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Abstract
The mammillary body (MB) is a component of the extended hippocampal system and many studies have shown that its 
functions are vital for mnemonic processes. Together with other subcortical structures, such as the anterior thalamic nuclei 
and tegmental nuclei of Gudden, the MB plays a crucial role in the processing of spatial and working memory, as well as 
navigation in rats. The aim of this paper is to review the distribution of various substances in the MB of the rat, with a 
description of their possible physiological roles. The following groups of substances are reviewed: (1) classical neurotrans-
mitters (glutamate and other excitatory transmitters, gamma-aminobutyric acid, acetylcholine, serotonin, and dopamine), 
(2) neuropeptides (enkephalins, substance P, cocaine- and amphetamine-regulated transcript, neurotensin, neuropeptide Y, 
somatostatin, orexins, and galanin), and (3) other substances (calcium-binding proteins and calcium sensor proteins). This 
detailed description of the chemical parcellation may facilitate a better understanding of the MB functions and its complex 
relations with other structures of the extended hippocampal system.
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Introduction

Many studies have been focusing on the role of the hip-
pocampus in memory and learning processes, yet the struc-
ture does not act in isolation from other brain regions. The 
mammillary body (MB) is part of the extended hippocampal 
system, which is known for its involvement in the integra-
tion of information and mnemonic processes (Aggleton and 
Brown 1999). Besides the MB, the system includes also the 
hippocampal formation, anterior thalamic nuclei (ATN), 
retrosplenial, entorhinal and cingulate cortices, the tegmen-
tal nuclei of Gudden (TNG), and nerve tracts connecting 
the mentioned structures (Aggleton et al. 2010). Lesions of 
the MB in rodents have shown its critical role in memory 
processes (Aggleton et al. 1995; Béracochéa and Jaffard 
1995; Gaffan et al. 2001; Nelson and Vann 2014; Santín 
et al. 1999; Sziklas et al. 1996; Vann and Aggleton 2003), 
whereas damage of the MB in humans is a characteristic fea-
ture of Korsakoff’s syndrome—neuropathology manifested 

by global amnesia (episodic/declarative memory deficits), in 
combination with other cognitive and behavioral dysfunction 
(for review see Arts et al. 2017).

The MB of rats is generally composed of two nuclei: 
the medial mammillary nucleus (MM) and lateral mam-
millary nucleus (ML), and the MM may be further divided 
into the medial part (MMm) and lateral part (MMl) of 
the medial mammillary nucleus (Allen and Hopkins 1988; 
Krieg 1932). The direct connections to the MB diverge 
from the hippocampal formation via the post-commissural 
fornix. However, in opposite direction, they are carried 
out indirectly through the anterior thalamus (Seki and Zyo 
1984; Swanson and Cowan 1977). The main structure of 
the hippocampal formation, which innervates the MB, is 
the subicular complex, and these projections are unidi-
rectional and topographically organized in rodents (Allen 
and Hopkins 1989; Bienkowski et al. 2018; Witter 2006). 
The mammillothalamic tract (mtt) is a unidirectional 
pathway connecting the MB with ATN and acts as the 
main output for the MB (Guillery 1955; Vann et al. 2007). 
Neurons in the MMm and MMl send their axons to the 
anteromedial thalamic nucleus (AM) and antero-ventral 
thalamic nucleus (AV), respectively; while inputs to the 
antero-dorsal thalamic nucleus (AD) arise from the ML 
(Seki and Zyo 1984; Shibata 1992; Watanabe and Kawana 
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1980). Another important set of the MB projections is a 
bidirectional connection with the TNG, conveyed via the 
mammillotegmental tract, which is composed of descend-
ing collaterals of MB axons running in the mtt, and the 
mammillary peduncle—the ascending branch. The organi-
zation of these projections is well established: the MM is 
connected with the ventral tegmental nucleus (TNGv), and 
the ML with the dorsal tegmental nucleus (TNGd) (Allen 
and Hopkins 1989; Hayakawa and Zyo 1989; 1991).

Each part of the MB plays a specific role in the 
extended hippocampal system. For example, studies on 
rats have shown that the MM, especially its lateral part, 
exerts modulatory effects on hippocampal theta rhythm 
(via the projections to the AV), while the ML constitutes 
part of the head direction (HD) system (together with the 
AD) and therefore participates in navigation (for review 
see Aggleton et al. 2010). With all things considered, the 
MB serves a critical function in memory and spatial navi-
gation, as a part of the system of structures interconnected 
to the hippocampus.

Despite obvious differences in cell morphology among 
various parts of the MB, the view that there is only one 
type of neuron within the MB is well established (e.g., 
Allen and Hopkins 1988; Powell and Cowan 1954; Veazey 
et al. 1982; Takeuchi et al. 1985). However, many years 
of histochemical investigations have shown that the het-
erogeneity of MB neurons is much more extensive, and a 
recent study by Mickelsen and colleagues (2020) seems 
to support this notion at a molecular level as well. The 
following article is the first attempt to review and sum-
marize the neurochemical parcellation of the mammillary 
body by describing the distribution of various substances 
in this structure of the rat, with a commentary on other 
species’ brains where necessary. The article is divided 
into three sections: the first one is devoted to the classical 
neurotransmitters, the second section focuses on various 
neuropeptides, and the third one reviews the presence of 
calcium-related proteins. Two tables which summarize the 
chemical organization of the rat MB are included in the 
paper: Table 1 describes the intrinsic neurochemistry of 
MB neurons, while Table 2—the neurochemistry of inner-
vations of the MB.

Classical neurotransmitters

In this section, the presence of the classical neurotransmit-
ters in the MB will be described. To date, various neuro-
transmitters (or their markers), along with their receptors, 
have been found in the MB of the rat, i.e., glutamate (and 
other excitatory transmitters), gamma-aminobutyric acid, 
acetylcholine, serotonin, and dopamine.

Excitatory neurotransmitters

Glutamate (Glu) is the principal excitatory neurotrans-
mitter in the central nervous system (CNS) and aspar-
tate (Asp) is a selective agonist for glutamate receptors 
(Kubrusly et al. 1998). Some studies have shown that Asp 
has characteristics of a classical neurotransmitter (Caval-
lero et al. 2009; Gundersen et al. 1998; but see Herring 
et al. 2015), thus its distribution will be described in the 
following section. Excitatory amino acids, such as Glu 
and Asp, are implicated in several crucial functions of the 
nervous system, including memory (for review see McEn-
tee and Crook 1993; Reis et al. 2009; Riedel et al. 2003). 
Glutamate receptors consist of both ionotropic: α-amino-
3-hydroxy-5-methyl-4-aspartate receptors (NMDA), 
α-amino-3-hydroxy-5-methyl-ioxyzole-4-propionic acid 
receptors (AMPA), kainate receptors (KA), and metabo-
tropic receptors (Hollmann and Heinemann 1994; Mayer 
and Westbrook 1987; Salt and Eaton 1996).

Glu and Asp have been found in a substantial num-
ber of cell bodies in the rat MB, where both substances 
co-localized (Gonzalo-Ruiz et al. 1996). Moreover, gene 
expression analysis has shown that all parts of the murine 
MB contain neurons expressing genes required for gluta-
mate synthesis and packaging, indicating their excitatory 
function (Mickelsen et al. 2020). Almost all MB neurons 
send their axons to the ATN (Aggleton et al. 2010; Vann 
et al. 2007), and 50–60% or even more of these neurons 
have been shown to contain Glu/Asp (Gonzalo-Ruiz et al. 
1998). Indeed, in all subnuclei of the anterior thalamus, 
Glu/Asp positive fibers and terminal-like boutons have 
been found (Gonzalo-Ruiz et al. 1996). It seems that the 
signal processing between these two structures (as well as 
along the extended hippocampal system) is highly depend-
ent on Glu/Asp transmission. The same neurons of the MB 
may also be a source of excitatory inputs for the TNG, 
as descending axons in the mammillotegmental tract are 
collaterals of ascending axons in the mtt (Hayakawa and 
Zyo 1989). It has been shown that most of the mammil-
lary axon terminals in both, the TNGv and TNGd, contain 
round vesicles and make asymmetric synaptic contacts, 
which is the characteristic feature of excitatory synapses. 
These terminals are small (diameter < 2 μm) with synapses 
located mostly on small-diameter dendrites (Allen and 
Hopkins 1990), which is an interesting difference from 
the terminals of the mammillothalamic collaterals—large 
in size (diameter 1.5–4.0 μm) and forming synapses pri-
marily on proximal and secondary dendrites (Dekker and 
Kuypers 1976).

All MB subnuclei also contain many Glu/Asp-positive 
fibers and terminal-like structures (Gonzalo-Ruiz et al. 
1996). There is strong evidence that the subiculum is the 
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Table 1  The intrinsic neurochemistry of the mammillary body in rats—relative quantity of classical neurotransmitters (or their markers), neuro-
peptides, calcium-binding proteins, and calcium sensor proteins in the neurons

ATN anterior thalamic nuclei, CaBPs calcium-binding proteins, CART  cocaine- and amphetamine-regulated transcript, ChAT choline acetyltrans-
ferase, GABA gamma-aminobutyric acid, GAD glutamic acid decarboxylase, ML lateral mammillary nucleus, MM medial mammillary nucleus, 
MMm medial part of the MM, MMl lateral part of the MM, NAAG  N-acetyl-aspartyl-glutamate, NCSPs calcium sensor proteins, TH tyrosine 
hydroxylase, TNG tegmental nuclei of Gudden
*mRNA distribution study
Protein or mRNA presence: +  +  + high; +  + moderate; + low; – absent

MM ML Additional remarks References

MMm MMl

Neurotransmitters
 Glutamate  +  +  +  ~ 60% of all neurons projecting to the 

ATN; likely source of glutamate in the 
TNG

Gonzalo-Ruiz et al. (1996; 1998)

 NAAG  +  +  +  +  +  + Abundant in the whole extended hip-
pocampal system

Tsai et al. (1993)

 GABA (and GAD) – – Benson et al. (1992); Gonzalo-Ruiz et al. 
(1993); Sakaue et al. (1988)

 Acetylcholine (ChAT) – – Tago et al. (1987); Ruggiero et al. (1990)
 Serotonin – – Moore et al. (1978); Steinbusch and Nieu-

wenhuys (1981)
 Dopamine (TH) – – Chan-Palay et al. (1984); Gonzalo-Ruiz 

et al. (1992a)
Neuropeptides
 Leu-enkephalin  +  +  +  +  +  +  ~ 50% of all neurons projecting to the 

ATN; source of leu-enkephalin in the 
TNG

Finley et al. (1981); Fujii et al. (1987); 
Gonzalo-Ruiz et al. (1998); Khachatu-
rian et al. (1983); Lantos et al. (1995); 
Yamano and Tohyama (1987)

 Substance P – – Larsen (1992); Shults et al. (1984); War-
den and Young (1988)

 CART  +  +  +  +  + Likely source of CART in the ATN Douglass et al. (1995)*; Koylu et al. 
(1997); Hurd and Fagergren (2000)*

 Neurotensin – – Kahn et al. (1982)
 Neuropeptide Y – – de Quidt and Emson (1986); Ni et al. 

(2015)
 Somatostatin – – Johansson et al. (1984); Lantos et al. 

(1995)
 Orexins – – Cutler et al. (1999); Nixon and Smale 

(2007)
 Galanin – – Lantos et al. (1995); Skofitsch and Jaco-

bowitz (1985); Takatsu et al. (2001)
CaBPs
 Calretinin –  +  +  + Source of calretinin in the ATN Jacobowitz and Winsky (1991); Resibois 

and Rogers (1992); Rogers and Resibois 
(1992)

 Calbindin  +  +  + – Likely source of calbindin in the ATN Celio (1990); Rogers and Resibois (1992); 
Sequier et al. (1990)

 Parvalbumin  +  +  + – Celio (1990)
NCSPs
 NVP-3 and hippocalcin  +  +  +  + One of the richest presence in the hypo-

thalamus
Paterlini et al. (2000)*; Takami et al. 

(1985);
 Frequenin, NVP-1 and NVP-2  + / +  + – Paterlini et al. (2000)*; Saitoh et al. (1994)
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Table 2  The neurochemistry of innervations of the mammillary body in rats—relative quantity of classical neurotransmitters (or their markers), 
neuropeptides, calcium-binding proteins, and calcium sensor proteins in the neuropil, i.e., fibers and axon terminals

CaBPs calcium-binding proteins, CART  cocaine- and amphetamine-regulated transcript, ChAT choline acetyltransferase, GABA gamma-amin-
obutyric acid, ML lateral mammillary nucleus, MM medial mammillary nucleus, MMm medial part of the MM, MMl lateral part of the MM, 
NAAG  N-acetyl-aspartyl-glutamate, NCSPs calcium sensor proteins, TH tyrosine hydroxylase, TNG tegmental nuclei of Gudden, VGluT vesicu-
lar glutamate transporters
Protein presence: +  +  + high; +  + moderate; + low; – absent; n/a no data

MM ML Additional remarks References

MMm MMl

Neurotransmitters
 Glutamate  +  +  + Source: the subiculum Gonzalo-Ruiz et al. (1996); Umaba et al. 

(2021)
 VGluT1  +  + / +  +  +  + / +  + – Fremeau et al. (2001); Kaneko et al. 

(2002); Sakata-Haga et al. (2001) VGluT2  +  +  +  + –
 NAAG  +  +  +  +  +  + Abundant in the whole extended hip-

pocampal system
Tsai et al. (1993)

 GABA  +  +  +  +  +  +  +  + Source: the TNG Gonzalo-Ruiz et al. (1993; 1996; 1999); 
Sakaue et al. (1988); Wirtshafter and 
Stratford (1993)

 Acetylcholine (ChAT)  +  +  +  +  + Source: the laterodorsal tegmental 
nucleus

Gonzalo-Ruiz et al. (1999); Ruggiero et al. 
(1990)

 Serotonin  +  +  +  + Source: the median and dorsal raphe 
nuclei

Azmitia and Segal (1978); Moore et al. 
(1978); Steinbusch and Nieuwenhuys 
(1981)

 Dopamine (TH)  +  +  +  +  +  + Source: the supramammillary nucleus Chan-Palay et al. (1984); Gonzalo-Ruiz 
et al. (1992a)

Neuropeptides
 Leu-enkephalin  +  +  + Source: the TNG Finley et al. (1981); Gonzalo-Ruiz et al. 

(1998); Khachaturian et al. (1983); Lan-
tos et al. (1995)

 Substance P −/ + Source: the TNG Gonzalo-Ruiz et al. (1999); Lantos et al. 
(1995); Larsen (1992); Shults et al. 
(1984)

 CART  + Koylu et al. (1997)
 Neurotensin  + Much higher in young rats; source: the 

subiculum
Kahn et al. (1982); Kiyama et al. (1986)

 Neuropeptide Y  + – de Quidt and Emson (1986); Ni et al. 
(2015)

 Somatostatin  + – Johansson et al. (1984); Lantos et al. 
(1995)

 Orexins  + ++ – Cutler et al. (1999); Nixon and Smale 
(2007)

 Galanin −/ + – Lantos et al. (1995); Skofitsch and Jaco-
bowitz (1985); Takatsu et al. (2001)

CaBPs
 Calretinin  +  +  +  + Source: the postsubiculum Celio (1990); Jacobowitz and Winsky 

(1991); Resibois and Rogers (1992); 
Rogers and Resibois (1992); Dillingham 
et al. (2015)

 Calbindin  +  +  + – Source: the TNG
 Parvalbumin  +  +  +  + 

NCSPs
 NVP-3 or NVP-1 –  +  +  + – Referred to as visinin Takami et al. (1985)
 Frequenin, hippocal-

cin and NVP-2
n/a –
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main source of this Glu/Asp input. First, axonal termi-
nals from the subiculum contain round vesicles and form 
asymmetric synaptic junctions on mammillary neurons, 
thus are excitatory (Allen and Hopkins 1989). Second, a 
surgical lesion of the fornix heavily reduced high-affinity 
uptake of Glu/Asp in the rat MB, but did not affect other 
substances’ uptake, such as gamma-aminobutyric acid, 
glutamic acid decarboxylase, or choline acetyltransferase 
(Storm-Mathisen and Woxen Opsahl 1978; Walaas and 
Fonnum 1980). Recently, Umaba et al. (2021) have shown 
that subicular projections terminate on Glu-containing 
neurons of the MM, which project to the AV/AM and 
TNGv. The authors concluded, that this subiculum–MB 
connection may support information flow through the hip-
pocampal–mammillothalamic and hippocampal–mammil-
lotegmental circuits, using Glu as the main transmitter. 
Gonzalo-Ruiz et al. (1999) have revealed that a very small 
population of neurons projecting from the TNG to the MB 
contains Glu as well, but this scant level likely correlates 
with a metabolic role of Glu rather than with a neurotrans-
mission role.

Interestingly, a high level of N-acetyl-aspartyl-glutamate 
(NAAG) has also been found in cell bodies and neuropil of 
the MB, especially in the MM–only faintly immunostained 
cells were found in the ML (Tsai et al. 1993). Dipeptide 
N-acetyl-aspartyl-glutamate is the second most widely dis-
tributed excitatory transmitter in the brain, which activates 
a limited subpopulation of NMDA receptors, as well as 
mGluR3. It has been proposed that NAAG may be released 
under conditions of elevated activation of neuronal circuits 
(Neale and Yamamoto 2020). It seems that NAAG has an 
important role in learning and memory processes as it has 
been found in the other structures of the extended hippocam-
pal system, such as the hippocampal formation, anterior thal-
amus, retrosplenial cortex, and the main tracts of the system, 
i.e., the fornix, mtt and cingulum (Moffett and Namboodiri 
1995; Tsai et al. 1993).

The abundant presence of vesicular glutamate trans-
porters (VGluTs) within the MB also strongly suggests its 
excitatory nature. These transporters are restricted to nerve 
endings and are thought to regulate the amount of Glu 
released into the synaptic cleft (Wilson et al. 2005). Inter-
estingly, there is a high variation of the expression arrange-
ment across the CNS within the three isoforms of VGluTs, 
i.e., VGluT1-VGluT3 (Fremeau et al. 2001; Herzog et al. 
2004). In the rat MB, expression of VGluT1 and VGluT2 
was detected in a kind of complementary fashion. However, 
various studies have brought slightly different results. On the 
whole, immunohistochemical studies revealed that VGluT1 
was present at a moderate to high level in the MM and a low 
to moderate level in the ML, whereas VGluT2 was much 
more abundant in the ML, with only small amounts in the 
MM (Fremeau et al. 2001; Kaneko et al. 2002; Sakata-Haga 

et al. 2001). Regarding VGluTs mRNA, a low expression 
level of VGluT1 has been found in the ML, whereas VGluT2 
mRNA has shown a moderate to high expression level in 
the ML, and a much lower one in the MM (Hisano et al. 
2000; Lin et al. 2003; Ziegler et al. 2002). A study on mice 
has revealed that this population of VGluT2 neurons in the 
ML receives direct inputs from GABAergic neurons of the 
TNGd, which express a high level of 5-HT1AR–seroton-
ergic receptors involved in the regulation of wakefulness. 
In this model, a population of ML glutamatergic neurons 
would be a center that promotes wakefulness, through the 
network involving inhibition of GABAergic neurons in the 
TNGv by serotonergic neurons of the median raphe nucleus 
(via 5-HT1AR), and, as result, disinhibition of ML neurons 
(Chazalon et al. 2018).

It has been proposed that VGluT1 and VGluT2 reflect 
different subclasses of Glu terminals, which might differ in 
some aspects of the packaging and regulating the release 
of Glu (Fremeau et al. 2001; Pietrancosta et al. 2020). For 
example, excitatory projections from the subiculum to the 
MB, which collateralize to innervate the retrosplenial cortex, 
overlap with VGluT2, but not VGluT1 presence (Kinnavane 
et al. 2018). The exact nature of the differences between 
these two VGluT isomers is still debated, but if they co-
expressed in the same vesicles, then that would lead to the 
increased volume of Glu inside a single vesicle in compari-
son to a vesicle equipped only with a singular isoform of 
VGluT (Schuske and Jorgensen 2004). If such co-locali-
zation was present in the MB, it would likely involve the 
ML. First, the ML contains higher amounts of both VGluT 
isomers, with respect to protein, as well as mRNA. Sec-
ond, such co-localization is present in a huge population of 
perikarya and many punctate structures in the AD in rats 
(Barroso-Chinea et al. 2007; Oda et al. 2014), which is the 
main target of ML projections. Possibly, the presence of two 
isoforms may be related to a specific function of the nucleus, 
i.e., contribution to the HD system. Both nuclei, the ML 
and AD, contain a substantial percent of HD cells that fire 
as a result of the specific pattern of the animal’s head move-
ment in a horizontal plane (for review see Taube 2007). The 
other target of MB projections, i.e., TNG, contains moderate 
amounts of VGluT2, but virtually none of VGluT1 (Kaneko 
et al. 2002).

Both ionotropic and metabotropic glutamate receptors 
are present in the rat MB. Van den Pol (1994) have found 
that most neurons of the MB express the NR1 subunit of 
NMDA receptors; however, it was GluR1 and GluR2 which 
showed the highest expression level among ionotropic recep-
tors in the MB (Gold et al. 1997; Gu et al. 2008; Martin 
et al. 1993; Ohishi et al. 1998; Sato et al. 1993; Van den 
Pol 1994). GluR1 is also the most highly expressed AMPA 
subunit receptor in the ATN (Gold et al. 1997; Martin et al. 
1993; Sato et al. 1993; Spreafico et al. 1994). There are 
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some discrepancies among various studies, but generally, the 
expression of GluR3 and GluR4 mRNA is very low within 
the rat MB (Gold et al. 1997; Martin et al. 1993; Sato et al. 
1993; Van den Pol et al. 1994). Across kainate receptor sub-
units, GluR6 mRNA showed a moderate to high expression, 
but there was virtually a lack of GluR5 and GluR7 mRNA 
in the MB (Van den Pol et al. 1994).

One study has shown that the human MB contains a high 
level of Glu/Asp (Banay-Schwartz et al. 1992), which is also 
true for some other structures of the hippocampal system, 
such as the hippocampus and ATN (Banay-Schwartz et al. 
1992; Popken et al. 2002).

Gamma‑aminobutyric acid

Gamma-aminobutyric acid (GABA) is the main inhibitory 
neurotransmitter in the mammalian brain. Two types of 
GABA receptors have been described: ionotropic  GABAA 
receptors and slower, metabotropic  GABAB receptors (see 
Bowery et al. 1987).

According to morphological studies, there is little evi-
dence for interneurons in the MB of the rat (Allen and Hop-
kins 1988; Seki and Zyo 1984; Takeuchi et al. 1985). Simi-
larly, immunohistochemical studies on rats have brought no 
evidence that MB neurons contain GABA. However, GABA-
positive staining has been associated with axons traversing 
the MB and their terminals, especially in the ML and MMl 
(Gonzalo-Ruiz et al. 1993, 1996; Sakaue et al. 1988). It has 
been additionally confirmed in the study conducted by Ben-
son et al. (1992), in which no glutamic acid decarboxylase 
(GAD; an enzyme synthesizing GABA) RNA was detected 
in the MB, while gene expression mapping has failed to 
find any GABAergic neuronal marker in the murine MB 
(Mickelsen et al. 2020). With regard to GABAergic recep-
tors, a moderate to high expression level of various subu-
nits of  GABAA receptor has been found within the rat MB 
(Fritschy and Mohler 1995; Pirker et al. 2000). However, 
 GABAB receptor RNA showed only weak expression, con-
fined to the MM (Durkin et al. 1999).

Most likely, the GABAergic components observed in 
the MB have their source in the TNG. First, axon termi-
nals from the tegmental nuclei are characterized by pleo-
morphic vesicles and form symmetric synaptic junctions on 
the majority of MB neurons, presumably exerting inhibitory 
effects (Allen and Hopkins 1989; Hayakawa and Zyo 1991). 
Second, Gonzalo-Ruiz et al. (1999) have shown that neu-
rons of the TNGv and TNGd are GABA-positive, whereas 
lesions of these two tegmental nuclei in rats resulted in a 
substantial decrease in the number of GAD-positive fibers 
and terminals within the MM and ML, respectively (Wirt-
shafter and Stratford 1993). The GABAergic inputs from the 
tegmental nuclei innervate mostly excitatory neurons in the 
MB of rodents and may be seen as an inhibitory feedback 

loop which controls functions of the MB (Wirtshafter and 
Stratford 1993) and, in consequence, other structures of the 
extended hippocampal system. Lesions of the TNGv in rats 
impaired the performance of several memory tasks, such as 
delayed-matching-to-place in the water maze, the T-maze 
alternation task, and working memory in the radial arm 
maze—all of which are also sensitive to the damage of the 
MB, mtt, ATN and the hippocampus (Vann 2009). Similar to 
MM neurons, neuronal cells in the TNGv fire rhythmically 
in a fashion corresponding to hippocampal theta rhythm, and 
it has been proposed that the inhibitory influence of the mid-
brain inputs may moderate theta activity in the MB (Kocsis 
et al. 2001; Vertes et al. 2004). In such case, any damage to 
the TNGv may produce a desynchronization of activity (i.e., 
a lack of functional coupling) of various structures within 
the extended hippocampal system, which, as result, may lead 
to memory deficits in rodents, as well as in humans (Gold-
berg et al. 1981). Likewise, lesions of the TNGd produce 
impairments of the spatial task performance in rats, but in 
this regard, a disruption in the acquisition of navigational 
strategies is involved (Clark et al. 2013). The TNGd is a part 
of the HD system, and damage to this nucleus completely 
suppresses the HD signal in the AD—a structure that is only 
indirectly connected with the TNGd, via the ML (Bassett 
et al. 2007). Thus, the direct inhibitory projections from the 
TNGd to the ML seem to be necessary for an animal to navi-
gate toward specific places in an environment.

The lack of a developed local inhibitory network is a 
common feature for the MB and anterior thalamus, as no 
interneurons have been found in the ATN in rats (Benson 
et al. 1992; Wang et al. 1999). While the MB receives its 
GABAergic inputs from the tegmental nuclei, the activity 
of the ATN is inhibited by the projections from the thalamic 
reticular nucleus (Gonzalo-Ruiz and Lieberman 1995). It 
was proposed that the number of GABAergic interneurons in 
the mammalian thalamus is related to behavior complexity. 
The more complex the behavior of a species, the higher the 
number of GABAergic interneurons (Arcelli et al. 1997). 
Indeed, an increase in the number of GABAergic neurons 
has been observed in the ATN of cats, non-human primates, 
and humans (for review see Żakowski 2017). In contrast, 
there is a lack of interneurons in the MB of the cat and rabbit 
(Guillery 1955), but a small population of inhibitory neurons 
has been detected in the MB of the rhesus monkey (Xiao and 
Barbas 2002) and human (Bernstein et al. 2007; Dixon et al. 
2004; Mackay et al. 1978), approximately 2% of the total 
neuron population in the latter.

Acetylcholine

Acetylcholine plays an essential role in various brain 
functions, such as arousal, sleep, learning and memory, 
and many others (Woolf 1991; Woolf and Butcher 1986). 
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Acetylcholine receptors consist of two major types: the 
metabotropic muscarinic receptor and the ionotropic nico-
tinic receptor (for review see Eglen 2006; Albuquerque et al. 
2009). Two enzymes related to acetylcholine, i.e., choline 
acetyltransferase (ChAT) and acetylcholinesterase (AChE), 
are the most specific markers of cholinergic neurons, com-
monly used in the studies of cholinergic neurotransmission 
in the CNS.

While no cell bodies containing ChAT have been found 
in the MB of the rat, many fibers and terminal-like vari-
cosities were concentrated primarily in the ML, but also 
in the MMm (Tago et al. 1987; Ruggiero et al. 1990). The 
most likely origin of these ChAT-positive structures is the 
laterodorsal tegmental nucleus, which sends its cholinergic 
projections toward the MB, especially the ML (Gonzalo-
Ruiz et al. 1999). Terminals from the laterodorsal tegmental 
nucleus are characterized by pleomorphic vesicles and make 
symmetric synaptic connections with ML neurons, presum-
ably constituting an inhibitory input (Hayakawa and Zyo 
1992). The laterodorsal tegmental nucleus is well known 
for the vast presence of cholinergic neurons (Honda and 
Semba 1995), and is also the main source of cholinergic 
innervation in the anterior thalamus (Gonzalo-Ruiz et al. 
1995; Hallanger et al. 1987; Holmstrand and Sesack 2011). 
Interestingly, a significant number of muscarinic receptors 
in the ATN are presynaptic, and it has been suggested that 
cholinergic innervation of the ATN may provide a clas-
sical presynaptic inhibition through these receptors dur-
ing the activation of projections from the MB (Sikes and 
Vogt 1987). Regarding acetylcholine receptors in the MB, 
the highest concentrations of nicotinic receptors have been 
observed in the ML (Block and Billiar 1981; Clarke et al. 
1985; Härfstrand et al. 1988; Tribollet et al. 2004).

The lack of neurons containing cholinergic markers is 
also a characteristic feature of other mammals’ MB, such as 
cats, macaques, and humans (Tago et al. 1987; Woolf 1991). 
Only one study has shown a low to moderate concentration 
of ChAT and AChE in the human MB (Mackay et al. 1978).

Serotonin

Serotonin (5-hydroxytryptamine, 5-HT) is a crucial trans-
mitter for various emotional, motor, and cognitive func-
tions. Seven families of 5-HT receptors (5-HT1-7) have been 
described (for review see Barnes and Sharp 1999).

The presence of 5-HT in the rat MB is related to neu-
ropil only, and its source could be tracked to the popula-
tion of serotonergic neurons in the midbrain raphe nuclei. 
Moderately dense 5-HT innervation has been found in the 
MMm, and a significantly lower one in the MMl and ML 
(Moore et al. 1978; Steinbusch and Nieuwenhuys 1981). 
Both the median and dorsal raphe nuclei project to the MB 
through two pathways: the raphe medial tract reaches the 

MMm, while the tract overlapping with the mammilloteg-
mental tract runs toward MMl (Azmitia and Segal 1978). A 
study on mice has revealed that the serotonergic projections 
from the median raphe nucleus may influence the activity 
of the MB (the ML in particular) also indirectly, via the 
TNGv (Chazalon et al. 2018), which was described earlier 
in this paper. In regard to the anterior thalamus of rat, the 
AV appears to be the strongest 5-HT-positive nucleus (for 
review see Żakowski 2017), however in other mammals, for 
example, the cat, this characteristic is associated primarily 
with the AD (Leger et al. 2001).

Serotonin receptors exhibit several distinct subtypes 
across the rat MB. Among them, 5-HT7 subtype showed the 
highest concentration, and it was present almost exclusively 
in the MM (Gustafson et al. 1996; Heidmann et al. 1998; 
Kinsey et al. 2001; Martin-Cora and Pazos 2004). 5-HT7 is 
known for its effects exerted on various processes related 
to cognition, such as learning and memory (for review see 
Meneses 2014; Stiedl et al. 2015). This subtype of the sero-
tonin receptor is also the most abundant within the rat ATN 
(Gustafson et al. 1996; Kinsey et al. 2001; Neumaier et al. 
2001). In vivo studies on the thalamic slices have shown 
that these receptors mediate serotonin influence on the excit-
ability of AD neurons (Chapin and Andrade 2001). Among 
other subtypes, various 5-HT1 receptors (5-HT1A, 5-HT1C, 
5-HT1D), as well as 5-HT2, showed a low to moderate level 
of expression in the entire rat MB (Abramowski et al. 1995; 
Bruinvels et al. 1993; Pazos et al. 1985; Pazos and Palacios 
1985; Pompeiano et al. 1992; Wright et al. 1995).

Dopamine

Dopamine (3,4-dihydroxyphenethylamine, DA) transmission 
is linked to many vital functions, such as learning, moti-
vation, planning, and general motor control  (Chinta and 
Andersen 2005; Lerner et al. 2021). The most distinct popu-
lation of DA neurons is located in the ventral mesencephalon 
(around 90% of all dopaminergic cells in the brain), which 
gives rise to several DA subsystems, i.e., the nigrostri-
atal, mesolimbic, and meso-cortical pathways (Chinta and 
Andersen 2005). DA is synthesized with the involvement 
of tyrosine hydroxylase (TH), which is a commonly used 
marker of dopaminergic neurons in the hypothalamus and 
beyond. The receptors for the DA can be divided into two 
distinct families based on properties and structure: the D1 
family (consisting of D1 and D5) and the D2 family (consist-
ing of D2, D3, and D4). Interestingly, D2 and D3 are located 
in the post- and presynaptic cells, whereas D1 and D5 only 
in the postsynaptic ones (for review see Klein et al. 2019).

No cell bodies containing TH have been found in the 
MB of the rat. However, TH-positive fibers and terminals 
are present, but unevenly distributed within the structure. 
The ML is characterized by the highest number of varicose 



1386 Brain Structure and Function (2023) 228:1379–1398

1 3

fibers and terminals, while a moderate density of axons and 
terminals is present in the MM, mostly in the dorsal part 
of the MMm and MMl (Chan-Palay et al. 1984; Gonzalo-
Ruiz et al. 1992a). Most likely, the principal source of this 
dopaminergic innervation is the supramammillary nucleus, 
as it has been shown that numerous TH-positive neurons 
of this nucleus send dense projections to both nuclei of the 
MB, in particular to the ML (Gonzalo-Ruiz et al. 1992a; b). 
The supramammillary nucleus projects to various structures 
of the extended hippocampal system, including the ante-
rior thalamus and hippocampus, as well as the septum and 
diagonal band of Broca, and it is pivotal to the generation of 
the hippocampal theta rhythm (Pan and McNaughton 2004). 
Interestingly, it has been suggested that the dopaminergic 
input to the lateral septum and MB may come from the same 
supramammillary nucleus neurons whose axons bifurcate on 
the way (Gonzalo-Ruiz et al. 1992a).

The ML is also the nucleus with the highest expression of 
dopamine receptors within the rat MB, especially in regard 
to D2 receptor (Bouthenet et al. 1987; Tiberi et al. 1991; 
Weiner et al. 1991). There is virtually a lack of D1 receptors 
in the MB (Dawson et al. 1986; Savasta et al. 1986; Weiner 
et al. 1991), but Tiberi et al. (1991) have found overlap-
ping expression of D1B subtype and D2 receptor mRNA 
in the ML. Gurevich and Joyce (1999) have also revealed 
high expression of D3 receptor in the whole MB–ATN 
axis, i.e., the MB, mtt, and anterior thalamus. Interestingly, 
D2-binding sites were not present in the mtt, which suggests 
that D3 receptors may play important role in regulating the 
activity of the axis. The importance of D3 receptors seems 
to be conserved across species, as a similar organization of 
dopamine receptors was observed in the human brain, i.e., a 
high concentration of D3 binding sites in the MB, mtt, and 
anterior thalamus (Gurevich and Joyce 1999). While both 
the structures also contain D3 receptor mRNA in humans, 
other dopamine receptors showed somewhat lower expres-
sion in the MB–ATN axis (Camps et al. 1989; Gurevich and 
Joyce 1999). Regarding D1 receptors, however, the human 
MB is significantly richer in binding sites than the MB of the 
rat (Cortés et al. 1989). Similar to the rat, there is a lack of 
cell bodies containing TH in the MB of humans (Sanghera 
et al. 1995), however, a moderate level of TH activity has 
been detected (Macay et al. 1978).

Neuropeptides

Many studies have revealed a presence (or lack of it) of vari-
ous neuropeptides in the MB of the rat, such as enkephalins, 
substance P, cocaine- and amphetamine-regulated transcript, 
neurotensin, neuropeptide Y, somatostatin, orexin, galanin, 
and their distribution will be described in the following 
section.

Enkephalins

Enkephalins (ENKs) are a group of endogenous opioids. 
Several ENKs have been described so far, but only leucine 
enkephalin (leu-ENK) has been detected in the MB of the 
rat (Khachaturian et al. 1985).

In the rat MB, many scattered neurons containing leu-
ENK have been found in the MMm, but also in the ML 
(Finley et al. 1981; Fujii et al. 1987; Gonzalo-Ruiz et al. 
1998; Khachaturian et al. 1983; Lantos et al. 1995; Yamano 
and Tohyama 1987). These cells are the source of leu-ENK 
in the main targets of the MB projections, i.e., the ATN and 
TNG, as ENK-positive fibers have been seen to enter the 
mtt and continue throughout its entire course to the AD and 
AV, where the dense accumulation of fibers and terminal 
boutons were present (Fujii et al. 1987; Khachaturian et al. 
1983). Gonzalo-Ruiz et al. (1998) have shown that leu-ENK 
is present in 40–50% of neurons in the ML and MM with 
projections directed to the ATN, whereas lesions of the MM 
caused the reduction of ENK-positive fibers in the AV (Fujii 
et al. 1987). Moreover, the collaterals of axons projecting 
to the ATN which build up the mammillotegmental tract, 
provide an ENK input to the TNG, especially the TNGv 
(Yamano and Tohyama 1987). On the other hand, ENK-pos-
itive fibers and terminals are also present in the MB, but are 
mainly confined to the MM (Finley et al. 1981; Khachaturian 
et al. 1983; Lantos et al. 1995). Interestingly, Gonzalo-Ruiz 
et al. (1999) have demonstrated that these leu-ENK-positive 
structures, or at least part of them, have their origins in both 
the TNGv and TNGd, where many neurons containing ENK 
have been detected (Finley et al. 1981; Khachaturian et al. 
1983). The abundance of leu-ENK in the MB–ATN axis 
and beyond demonstrates the high importance of this par-
ticular endogenous opioid in an information flow within the 
extended hippocampal system in rats. Some studies indicate 
that leu-ENK may play important role in the modulation of 
inhibitory transmission, especially in the hippocampus (for 
review see Drake et al. 2007).

However, the distribution of leu-ENK in the MB–ATN 
axis of rats is significantly different from the one observed in 
humans: there is a lack of enkephalins and their precursors, 
except for a low to moderate density of ENK-positive fibers 
in both, the MB and ATN (Alelú-Paz and Giménez-Amaya 
2007; Bouras et al. 1984; Dudás and Merchenthaler 2003; 
Hurd 1996; Pittius et al. 1984; Sánchez et al. 2016; Sukhov 
et al. 1995).

Substance P

One of the most well-known member of the tachykinin fam-
ily–substance P (SP) is commonly found in the mammalian 
CNS. This neuropeptide takes a part in the regulation of 
various physiological and cognitive functions, including 
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memory and learning processes (for review see Severini 
et al. 2002).

No cell bodies, and only a very small number of fibers 
and terminal boutons containing SP, have been observed 
in the MB–ATN axis of the rat (Lantos et al. 1995; Larsen 
1992; Shults et al. 1984; Warden and Young 1988). One 
study suggested that SP-positive structures detected in the 
ML may come from neurons of the TNGd (Gonzalo-Ruiz 
et al. 1999). Regarding SP receptors, a moderate density has 
been found in the MMl and AD, and lower one in the AV and 
AM (Buck et al. 1986), however, Maeno et al. (1993) have 
failed to detect any mRNA of NK1R (SP selective receptor) 
within the MB–ATN axis.

Taking into account very low concentrations of SP also 
in the human MB and ATN (Cooper et al. 1981; Dudas 
and Merchenthaler 2006; Ghatei et al. 1984; Langevin and 
Emson 1982), it seems that this neuropeptide does not play 
an important role in the MB–ATN axis.

Cocaine‑ and amphetamine‑regulated transcript

Cocaine- and amphetamine-regulated transcript (CART) 
is thought to participate in many neurophysiological func-
tions, from food intake to stress response (for review see 
Rogge et al. 2008). Several studies on rodents have shown 
that CART peptide may also be involved in memory-related 
behavior (e.g., Upadhya et  al. 2011; Yermolaieva et  al. 
2001).

There is a variable density of CART-positive cells across 
the MB of rats. A high density of perikarya containing 
CART peptide is located in the MM and a moderate one in 
the ML, together with a low density of CART-positive fibers 
within the whole MB (Koylu et al. 1997). Żakowski et al. 
(2014) have revealed that CART-positive neurons are also 
present in the MB of the guinea pig, but only in the MMl, 
whose axons run toward the anterior thalamus. In the ATN 
of both, the guinea pig and rat, a high density of terminal-
like structures immunoreactive for CART peptide has been 
detected, mostly in the AV (Koylu et al. 1998; Żakowski 
et al. 2014). In line with these results, Douglass et al. (1995) 
found high CART RNA expression in the MM of rats, but a 
later study failed to detect any CART RNA within the MB 
(Hurd and Fagergren 2000).

The human MB also showed CART RNA absence, in 
contrast to the anterior thalamus, where a high expression 
level of CART mRNA has been detected (Charnay et al. 
1999; Hurd and Fagergren 2000).

Neurotensin

Neurotensin (NTS), is a 13-amino acid neuropeptide, which 
plays a role in a plethora of functions and physiological pro-
cesses: pain, thermoregulation, feeding, analgesia, blood 

pressure, arousal, sleep, and motivation. NTS has three 
known receptors: NtsR1, NtsR2, and NtsR3 (for review see 
Boules et al. 2013).

There is a lack of NTS in perikarya, but it has been found 
in a small number of fibers in the MM, with a much higher 
density in the caudal part of the rat MB (Kahn et al. 1982). 
It has been shown that the dorsal subiculum is the source 
of these projections and that the density of NTS-containing 
fibers in the MB is much higher in young rats, up to the third 
postnatal week (Kiyama et al. 1986). Moreover, a similar 
NTS pathway has been observed in infant humans: a high 
density of NTS-positive neurons in the subiculum, axons in 
the postcommissural fornix, and a large number of NTS-con-
taining fibers in the MM (Sakamoto et al. 1986, 1987). The 
density of the NTS-positive structures is decreased markedly 
in the adult human MB (Langevin and Emson 1982; Mai 
et al. 1987), and only a small number of fibers containing 
NTS have been detected in the adult fornix (Roberts et al. 
1983). The transient abundance of NTS in the MB of both 
species may suggest an important role of this peptide in the 
development of the hippocampal-MB circuit. Regarding 
NTS binding sites, the ML has been much richer in receptor 
presence in both, the rat and human (Boudin et al. 1996; 
Najimi et al. 2014).

Neuropeptide Y

Neuropeptide Y (NPY), a 36-amino acid peptide, is con-
nected to several CNS regulatory functions and processes, 
such as feeding behavior, modulation of synaptic transmis-
sion in learning and memory, neuroprotection, and regula-
tion of proliferation of stem cells. The NPY expression is 
particularly increased in cell bodies of the hippocampus, 
amygdala, hypothalamus, periaqueductal gray, locus coer-
uleus, nucleus accumbens, basal ganglia as well as the cer-
ebral cortex. In mammals, several types of NPY receptor has 
been identified (NPY1R- NPY6R). (For review, see Kautz 
et al. 2017; Shende and Desai 2020).

No cell bodies containing NPY and only its trace 
amounts in fibers located mostly in the ML character-
izes the rat MB (de Quidt and Emson 1986; Ni et  al. 
2015). A similar distribution of NPY-positive structure 
has been observed in the anterior thalamus, while in the 
TNG, a moderate density of fibers and cell bodies con-
taining NPY was detected, especially in the TNGd (Ni 
et al. 2015). Interestingly, however, studies on hamsters 
have shown that NPY is present in numerous neurons of 
both, the MM and ML, but only during pre- and perinatal 
periods of the development–they disappeared completely 
about the fifth day after birth. Dense fiber projections 
containing NPY were also visible in the main efferent 
routes of the MB, i.e., the mammillothalamic and mam-
millotegmental tracts, during these periods. The authors 
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suggested that NPY may mediate axonal extension in the 
development of the CNS, and contribute to the establish-
ment of connectivity between the MB and its main targets 
(Botchkina and Morin 1995). In regard to NPY receptors, 
NPY1R type has been detected in a dense network of 
processes and cell bodies in the median part of the MM, 
and in scattered processes in the MMl and ML. The most 
NPY1R-positive part of the ATN is the AM, where dif-
fuse staining was found (Kopp et al. 2002; Wolak et al. 
2003)—this pattern of NPY1R distribution matches the 
topographical organization of connectivity within the 
MB–ATN axis. The rat MB showed a low to moderate 
level of mRNA expression of various NPY receptors, 
NPY1R, NPY2R, NPY4R, and NPY5R; among the ATN, 
the highest expression level was characteristic for the AD 
(Parker and Herzog 1999).

In the human brain, no NPY or its mRNA has been 
found in the MB (Dudas et al. 2000; Dudas and Merch-
enthaler 2006; Escobar et al. 2004).

Somatostatin

The somatostatin (SST) peptide family consists of two 
physiologically active forms of this neuropeptide: soma-
tostatin-14 and somatostatin-28, both derived from pro-
SST. SST function is associated with the inhibition of the 
growth hormone secretion in the hypothalamus, regulation 
of food intake, water intake, body temperature regulation, 
modulation of glucose content in blood, and motor activ-
ity. The SST-producing neurons in the CNS are primarily 
located in the hypothalamus (for review see Stegnel and 
Taché 2019). There are five main types of G protein-cou-
pled SST receptors: sst1-sst5 (Schulz et al. 2000).

The MB of rats is virtually devoid of somatostatin—
only a few fibers have been found in the structure, and a 
very similar pattern is characteristic for the ATN. In the 
TNG, some SST-positive cell bodies have been observed 
in the dorsal nucleus (Johansson et al. 1984; Lantos et al. 
1995). In general, receptors for SST are present only in a 
neuropil of the rat MB, with moderate to high intensity 
of staining for sst1 and sst3; no sst2 has been detected in 
the MB  (Dournaud et al. 1996; Hervieu and Emson 1998, 
1999; Schindler et al. 1997; Uhl et al. 1985).

Similarly, the human MB lacks somatostatin (Bennett-
Clarke and Joseph 1986; Filby and Gross 1983), but a 
dense group of SST-positive fibers has been observed 
in the ML in the infant brain (Najimi et al. 1989). Other 
studies have shown that the ML also contains SST mRNA 
(Mengod et al. 1992) and a moderate density of the SST-
binding sites (Najimi et al. 1991). Only a very low density 
of SST receptors has been found in the human MB (Reubi 
et al. 1986).

Orexins

Orexins (ORXs), sometimes referred to as hypocretins, are 
neuropeptides primarily linked to the regulation of food 
intake behavior, the wake-sleep cycle, and the arousal sys-
tem in general. ORXs are synthesized in the lateral hypo-
thalamus and in the junction of the hypothalamus and 
thalamus. Two types of ORXs were discovered—orexin A 
(ORXA) and orexin B (ORXB). Orexins bind to G protein-
coupled receptors, orexin receptor type 1 (OX1R) and type 
2 (OX2R). ORXA binds with high affinity to both orexin 
receptors, whereas ORXB selectively binds to OX2R (for 
review see Xu et al. 2013).

Although perikarya in the rat MB do not contain ORXs, 
both ORXA and ORXB have been observed in fibers, 
with exception of the MMl (Cutler et al. 1999; Nixon and 
Smale 2007). The ML exhibits a somewhat higher density 
of orexin-positive fibers, especially taking into account a 
comparison of orexin distribution among various species of 
rodents (Nixon and Smale 2007). In line with these results, 
also the presence of orexins’ receptors seems to be more 
pronounced in the ML, however, the results are ambiguous. 
Generally, mRNA for OX1R has not been found in the MB 
(Lu et al. 2000; Marcus et al. 2001), except for one study in 
which it was detected in a low density in the ML (Trivedi 
et al. 1998). On the contrary, a moderate to high density of 
OX2R mRNA has been found in both nuclei, except for the 
study of Trivedi et al. (1998), where no hybridization has 
been observed. Immunohistochemical observations are also 
vague. According to Suzuki et al. (2002), a moderate density 
of OX1R is present only in the ML, whereas in the study of 
Hervieu et al. (2001)—exclusively in the MM. Regarding 
OX2R, its presence has been shown in the whole MB, with-
out any further distinction (Cluderay et al. 2002).

Studies concerning the anterior thalamus have brought 
equivocal results as well. A sparse density of both ORXs 
has been detected in fibers of the AD and AV (Nixon and 
Smale 2007) or the AV only (Cutler et al. 1999). Interest-
ingly, mRNA of both orexin receptors, OX1R and OX2R, 
has been found exclusively in the AM (Marcus et al. 2001), 
while immunohistochemical detection conducted by Hervieu 
et al. (2001) showed that OX1R is present in the AD and AV 
in a density ranging from sparse to extensive. Likely, these 
varied results are the effect of different methods of detec-
tion used in the studies; nevertheless, it seems that there is 
a need to clarify the issue of the distribution of ORXs and 
their receptors in the MB–ATN axis.

Galanin

Galanin is an amino acid peptide that exerts modulatory 
function on several physiological processes, such as glucose 
metabolism, feeding, nociception, learning, and memory. In 
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the CNS, the biggest concentration of the galanin-positive 
cell bodies is contained within the hypothalamus, median 
eminence, locus coeruleus, and medial septal nucleus. In 
general, three groups of receptors for galanin have been 
identified: GalR1-GalR3 (for review see Robinson et al. 
2006).

Except for a few single fibers, the rat MB virtually lacks 
galanin (Lantos et al. 1995; Skofitsch and Jacobowitz 1985; 
Takatsu et al. 2001) and the same is also true for humans 
(Dudas and Merchenthaler 2006; Gentleman et al. 1989). 
Concerning galanin receptors, GalR2 mRNA has been found 
at a high level in the rat MB, especially in the MM; whereas 
GalR1 mRNA is present only at a low level (Burazin et al. 
2000; Mitchell et al. 1997; 1999).

Other substances

In this section, we will describe two families of substances 
related to calcium ions, i.e., calcium-binding proteins and 
calcium sensor proteins.

Calcium‑binding proteins

Calcium-binding proteins (CaBPs) are a family of over 200 
proteins specialized in the regulation of intracellular calcium 
concentrations. The mammalian brain is especially rich in 
three CaBPs: calretinin (CR), calbindin D28k (CB), and par-
valbumin (PV) (e.g., Celio 1990). CR and CB are closely 
homologous proteins (Rogers 1987), which show very simi-
lar functions, such as neuroprotection against excitotoxic-
ity and involvement in neuronal plasticity (e.g., D’Orlando 
et al. 2002; Jouvenceau et al. 1999; Schurmans et al. 1997; 
Schwaller 2014; Yuan et al. 2012). The neuroprotective role 
of PV is much less clear (D’Orlando et al. 2002; Waldvo-
gel et al. 1991), and it is thought to take a part in regulat-
ing the local inhibitory effects of GABAergic interneurons 
(Schwaller 2009).

The distribution of CR and CB is somewhat comple-
mentary and mostly non-overlapping in the MB of the rat. 
CR is an excellent marker of the ML as it is present in 
almost all neurons of this nucleus, while in the MM, it is 
virtually absent (Jacobowitz and Winsky 1991; Resibois 
and Rogers 1992; Rogers and Resibois 1992). On the other 
hand, the majority of nerve cells in the MM are CB-posi-
tive (especially in the MMl), whereas those in the ML are 
practically devoid of CB (Celio 1990; Rogers and Resibois 
1992; Sequier et al. 1990). Molecular studies on mice con-
ducted by Mickelson et al. (2020) corroborate partially 
with these histochemical findings as the gene encoding CB 
has been found only in a neuronal population of the MMl. 
Moreover, CR-positive fibers in the MB participate in the 
formation of the mtt in rats, being the likely source of this 

particular CaBP in the anterior thalamus (Jacobowitz and 
Winsky 1991; Resibois and Rogers 1992). Indeed, thick 
bundles of CR-positive axons crossing the AM, together 
with neuropil containing CR in the AD have been detected 
(Arai et al. 1994; Résibois and Rogers 1992; Winsky et al. 
1992). There is no evidence of CB presence in the mtt 
of rats, however strongly-immunostained neuropil for CB 
has been detected in the ventral part of the AV (e.g., Arai 
et al. 1994; Battaglia et al. 1992; Celio 1990; Rogers and 
Résibois 1992). The consensus has been established that 
these fibers and punctate structures in the AV continue 
with CB-positive axons in the mtt. It has been confirmed 
by Żakowski et al. (2014), by tracking the CB distribution 
in the MB–ATN axis of the guinea pig: from cell bodies 
in the MM, through axon fibers in the mtt, to terminal 
boutons in the ventral part of the AV. PV is also detectable 
in nerve cells of the rat MB: mainly in the MMm, and in 
lower numbers in the ML (Celio 1990). No PV has been 
observed in the mtt. However, strong PV-positive neuro-
pil in the AD is the characteristic feature of the anterior 
thalamus of both, rats and guinea pigs (Arai et al. 1994; 
Celio 1990; Żakowski et al. 2013). In mice, neurons in the 
ML and MMm have been shown to contain PV-encoding 
gene, which is absent in the MMl (Mickelsen et al. 2020).

The presence of CaBPs in the neuropil of the MB, i.e., 
dense neuropillar immunoreactivity for CB and PV in the 
MM, and CR in the ML (Celio 1990; Jacobowitz and Win-
sky 1991; Resibois and Rogers 1992; Rogers and Resibois 
1992) suggests an extrinsic source of these proteins. Dilling-
ham et al. (2015) have studied two different MB inputs in 
this regard, from the TNG and hippocampal formation. It has 
appeared that in the case of PV and CB, the TNGv may be 
the main source of the neuropillar staining in the MM, as it 
contained a substantial number of PV- and CB-positive cells 
that send their axons to the MM. Meanwhile, CR was virtu-
ally absent in neurons projecting from the TNG to the MB. 
In contrast, CR has been found in a considerable number of 
cells in the postsubiculum, which efferents reach the ML. 
Otherwise, no CaBPs were observed in neurons projecting 
from the hippocampal formation to the MB of the rat. Thus, 
the authors suggest that PV and CB in projecting neurons 
of the TNGv may contribute to the functions of the MM, 
such as memory through theta rhythmical firing, whereas 
CR from the postsubiculum may play a role in modulation of 
the head-direction signal in the ML (Dillingham et al. 2015).

Numerous body cells containing CaBPs have also been 
observed in the MB of primates, especially in regard to PV 
and CR (Bernstein et al. 2007; Dixon et al. 2004; Fortin and 
Parent 1997; Xiao and Barbas 2002). Interestingly, while 
many CB-positive neurons have been found in the MB of 
rhesus monkeys and squirrel monkeys (Fortin and Parent 
1997; Xiao and Barbas 2002), this protein is virtually absent 
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in the MB of humans (Dixon et al. 2004; Sanghera et al. 
1995).

Calcium sensor proteins

Similar to calcium-binding proteins, neuronal calcium sen-
sor proteins (NCSPs) are members of the EF-hand proteins 
superfamily. Their main function is to initiate and mediate 
intracellular signal cascades. Among many others, intracel-
lular calcium-sensing proteins include visinin-like protein 
(NVP-1), NVP-2 and NVP-3, recoverin (visinin), neuronal 
calcium sensor-1 (frequenin), and hippocalcin (for review 
see Braunewell and Gundelfinger 1999).

By mapping gene expression in the rat brain, Paterlini and 
colleagues (2000) have revealed that the MB is one of the 
richest structures of NCSPs mRNA within the hypothala-
mus, especially in regard to hippocalcin and NVP-3, which 
a high mRNA level has been found mostly in the MM. Neu-
ronal calcium sensor-1, NVP-1 and NVP-2 mRNAs were 
also present in the MB, but the expression was moderate 
(Paterlini et al. 2000). Initial studies concerning the distri-
bution of visinin-like proteins in the rat brain, have shown a 
very characteristic pattern in the MB–ATN axis, i.e., numer-
ous labeled cells in the MMl, fibers in the mtt, and a high 
density of fibers and terminal-like boutons containing NVP 
in the ventral part of the AV (Takami et al. 1985). The stud-
ied protein was referred to by the authors as visinin, so it is 
difficult to say which NVPs distribution was investigated. As 
visinin localization is restricted to the retina, pineal gland, 
and olfactory neurons (Braunewell and Gundelfinger 1999), 
and the immunoreactivity of NVP-2 is weak in the MB (Sai-
toh et al. 1994), the studied protein was most likely NVP-3 
(or NVP-1). Nevertheless, NCSPs seem to have an important 
role in the rat MB–ATN axis, and probably in the whole 
extended hippocampal system, as numerous NVP-positive 
neurons have been found in the hippocampal formation and 
TNG as well (Kiyama et al. 1985; Takami et al. 1985). It has 
been shown that NCSPs may play various roles in the CNS, 
including involvement in memory and learning processes 
(for review see Groblewska et al. 2015). Study on human 
brains has failed to detect NVPs in the MB (Bernstein et al. 
1999).

Conclusions

For the past 40 years, many bioactive substances and their 
receptors have been found in the MB of the rat, including 
classical neurotransmitters, various neuropeptides and other 
substances, such as calcium-binding proteins. Undoubtedly, 
there is a need for continuation of such studies, as novel 
substances are still being discovered. Moreover, the modern 
neurochemical methods and much more specific antibodies 

give an opportunity to verify the results of the studies con-
cerning chemical parcellation of the MB of rats, but also 
other species, including humans. Full knowledge of the MB 
neurochemistry may facilitate a better understanding of the 
structure functions and its complex relations with other 
structures of the extended hippocampal system.
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