast, the workplace offers a low-threshold opportunity 
to reach this age group (WHO 2018). Furthermore, office 
workers are confronted with demanding cognitive tasks, and 
if they are unable to perform those tasks, it could have a neg-
ative influence on mental well-being (Bridger and Brasher 
2011). Therefore, it would be helpful to integrate coordina-
tive exercises, like juggling, at the workplace because higher 
level cognitive processing is required for performing coordi-
native exercises (Voelcker-Rehage and Niemann 2013) and, 
compared to other exercise types, coordinative exercises are 
more beneficial for improving cognitive functions (Ludyga 
et al. 2020). In addition, performing coordinative exercises 
could lead to improvements in brain areas, e.g., frontal cor-
tical (Driemeyer et al. 2008), parietal cortical (Draganski 
et al. 2004; Driemeyer et al. 2008; Sampaio-Baptista et al. 
2014), and hippocampal area (Boyke et al. 2008), which 
are related to (higher) cognitive functions (Agosta et al. 
2017; Behrmann et al. 2004; Borders et al. 2022; Frith and 
Dolan 1996; Helfrich and Knight 2019; Lisman et al. 2017; 
Opitz 2014; Toichi et al. 2004). Moreover, participating in a 
physical exerercise break (PEB) with coordinative exercises 
could be useful in preventing age-related structural (Fjell 
and Walhovd 2010; Kochunov et al. 2005; Steffener 2021) 
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brain changes, and brain changes due to neurodegenerative 
diseases (e.g., Parkinson’s and Alzheimer’s disease) (Bagh-
dadi et al. 2022; Chishiki et al. 2020; Pereira et al. 2012; 
Pettigrew et al. 2017; Ramírez-Ruiz et al. 2005). Further-
more, almost all studies so far implemented coordinative 
exercises with a higher training duration (> 75 min per week, 
Sampaio-Baptista et al. 2014), and if juggling training was 
performed, the training mostly focused on learning the three-
ball cascade (Boyke et al. 2008; Draganski et al. 2004; Drie-
meyer et al. 2008; Sampaio-Baptista et al. 2014). However, 
since insufficient time (Justine et al. 2013) to exercise and 
exercise-related boredom (Velasco and Jorda 2020; Wolff 
et al. 2021) play a role for participating in physical exercise 
a high training volume combined with monotonous exercise 
tasks might represent a threshold for average office workers 
to start physical exercise.

Therefore, the aim of the present study was to investigate 
how 12 weeks of physical exercise breaks (PEBs) with coor-
dinative exercises with a low training volume and a variety 
of juggling exercises performed at the workplace affects 
the brain structure in young and middle-aged adults. We 
hypothesized that the PEBs will lead to increases in the GM 
volume, and the surface-based brain metrics, especially in 
regions related to visuomotor tasks.

Methods

Study participants

An exact sample size calculation based on brain struc-
ture variables was not possible because the effect of low-
volume coordinative exercises has not been studied in 
the past. Therefore, we decided to include a convenience 
sample of n = 20 in the intervention group based on the 
resource constraints of the number of participants willing 
to participate in an MRI study. A total of 55 participants 
were recruited in spring and fall of 2021 via email and 
via advertisement on the employees’ website of the Uni-
versity of Graz (Austria). The inclusion criteria for the 
recruitment were 20–65 years, no regular engagement in 
intense coordinative and/or motor exercises (e.g., juggling, 
playing the piano), no cardiovascular, psychiatric, and/or 
neurological diseases, no intake of psychotropic drugs, no 
metallic or electrically conductive implants or prostheses 
in or on the body, no metal fragments in the body, no 
tattoos on the head and/or neck area (including cosmetic 
manipulations), and no pregnancy. The inclusion criteria 
were assessed with a standardized questionnaire, except 
the regular engagement in intense coordinative and/or 
motor exercises was assessed via self-reports. Due to los-
ing interest in participating in the study, time management 
and not fulfilling at least one or more inclusion criteria, 32 

participants started with the study. The participants were 
matched in groups of three or pairs by gender and age and 
were then randomly allocated to the intervention (IG) or 
control group (CG). The group allocation was conducted 
by rolling a dice. The allocation to the groups was at the 
rate of 2:1 (IG vs CG). The higher allocation to the IG 
was used to ensure that enough participants performed the 
PEBs. At baseline (week 0), after 6 (week 6) and 12 weeks 
(week 12), the participants performed the measurements, 
including a MRI scan and the assessment of the juggling 
performance. The participants performed the PEB before 
the measurement at least at the day before the measure-
ment. The assessors of the MRI measurement and ana-
lyzes were blinded, but not the assessor of the juggling 
performance. This was due to the fact that this assessor 
was responsible to control if the participants performed 
the physical exercise breaks, what was indicated of the 
participants on an online platform. Since the participants 
logged in with their university account to the online plat-
form, it was not possible to carry out the control of the 
participation for the assessor without knowing the partici-
pants names. Only participants who performed all meas-
urements at the three measurement time points, and in case 
of the IG, completed at least two-thirds of the intervention 
sessions (16 of 24 sessions) were included in the statisti-
cal analysis. This resulted in 25 participants who were 
included in the final analysis (Fig. 1). All participants gave 
their written informed consent to participate in the study, 
which was in accordance with the Declaration of Helsinki 
and approved by the local authorized ethics committee of 
the University of Graz (GZ. 39/29/63 ex 2020/21). This 
study has not been preregistered.

Intervention

The participants in the IG performed the PEBs, which 
mainly consisted of juggling tasks, for 15–20 min twice 
a week for 12 weeks (24 sessions). The two sessions per 
week were conducted on non-consecutive days. After the 
training program was introduced to the participants by a 
sport scientist, they performed the PEBs on their own via 
online training videos. The videos always started with a 
short warm-up, which included mobilization exercises 
(~ 1 min). The participants then practiced the juggling 
exercises (~ 10–15 min). The difficulty of the juggling 
exercises increased from simple throwing and catching 
tasks with one or two different objects at the beginning 
to juggling exercises with three objects in the last weeks. 
The session ended with a relaxation exercise (~ 2–3 min). 
Once a week, the participants performed a balance task 
(~ 3 min) before the relaxation part. For further details of 
the intervention, see Scharf and Tilp (2023).
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Demographic data and physical activity

At all three measurement sessions—baseline week 0, post-
test week 6, and post-test week 12—demographic and physi-
cal activity data were collected via a self-created question-
naire. The participants were asked how many minutes per 
week they performed moderate physical activities, vigorous 
physical activities, and strengthening exercises in the last 
6 weeks. Furthermore, they were also asked how much they 
enjoy physical activity on a scale from 1 to 4 (1 = I do not 
enjoy physical activity; 4 = I enjoy physical activity very 
much).

Magnetic resonance imaging data acquisition

All participants underwent structural imaging on a 3T 
MAGNETOM Vida scanner (Siemens Healthineers, 
Erlangen, Germany) using a 64-channel head coil. A 
T1-weighted MPRAGE sequence was acquired, which took 
about 10 min (TR = 2530 ms, TI = 1200 ms, TE = 3.88 ms, 

matrix = 320 × 320, FOV = 224 mm, 192 slices, thickness 
0.7 mm, no gap, no PAT, FA = 7°).

Data quality and deidentification

Firstly, facial features were removed from all the 
T1-weighted images to ensure complete deidentifica-
tion (pydeface, https:// doi. org/ 10. 5281/ zenodo. 35244 01). 
Then, to test the stable imaging data quality, we opted to 
use MRIQc (v 0.15.0, https:// doi. org/ 10. 1371/ journ al. pone. 
01846 61). This quality control tool enables the use of a 
broad spectrum of quality indices, including the signal-to-
noise ratio and entropy focus criterion. A selection of the 
most relevant quality indices was analyzed with a mixed 
model and revealed a stable quality in all the relevant param-
eters over the time points (Table S1).

MRI data processing and analysis

Longitudinal analyses were performed using the Compu-
tational Anatomy Toolbox (CAT r1932), implemented in 

Fig. 1  Flow diagram of partici-
pants

https://doi.org/10.5281/zenodo.3524401
https://doi.org/10.1371/journal.pone.0184661
https://doi.org/10.1371/journal.pone.0184661
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MATLAB 9.6 (MathWorks, Inc., Natick, MA, USA) and 
Statistical Parametric Mapping (SPM12 v7771). Firstly, all 
the images were automatically reoriented (center of mass) 
and intra-subject co-registration was computed between all 
the images of the three time points. Next, the images were 
skull stripped, realigned across all subjects, and then bias 
corrected with regard to the mean image. This mean image 
was computed from all three time points for each subject 
separately. Next, all the images, including the mean images, 
were segmented with the Spatial-Adaptive Maximum A 
Posterior (AMAP) approach to accurately classify the three 
tissue types: GM, white matter, and cerebrospinal fluid. Tis-
sue segments were then spatially normalized into the MNI 
(Montreal Neurological Institute) space employing DARTEL 
(Diffeomorphic Anatomical Registration Through Exponen-
tiated Lie Algebra) and the geodesic shooting algorithm. 
Next, the modulation of the normalized tissue segments was 
computed for each participant based on the Jacobian deter-
minant. This is an essential step to account for local warping 
and global affine transformation. Finally, the modulated data 
were smoothed with a 9 mm full-width at half-maximum 
(FWHM) smoothing kernel. In addition, the surface-based 
metrics were estimated using the fully automated pipeline 
in CAT12. The project-based thickness (PBT) approach was 
used for the cortical thickness and central surface estimation. 
The PBT approach includes topology correction, spherical 
mapping, and spherical registration. Parameters for the cor-
tical thickness and folding (cortical depth) were extracted 
for each subject. Finally, we computed the weighted overall 
image quality index for all the participants and time points 
(mean of 2.02 ± 0.121) to ensure a sufficient data quality.

Juggling performance

The participants performed five trials of the three-ball cas-
cade for as long as possible, to assess their juggling perfor-
mance (Boyke et al. 2008; Draganski et al. 2004; Driemeyer 
et al. 2008). The time (seconds) was recorded for each of the 
five trials, and the time from the best performance was used 
for the analysis.

Statistical analysis

For the statistical analysis of the demographic, physical 
activity, and juggling performance data, SPSS Statistics 
(version 27.0; IBM, New York, USA) was used. All the 
analyses were performed after checking for normal distribu-
tion of the data via the Shapiro–Wilk test, and the level of 
significance was set to 5%. When the data were normally 
distributed, mixed analyses of variance (ANOVAs) with fac-
tor interaction (time × group) were used. We applied Green-
house–Geisser correction, if the Mauchly’s sphericity test 
had been significant. If a significant interaction effect 

(time × group) was observed, post hoc tests were performed 
via paired t-tests within groups applying Bonferroni–Holm 
corrections (Holm 1979). Baseline values between groups 
were tested with Welch T-tests to account for different sam-
ple size (Delacre et al. 2017). Estimates of effect sizes are 
given in terms of the partial eta-squared measure (ηp

2). The 
effect size was determined by Cohen’s standard 
(≥ 0.8 = large; < 0.8 to > 0.2 = medium; ≤ 0.2 = small) (Zhu 
2016). A Friedman test, Wilcoxon test, and Mann–Whitney 
U test were applied if the data were not normally distributed. 
The effect sizes for the non-parametric data were calculated 
with the formula r = z

√

N
 (Fritz et al. 2012). Due to the not 

normally distributed juggling performance variable, a partial 
Spearman’s correlation, where we accounted for age and sex, 
was used to analyze the relationship between the changes 
(over 6 and 12 weeks) in the MRI variables and the changes 
(over 6 and 12 weeks) in the juggling performance variable 
for the IG. The magnitude of the correlation (0–0.19 = no 
correlation; 0.2–0.39 = low correlation; 0.4–0.59 = moderate 
correlation; 0.6–0.79 = moderately high correla-
tion; ≥ 0.8 = high correlation) was rated by the recommenda-
tions of Safrit and Wood (1995 as cited in Zhu 2012).

To determine intervention-related changes in GM vol-
ume, we employed a flexible factorial model with the fac-
tors group (IG, CG) and time (week 0, week 6, and week 
12) implemented in SPM12. Since we were interested in 
time-dependent changes, only within-group changes over the 
different time points of assessment were computed. There-
fore, we did not include age, sex, or total intracranial volume 
as covariates. An absolute threshold of 0.1 was applied to 
exclude voxels with a probability of having less than 10% 
GM. We then compared the changes in all three time points 
(week 0 vs. week 6, week 6 vs. week 12, and week 6 vs. 
week 12) within each group. Finally, statistical thresholds 
were set using a cluster-level p(FWE) of < 0.05, with an ini-
tial cluster forming a voxel level of p < 0.005. The spatial 
cluster size was set to 20 voxels. The same analysis strat-
egy was applied to the surface-based analyses. We looked 
at changes in cortical thickness and cortical folding. The 
spatial extent was set to 20 vertices.

Results

During the intervention period, four participants of the IG 
and three participants of the CG dropped out of the study 
(Fig. 1). At least 2/3 of the 24 intervention’s sessions was 
completed by 16 participants of the intervention group. Of 
those, 12 participants completed all 24 sessions (100.0%), 
two completed 22 sessions (91.7%), and one participant 
each completed 21 (87,5%), and 16 sessions (67.0%). The 
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overall attendance adherence was 96.1% (± 8.7%). No 
adverse events occurred during the intervention. Accord-
ingly, 25 participants were included in the final analysis 
(Fig. 1). Moreover, we excluded one participant from the 
CG from the analysis of the juggling performance data who 
was already a skilled juggler (but was not performing jug-
gling training before or during the intervention).

Demographic data and physical activity

A total of 25 participants (19 females, 6 males) were 
included in this study. Sixteen participants (12 females, 4 
males) were in the IG and 9 (7 females, 2 males) served 
as the CG. At baseline, there were no significant differ-
ences in the variables of gender (χ2 = 0.024, p = 0.876), age 
(F(1,14.23) = 0.086, p = 0.774), BMI (F(1,18.14) = 0.103, 
p = 0.752), and enjoyment of physical activity (χ2 = 2.350, 
p = 0.309) (Table 1). Furthermore, no differences between 
the amount of moderate and high physical activity or 
strengthening training were found for any of the three meas-
urement time points between the groups. In the IG, for the 
amount of strengthening training, and in the CG, for physical 
activity with high intensity, Friedman test showed a signifi-
cant effect of time. However, following Bonferroni–Holm 
correction, there was no difference between the time points.

Gray matter (GM) volume

Analyses of GM volume revealed focal decreases in the IG 
after 12 weeks of training in a cluster involving the right 
Rolandic operculum, the right insula, and smaller portions 
of the right inferior frontal gyrus (X/Y/Z = 45/9/4, cluster 
size 2470, p = 4.6e–0; Fig. 2a). No effects over time were 
found for the CG. The Spearman’s correlation revealed 
a significant moderate negative relationship between 
changes in GM and the change in juggling performance 
after 12 weeks of training (r =  − 0.64, p = 0.015). Par-
ticipants with higher increases in juggling performance 
showed stronger GM decreases in the right insula.

Surface‑based measures

In addition to intervention-related changes in GM volume, 
we also analyzed changes in the surface-based metrics. 
Applying the same statistical thresholds as for the volume-
based analysis, we found significant changes in cortical 
depth (Table 2). More precisely, an increase in cortical 
depth after 6 weeks of training was observed in the right 
inferior parietal and supramarginal regions (Fig. 2b). In 
this very same region but spatially more extensive, we 

Table 1  Demographic data of the participants of the intervention 
group (IG) (n = 16) and control group (CG) (n = 9) at week 0

The descriptive values are represented as mean ± standard deviation; 
[minimum–maximum]

Intervention group Control group

Age (years) [age range] 42.8 ± 10.2 [26–61] 44.2 ± 12.3 [29–61]
Gender (n, % female) 12 (75.0%) 7 (77.8%)
BMI  (m2/kg) 23.2 ± 2.7 22.9 ± 2.4
Enjoyment of physical 

activity and sports
3.8 ± 0.6 3.6 ± 5.2

Fig. 2  A Decrease in GM 
volume in the right Rolandic 
operculum/right insula after 
the intervention (week 12). B 
Increase in vertex-wise cortical 
depth in the right inferior pari-
etal/supramarginal regions from 
week 0 to week 6 (left column) 
and from week 0 to week 12 
(right column)

Table 2  Overview of the clusters showing significant changes in cor-
tical depth after 6 and 12 weeks of training

No. of vertices p-value

Cortical depth/region
 Increase from week 0 to week 6
 Inferior parietal, supramarginal 118 0.00002
 Increase from week 0 to week 12
 Inferior parietal, supramarginal 344 0.00002
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also found increases between the first and the third time 
point. No increases were found between week 6 and week 
12. Mimicking the results of GM volume, no changes were 
found for the CG.

Juggling performance

The Mann–Whitney U test for the analysis of the juggling 
performance showed a significant difference between the 
IG and CG for week 6 (U = 0.00, r = – 0.83, p < 0.001) and 
week 12 (U = 0.00, r = – 0.82, p < 0.001), but not for week 
0 (U = 60.00, p = 0.834) (Fig. 3). In addition, Friedman test 
(χ2(2) = 30.400, p < 0.001) showed a significant effect of 
time for the IG, and the Wilcoxon test analysis indicated a 
significant increase for the IG between week 0 and week 6 
(0.3 ± 1.0 vs. 1.9 ± 1.6 s; z =  − 3.568, r = – 0.89, p < 0.002), 
week 6 and week 12 (1.9 ± 1.6 vs. 4.4 ± 4.4 s; z =  − 3.061, 
r = – 0.77, p = 0.002), and week 0 and week 12 (0.3 ± 1.0 vs. 
4.4 ± 3.9 s; z =  − 3.534, r = – 0.88, p < 0.001). No significant 
change in the juggling performance was detected in the CG.

Discussion

Regular engagement over 12 weeks in low-volume PEBs 
with coordinative exercises was associated with an improve-
ment in juggling performance and an increase in vertex-wise 
cortical depth in a cluster including the right inferior parietal 
lobe. In addition, a reduction of GM volume in a cluster 
primarily involving the right insula and the right operculum 
following the intervention was also observed. Decreases in 
GM volume of the right insula/operculum were correlated 
with improvements in juggling performance. This corrobo-
rates nicely with the fact that the volumetric decreases in this 
brain structure were related to the juggling training.

The increase in the sulcal depth in the inferior parietal 
lobe following juggling training is a novel finding. Sulcal 
depth is a measure of cortical shape (van Essen 2005), which 
has been associated with neurodevelopmental disorders (van 
der Meer et al. 2021), working memory performance (van 
der Meer et al. 2021; Yao et al. 2022), and changes of the 
structural characteristics of the aging brain (Jin et al. 2018). 
In one of the rare studies on sulcal characteristics in the 
context of physical activity, Lamont et al. (2014) reported 
evidence that higher physical activity was associated with 
larger sulcal width, while there was no significant relation-
ship with sulcal depth. The identified sulcal cluster in this 
study appears to display some overlap with areas of the 
intraparietal sulcus, which have been referred to as “inter-
faces between the perceptive and motor systems for control-
ling arm and eye movements in space” (Grefkes and Fink, 
2005, p.3). Grefkes and Fink (2005) summarized evidence 
from lesion studies and brain imaging studies revealing 

that this brain structure is implicated in tactile and visual 
object processing, and especially in cross-modal informa-
tion integration between the visual and the sensorimotor 
systems. The medial portion of the intraparietal sulcus is 
thought to be implicated in tasks requiring visuomotor coor-
dination of hand movements, especially in “transforming 
visual coordinates into motor programs, and for the online 
control of goal-directed precision movements” (Grefkes and 
Fink, 2005, p.9). Hence, the current study provides the first 
evidence that structural changes of the intraparietal sulcus 
can constitute an important biomarker for changes follow-
ing a juggling training that poses relatively high visuomotor 
demands.

The decrease of GM volume in response to our 12-week 
long juggling training was restricted to a cluster involving 
the right insula, the right operculum, and the right inferior 
frontal gyrus. The right inferior frontal gyrus is a part of 
the Broca’s region and represents motor functions, includ-
ing complex hand movements, associative sensorimotor 
learning, and sensorimotor integration (Binkofski and 
Buccino 2004). In a quite similar vein, the insula is known 
to be implicated in hand–eye movements (Fink et  al. 
1997), proprioceptive functions (Chilvers et al. 2021), 
and in sensorimotor and vestibular functions (Uddin et al. 
2017). The frontal operculum has been found to be spe-
cifically involved in monitoring performance during goal-
directed hand movements (Quirmbach and Limanowski 
2022). Interestingly, when using transcranial magnetic 
stimulation, Tunik et al. (2008) even demonstrated a pos-
sible causal role of the inferior frontal gyrus opercularis in 

Fig. 3  Mean and standard deviation of the three-ball cascade abso-
lute time before (week 0), during (week 6), and after (week 12) the 
intervention for the IG (n = 16) and CG (n = 8; one participant was 
excluded due to their very high juggling skills at week 0). *Signifi-
cant difference to week 0 for the IG, #significant difference to week 6 
for the IG; °significant difference between the IG and CG
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planning hand–object interactions. The observed training-
related GM changes in this brain structure provide empiri-
cal support for the idea that this structure is of importance 
for visuomotor processes being involved in the coordina-
tion of hand and eyes. The observed association between 
brain changes in this structure and juggling performance 
nicely supports this finding. However, a somewhat surpris-
ing finding is that, compared to previous juggling studies, 
we only found decreases of GM volume after the juggling 
training. In previous research, mostly, though not exclu-
sively, increases of GM volume in different areas were 
found (Boyke et al. 2008; Draganski et al. 2004; Drie-
meyer et al. 2008; Sampaio-Baptista et al. 2014). Further-
more, when comparing the brain structure of skilled and 
non-skilled jugglers, Gerber et al. (2014) found a higher 
GM density in the hMT + /V5 area, the intraparietal sul-
cus, and the secondary visual cortex. In particular, the GM 
density of the hMT + /V5 area was positively related to the 
performance of the skilled jugglers. However, compared 
to the juggling skills of the participants in the previous 
juggling studies, the participants of the IG of the present 
study were not very skilled jugglers after completing the 
intervention. The participants were only able to juggle for 
4.4 s (SD = 4.4) after 12 weeks of training. In the other 
studies, participants reached or had to reach juggling 
times between 20 and 180 s (Boyke et al. 2008; Draganski 
et al. 2004; Driemeyer et al. 2008; Sampaio-Baptista et al. 
2014). Nevertheless, Sampaio-Baptista et al. (2014) also 
found some decreases of GM volume following juggling, 
especially in the left superior temporal gyrus, the insula, 
and operculum. Moreover, in other studies where training 
with high coordinative demands was included, decreases 
of the GM volume were also found in different areas of 
the brain (Rogge et al. 2018; Taubert et al. 2010; Weber 
et al. 2019). For example, Weber et al. (2019) found that 
learning to ride a unicycle over a time period of 3 weeks 
was associated with significant reductions of GM vol-
ume in regions supporting visuospatial processes. Simi-
larly, in professional or skilled athletes who are regularly 
engaged in tasks requiring a high level of coordinative 
skills, both greater and smaller GM volumes have been 
reported. Skilled golf players have a higher GM volume 
for the premotor cortex and parietal areas, compared to 
less-skilled golf players (Jäncke et al. 2009). Professional 
ballet dancers have a lower GM volume in the left pre-
motor cortex, SMA, putamen, and superior frontal gyrus, 
compared to non-skilled dancers (Hänggi et al. 2010). The 
results of a cross-over study of skilled dancers (ballet and 
figure skating) and slackliners showed a lower GM vol-
ume in the anterior hippocampal formation and parieto-
insular vestibular cortex, but a higher GM volume in the 
posterior hippocampal formation, lingual, and fusiform 
gyri, compared to a non-trained CG (Hüfner et al. 2011). 

Taken together, these findings clearly indicate that these 
decreases in GM volume do not indicate that a brain struc-
ture is “deactivated” following the training, but they may 
rather reflect the reorganization of brain tissue facilitating 
more automated and efficient task performance (in this 
case, visuomotor coordination; see Weber et al. 2019).

It is evident that brain changes following physical exer-
cise vary as a function of the practice level. For example, 
Sampaio-Baptista et al. (2014, 2015) found that a juggling 
training with a lower duration of the exercise sessions 
(75 min per week) showed a negative correlation between 
the brain changes of GM volume of the left motor cortex 
and dorsolateral prefrontal cortex (DLPFC) with the changes 
in juggling performance. In contrast, a juggling training 
with higher duration of the exercise sessions (150 min per 
week), the same relationship was positive. For the white 
matter (WM) volume, the relationship was the opposite, 
i.e., a juggling training with a lower duration of the exer-
cise sessions had increased functional connectivity and a 
juggling training with higher duration of the exercise ses-
sions had decreased functional connectivity, as indicated 
by increased and decreased motor resting state structure 
strength, respectively. It is important to mention that the 
juggling performance was not significantly different between 
both these groups after finishing the juggling intervention. 
Weber et al. (2019) found similar effects after 3 weeks of 
unicycle training. They reported a decrease in the GM vol-
ume and an increase of the WM fractional anisotropy after 
the training. Both research groups, i.e., Sampaio-Baptista 
et al. (2014, 2015) and Weber et al. (2019), suggested that 
the changes rely on the different reorganization processes 
of brain tissue and are moderated by the participant’s skill 
or amount of practice. Weber et al. (2019) showed that the 
GM decreases in task-relevant structures following unicy-
cle training subsequently increased again after a follow-up 
period during which no unicycle training was performed. 
This strongly supports the view that brain changes following 
physical activity are highly dynamic and strongly related to 
the amount of physical exercise.

This study also has some limitations. Firstly, we did not 
assess changes in diffusion-weighted MRI and functional 
characteristics of the brain following the intervention. 
Recent research has indicated that the combined consid-
eration of these different imaging modalities provides a 
comprehensive and more holistic view of the manifold 
brain changes associated with coordinative exercises (e.g., 
Weber et al. 2019). A further limitation is the higher num-
ber of women (n = 19) compared to men (n = 6) participat-
ing in the current study. According to the literature, it is 
more likely that women participate in worksite programs 
(Beck et al. 2016). Moreover, these results are in line with 
other studies implementing physical exercise programs 
at the workplace, where a higher percentage of women 
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(between 64.2 and 90.0%) participated in the programs 
(Dalager et al. 2017; Gram et al. 2014; Grande et al. 2015; 
Hartfiel et al. 2011; Hunter et al. 2018; Puig-Ribera et al. 
2008). Finally, no a priori sample size calculation was 
done and the sample size of this study is small, which 
certainly limits the statistical power. This limitation of the 
statistical power could lead to a reduction of the likelihood 
that significant results reflect a true effect (Button et al. 
2013). Nevertheless, the fact that we found brain changes 
in regions strongly implicated in visuomotor processes 
indicated that the findings are meaningful. This study was 
hypothesis generating and should serve as basis for future 
studies in this field where we await replication of these 
findings in larger samples of participants.

Conclusions

The present study provides the first evidence that 12 weeks 
of PEBs with coordinative exercises and with a low train-
ing volume and a variety of juggling exercises performed 
at the workplace result in changes in GM volume and 
sulcal depth. These changes were found in brain struc-
tures strongly implicated in visuo-coordinative processes 
involving hand and arm movements. Future research in 
this field would benefit by the use of different brain imag-
ing modalities. In particular, the assessment of magnetic 
resonance spectroscopy in the context of physical exercise 
could also provide important new insights into the bio-
chemical and cellular mechanisms underlying the observed 
changes in brain volume.
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